Способ получения химического продукта и аппарат для непрерывной ферментации
Иллюстрации
Показать всеГруппа изобретений относится к биотехнологии. Предложена группа изобретений: способ получения химического продукта и аппарат для получения химического продукта указанным способом. Культивируют микроорганизмы или культуральные клетки в ферментационном резервуаре. Переносят культуральную жидкость из ферментационного резервуара в резервуар мембранной сепарации для фильтрации культуральной жидкости через сепарационную мембрану. Собирают продукт ферментации из полученной после фильтрации жидкости в качестве химического продукта. Обеспечивают обратный сток нефильтрованной культуральной жидкости в ферментационный резервуар для объединения с культуральной жидкостью, не прошедшей через резервуар мембранной сепарации. Одна часть культуральной жидкости направляется в обвод резервуара мембранной сепарации обратно в ферментационный резервуар. При этом объём потока культуральной жидкости регулируют таким образом, что манометрическое давление культуральной жидкости со стороны выхода потока в резервуар мембранной сепарации составляет 1 МПа или менее. Аппарат включает в себя ферментационный резервуар, резервуар мембранной сепарации, трубопровод циркуляции, соединяющий ферментационный резервуар с резервуаром мембранной сепарации, средство для переноса культуральной жидкости, установленное в трубопровод циркуляции, обводной трубопровод для резервуара мембранной сепарации, средство регистрации давления потока со стороны входа потока в резервуар мембранной сепарации, средство регуляции объёма потока, установленное в обводной трубопровод. Изобретения обеспечивают повышение выхода конечного продукта. 2 н. и 11 з.п. ф-лы, 23 ил., 6 табл., 11 пр.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к способу получения химического продукта путем использования культуры микроорганизмов или культуры клеток. Конкретнее, настоящее изобретение относится к способу получения химического продукта и аппарату для ферментации, в котором при проведении культивирования, жидкость, содержащая продукт ферментации (химический продукт), полученный культивированием, эффективно фильтруется из культуральной жидкости, содержащей микроорганизмы или культуральные клетки, через сепарационную мембрану для сбора продукта ферментации с тем, чтобы желательный химический продукт мог быть получен с высокой эффективностью.
Предшествующий уровень техники
Способ получения материала, относящийся к культуре микроорганизмов или культуре клеток, главным образом классифицируется на (1) способ периодического культивирования и способ культивирования с подпиткой, а также (2) способ непрерывной ферментации.
Указанный выше способ периодического культивирования и способ культивирования с подпиткой (1) имеют преимущества, при которых культивирование может быть осуществлено с использованием всего лишь простого оборудования и за короткий период времени, и без существенного ущерба, вызываемого бактериальным загрязнением. По этой причине, указанные способы обычно применялись в качестве способа получения веществ с использованием микроорганизмов или культуральных клеток. Однако в этих способах, поскольку концентрация продукта ферментации в культуральной жидкости с течением времени становится выше, то продуктивность и выход снижаются, например, увеличением осмотического давления или ингибированием ферментации вследствие самого продукта. По этим причинам, данные способы культивирования затрудняют поддержание продуктивности и выхода продукта ферментации на высоком уровне стабильности в течение длительного времени.
С другой стороны, способ непрерывной ферментации указанного выше способа (2) отличается тем, что путем исключения накопления в высокой концентрации продукта ферментации в ферментационном сборнике, продуктивность и выход могут поддерживаться на высоком уровне в течение длительного периода времени.
Например, способ непрерывной ферментации был описан в отношении ферментации L-глутаминовой кислоты (см. патентный документ 1) и L-лизина (см. непатентный документ 1). Однако, хотя в этих примерах материалы, такие как питательные вещества, непрерывно подаются в культуральную жидкость, также всасывается культуральная жидкость, содержащая микроорганизмы или культуральные клетки, что приводит к тому, что микроорганизмы или культуральные клетки в культуральной жидкости разбавляются; поэтому улучшение его продуктивности ограничено.
По этой причине, в качестве способа непрерывной ферментации, был предложен способ, в котором микроорганизмы или культуральные клетки фильтруются через сепарационную мембрану, и, хотя продукт ферментации собирается из полученной фильтрацией жидкости, фильтруемые микроорганизмы или культуральные клетки удерживаются в ферментационном резервуаре или стекают обратно в него для поддержания концентрации микроорганизмов или клеток в культуральной жидкости на высоком уровне.
Например, была предложена методика, при которой непрерывная ферментация проводится с использованием аппарата для непрерывной ферментации с сепарационной мембраной (см. патентный документ 2). В этом предложении используется аппарат непрерывной ферментации, обеспеченный резервуаром для культивирования микроорганизмов или культуральных клеток в культуральной жидкости с тем, чтобы различные химические продукты могли быть получены с более высокой скоростью продукции, по сравнению со способом периодического культивирования и со способом культивирования с подпиткой.
Считается, что в аппарате для непрерывной ферментации с использованием мембранной сепарации, повышение скорости потока культуральной жидкости внутри резервуара мембранной сепарации, ведет к меньшему засорению мембраны; в результате этого, может быть увеличена скорость продукции вследствие увеличения количества жидкости, фильтруемой через сепарационную мембрану.
Однако в патентном документе 2, поскольку не может осуществляться раздельное регулирование количества жидкости, переносимой из ферментационного резервуара, и количественного потока в резервуар мембранной сепарации, количество текущей культуральной жидкости, подаваемой в резервуар мембранной сепарации, зависит от количества культуральной жидкости, текущей из ферментационного резервуара. Поэтому, при попытке изменения скорости потока культуральной жидкости внутри резервуара мембранной сепарации, требуется изменение количества жидкости, переносимой из ферментационного резервуара, что приводит к изменению состояния смешивания жидкости внутри ферментационного резервуара для вызова серьезных изменений условий культивирования. Кроме того, в случае, когда давление внутри резервуара мембранной сепарации повышалось вследствие засорения мембраны или увеличения концентрации микроорганизмов или культуральных клеток с течением времени и тому подобных причин, предпочтительно снижение количества текущей культуральной жидкости, подаваемой в резервуар мембранной сепарации для оптимизации самой мембранной сепарации. Однако, когда изменяется количество текущей культуральной жидкости, подаваемой в резервуар мембранной сепарации, в значительной степени изменяются условия культивирования в ферментационном резервуаре. По этой причине, нельзя легко изменить количество текущей культуральной жидкости, подаваемой в резервуар мембранной сепарации. Кроме того, в случае, когда количество культуральной жидкости, переносимое из ферментационного резервуара, снижено для оптимальной регуляции давления внутри резервуара мембранной сепарации, то скорость потока культуральной жидкости внутри трубопровода переноса жидкости снижается, и микроорганизмы или культуральные клетки осаждаются внутри трубопровода переноса жидкости, и возникает проблема снижения производительности. Напротив, когда давление внутри резервуара мембранной сепарации слишком высокое, то микроорганизмы в культуральной жидкости, переносимой наружу из резервуара мембранной сепарации, могут быть повреждены вследствие колебания давления.
Документы предшествующего уровня техники
Патентные документы
Патентный документ 1: JP-A No. 10-150996
Патентный документ 2: Международная Публикация № 07/097260
Описание
Непатентные документы
Непатентный документ 1: Toshihiko Hirao et al., Appl. Microbiol. Biotechnol. 32, 269-273 (1989)
Краткое описание сущности изобретения
Проблемы, решаемые изобретением
В связи с указанными выше обстоятельствами целью настоящего изобретения является предоставление способа получения химического продукта, который может регулировать скорость потока культуральной жидкости внутри резервуара мембранной сепарации без влияния на условия культивирования в ферментационном резервуаре, а также подавлять осаждение микроорганизмов или культуральных клеток с тем, чтобы повысить продуктивность химического продукта, а также предоставление аппарата для ферментации, с помощью которого желательно применение такого способа.
Средства для решения проблем
Авторы настоящего изобретения провели обширные исследования на аппарате для непрерывной ферментации с использованием мембранной сепарации для повышения скорости продукции и стабилизации ферментационной культуры, и в результате этого обнаружили, что путем применения следующих конструкций с (1) по (14), возможно требуемое поддержание условий культивирования (времени удерживания культуральной жидкости и т.д.) при регулировании скорости потока культуральной жидкости внутри резервуара мембранной сепарации и, следовательно, для эффективного получения химического продукта, и было создано настоящее изобретение.
(1) Способ получения химического продукта, включающий стадии: культивирования микроорганизмов или культуры клеток в ферментационном резервуаре; переноса культуральной жидкости из ферментационного резервуара в резервуар мембранной сепарации с тем, чтобы профильтровать культуральную жидкость через сепарационную мембрану; и сбора продукта ферментации из полученной фильтрацией жидкости в виде химического продукта при обратном стоке не фильтрованной культуральной жидкости с тем, чтобы объединиться с культуральной жидкостью на находящейся выше по потоку стороне резервуара мембранной сепарации, где одна часть культуральной жидкости, приносимая из ферментационного резервуара, направляется в обход резервуара мембранной сепарации, в зависимости от давления на стороне притока культуральной жидкости в резервуар мембранной сепарации.
(2) Способ получения химического продукта по указанному выше пункту (1), в котором количество культуральной жидкости, текущей в обход резервуара мембранной сепарации, регулируется установкой датчика давления на стороне притока культуральной жидкости резервуара мембранной сепарации на 1 МПа (10,19716 кгс/см2) или менее.
(3) Способ получения химического продукта по указанным выше пунктам (1) или (2), в котором одна часть не фильтрованной культуральной жидкости стекает обратно для объединения с культуральной жидкостью в ферментационном резервуаре, тогда как остальная часть не фильтрованной культуральной жидкости стекает обратно для объединения с культуральной жидкостью, находящейся между ферментационным резервуаром и резервуаром мембранной сепарации.
(4) Способ получения химического продукта по указанному выше пункту (3), в котором каждое из количества фильтрованной культуральной жидкости, стекающей обратно для объединения с культуральной жидкостью, находящейся между ферментационным резервуаром и резервуаром мембранной сепарации, и количества текущей не фильтрованной культуральной жидкости, стекающей обратно для объединения с культуральной жидкостью в ферментационном резервуаре, регулируется независимо.
(5) Способ получения химического продукта по указанным выше пунктам (3) или (4), в котором устанавливается отношение количества текущей не фильтрованной культуральной жидкости, стекающей обратно для объединения с культуральной жидкостью в ферментационном резервуаре, к количеству текущей не фильтрованной культуральной жидкости, стекающей обратно для объединения с культуральной жидкостью, находящейся между ферментационным резервуаром и резервуаром мембранной сепарации, равное 1 или менее.
(6) Способ получения химического продукта по любому из указанных выше пунктов с (1) по (5), в котором устанавливается каждая из величин линейной скорости культуральной жидкости, переносимой из ферментационного резервуара в резервуар мембранной сепарации, линейной скорости не фильтрованной культуральной жидкости, которая обратно стекает из резервуара мембранной сепарации для объединения с культуральной жидкостью на находящейся выше по потоку стороне резервуара мембранной сепарации, и линейной скорости культуральной жидкости, которая направляется в обход резервуара мембранной сепарации, равная 2,5 см/сек или более.
(7) Способ получения химического продукта по любому из указанных выше пунктов с (1) по (6), в котором количество культуральной жидкости, текущей в резервуар мембранной сепарации, и/или количество полученной фильтрацией жидкости, текущей из резервуара мембранной сепарации, регулируются так, чтобы процентная доля извлечения количества полученной фильтрацией жидкости из резервуара мембранной сепарации от количества культуральной жидкости, текущей в резервуар мембранной сепарации, была установлена на 10,0% или менее.
(8) Способ получения химического продукта по любому из указанных выше пунктов с (1) по (7), в котором отношение объема культуральной жидкости в ферментационном резервуаре к объему культуральной жидкости в резервуаре мембранной сепарации устанавливается в диапазоне от 4 или более до 100 или менее.
(9) Аппарат для непрерывной ферментации, включающий: ферментационный резервуар для культивирования микроорганизмов или культуры клеток; резервуар мембранной сепарации, имеющий сепарационную мембрану, используемую для сбора продукта ферментации, полученного в культуральной жидкости из ферментационного резервуара; трубопровод циркуляции, который соединяет ферментационный резервуар с резервуаром мембранной сепарации с тем, чтобы перемещать культуральную жидкость в резервуар мембранной сепарации и обеспечивать обратный сток не фильтрованной культуральной жидкости, которая не была профильтрована через сепарационную мембрану, для объединения с культуральной жидкостью на находящейся выше по потоку стороне резервуара мембранной сепарации; и средство для переноса культуральной жидкости, установленное в трубопровод циркуляции, причем данная конструкция, кроме того, включает обводной трубопровод для резервуара мембранной сепарации; средство регистрации давления на стороне притока культуральной жидкости резервуара мембранной сепарации; и средство регуляции количественного потока, установленное в обводной трубопровод.
(10) Аппарат для непрерывной ферментации по указанному выше пункту (9), в котором средство регуляции количественного потока срабатывает в ответ на результат выявления средством регистрации.
(11) Аппарат для непрерывной ферментации по указанному выше пункту (9) или (10), кроме того, включающий средство регистрации линейной скорости для трубопровода циркуляции с тем, чтобы средство регуляции количественного потока и/или средство для переноса культуральной жидкости срабатывали в ответ на результат выявления средством регистрации линейной скорости.
(12) Аппарат для непрерывной ферментации по любому из указанных выше пунктов с (9) по (11), в котором резервуар мембранной сепарации установлен в контур циркуляции, имеющий средство переноса жидкости, отличное от средства переноса культуральной жидкости, которое независимо от ферментационного резервуара.
(13) Аппарат для непрерывной ферментации по любому из указанных выше пунктов с (9) по (12), в котором трубопровод циркуляции имеет отверстие в положении, которое погружено в культуральную жидкость, содержащуюся в ферментационном резервуаре.
(14) Аппарат для непрерывной ферментации по любому из указанных выше пунктов с (9) по (13), в котором отношение объема ферментационного резервуара к объему резервуара мембранной сепарации установлено в диапазоне от 4 или более до 100 или менее.
Эффекты изобретения
В соответствии с настоящим изобретением, одна часть культуральной жидкости, переносимой из ферментационного резервуара, может направляться в обход резервуара мембранной сепарации, в зависимости от давления на стороне притока культуральной жидкости резервуара мембранной сепарации, то есть, количество текущей культуральной жидкости, подаваемой в резервуар мембранной сепарации, и количество текущей культуральной жидкости, переносимой из ферментационного резервуара, может регулироваться независимо. В результате, возможно предотвращение засорения мембраны соответствующим изменением скорости потока культуральной жидкости внутри резервуара мембранной сепарации без изменения условий культивирования, и, следовательно, повышение качества фильтрации жидкости и повышение скорости продукции. Даже если с течением времени происходит засорение мембраны или увеличивается концентрация микроорганизмов или культуральных клеток, вызывая повышение давления внутри резервуара мембранной сепарации, то возможен перенос культуральной жидкости в резервуар мембранной сепарации без вызова по существу никакого изменения условий культивирования в ферментационном резервуаре, а также возможна регуляция протекающего количества культуральной жидкости, подаваемого в резервуар мембранной сепарации, и давления, оказываемого в резервуаре мембранной сепарации при одновременном поддержании скорости потока, которая навряд ли вызывает осаждение микроорганизмов или культуральных клеток в трубопроводе циркуляции, используемом для обратного стока не отфильтрованной культуральной жидкости, которая не была отфильтрована сепарационной мембраной, и, как следствие, становится возможным предотвращение повреждений резервуара мембранной сепарации, а также предотвращение разрушений микроорганизмов и культуральных клеток в культуральной жидкости вследствие колебаний давления. Кроме того, даже после возникновения отказа внутри резервуара мембранной сепарации, можно полностью остановить подачу культуральной жидкости в резервуар мембранной сепарации и устранить неполадки внутри резервуара мембранной сепарации или заменить или переключить резервуары мембранной сепарации без прерывания ферментации.
Кроме того, в настоящем изобретении путем регулирования процентной доли извлечения фильтрованной жидкости в резервуаре мембранной сепарации до 10% или менее, причем одна часть культуральной жидкости, переносимой из ферментационного резервуара может направляться в обход резервуара мембранной сепарации, в зависимости от давления на стороне притока культуральной жидкости резервуара мембранной сепарации. Становится возможным дополнительное предотвращение засорения мембраны и продление времени непрерывной ферментации.
Как описано выше, в соответствии с настоящим изобретением, может быть одновременно улучшена продуктивность и связанный с сахаром выход продукта ферментации, полученного непрерывной ферментацией (то есть, желательного продукта) и путем дополнительного регулирования процентной доли извлечения в резервуаре мембранной сепарации до 10% или менее, время непрерывной ферментации также может продлеваться.
Краткое описание чертежей
Фиг. 1 представляет собой схематический вид, который объясняет один вариант осуществления аппарата для непрерывной ферментации в соответствии с настоящим изобретением.
Фиг. 2 представляет собой схематический вид, который объясняет другой вариант осуществления аппарата для непрерывной ферментации в соответствии с настоящим изобретением.
Фиг. 3 представляет собой схематический вид с пространственным разделением деталей, который объясняет один вариант осуществления элемента в виде сепарационной мембраны, используемой в настоящем изобретении.
Фиг. 4 представляет собой схематический вид в перспективе другого варианта осуществления элемента в виде сепарационной мембраны, используемой в настоящем изобретении.
Фиг. 5 представляет собой чертеж, который иллюстрирует физическую карту дрожжевого вектора экспрессии pTRS11, использованного в эталонном примере.
Фиг. 6 представляет собой график, который показывает линейную скорость потока культуральной жидкости внутри трубопровода циркуляции и количество бактерий, осажденных внутри трубопровода, полученные в примере 2.
Фиг. 7 представляет собой схематический вид, который объясняет еще один вариант осуществления аппарата для непрерывной ферментации в соответствии с настоящим изобретением.
Фиг. 8 представляет собой схематический вид, который объясняет еще один вариант осуществления аппарата для непрерывной ферментации в соответствии с настоящим изобретением.
Фиг. 9 представляет собой схематический вид, который объясняет тип аппарата для непрерывной ферментации, использованного в сравнительных примерах.
Фиг. 10 представляет собой чертеж, который показывает концентрацию молочной кислоты и мутность суспензии дрожжей, полученную в примере 1.
Фиг. 11 представляет собой чертеж, который показывает концентрацию молочной кислоты и мутность суспензии дрожжей, полученную в сравнительном примере 1.
Фиг. 12 представляет собой чертеж, который показывает давление культуральной жидкости на стороне притока резервуара мембранной сепарации, полученное в сравнительном примере 1.
Фиг. 13 представляет собой схематический вид, который объясняет тип аппарата для непрерывной ферментации, использованного в сравнительном примере.
Фиг. 14 представляет собой схематический вид, который объясняет еще один вариант осуществления аппарата для непрерывной ферментации в соответствии с настоящим изобретением.
Фиг. 15 представляет собой схематический вид, который объясняет тип аппарата для непрерывной ферментации, использованного в сравнительных примерах.
Фиг. 16 представляет собой схематический вид, который объясняет другой вариант осуществления аппарата для непрерывной ферментации в соответствии с настоящим изобретением.
Фиг. 17 представляет собой чертеж, который показывает переход различий трансмембранного давления, полученный в примерах 6-9.
Фиг. 18 представляет собой чертеж, который показывает концентрацию кадаверина и мутность суспензии коринеформных бактерий, полученные в примере 10.
Фиг. 19 представляет собой чертеж, который показывает концентрацию кадаверина и мутность суспензии коринеформных бактерий, полученные в сравнительном примере 5.
Фиг. 20 представляет собой чертеж, который показывает давление культуральной жидкости на стороне притока резервуара мембранной сепарации, полученное в сравнительном примере 5.
Фиг. 21 представляет собой чертеж, который показывает концентрацию L-лизина и мутность суспензии коринеформных бактерий, полученные в примере 11.
Фиг. 22 представляет собой чертеж, который показывает концентрацию L-лизина и мутность суспензии коринеформных бактерий, полученные в сравнительном примере 6.
Фиг. 23 представляет собой чертеж, который показывает давление культуральной жидкости на стороне притока резервуара мембранной сепарации, полученное в сравнительном примере 6.
Лучший способ осуществления изобретения
Способ по настоящему изобретению относится к способу получения химического продукта, при котором микроорганизмы или клетки культуры культивируются в ферментационном резервуаре, и культуральная жидкость непрерывно переносится из ферментационного резервуара в резервуар мембранной сепарации для фильтрации через сепарационную мембрану с тем, чтобы продукт ферментации собирался из фильтрованной жидкости в виде химического продукта, в то время как не подвергнутая фильтрации культуральная жидкость стекает обратно для объединения с культуральной жидкостью на находящейся выше по потоку стороне резервуара мембранной сепарации, и при этом одна часть культуральной жидкости, переносимой из ферментационного резервуара, может направляться в обход резервуара мембранной сепарации в ответ на давление на стороне притока культуральной жидкости резервуара мембранной сепарации.
Изобретение осуществляется с помощью аппарата для ферментации, например, показанного на фиг. 1. Фиг. 1 представляет собой схематический вид, который показывает аппарат для ферментации в соответствии с одним вариантом осуществления настоящего изобретения.
Аппарат для ферментации, например, показанный на фиг. 1, состоит из ферментационного резервуара 1, в котором культивируются микроорганизмы или клетки культуры, и резервуара мембранной сепарации 2, снабженного сепарационной мембраной 3, используемой для фильтрации культуральной жидкости. Резервуар мембранной сепарации 2 установлен снаружи резервуара для реакции ферментации и соединен с ферментационным резервуаром 1 через трубопровод переноса жидкости 17 и трубопровод переноса жидкости 15 (трубопровод циркуляции).
Ферментационный резервуар 1 имеет функцию непрерывного культивирования микроорганизмов или клеток культуры, и резервуар может использоваться в таком качестве, пока трубопровод циркуляции может быть соединен с резервуаром; таким образом, может использоваться сосуд ферментера или тому подобный сосуд ферментера, который обычно использовался для культивирования микроорганизмов или клеток культуры.
Ферментационный резервуар 1, который соединен с насосом подачи среды 6, обеспечен мешалкой 7 с тем, чтобы осадок загружался в ферментационный резервуар 1 насосом подачи среды 6, и, при необходимости, позволяет мешалке 7 перемешивать культуральную жидкость внутри ферментационного резервуара 1. Кроме того, устройство подачи газа 8 также соединено с ним с тем, чтобы при необходимости требуемый газ подавался устройством подачи газа 8. В данной конструкции, для извлечения и обеспечения рециркуляции подаваемого газа и подачи снова газа устройством подачи газа 8, например, трубопровод предпочтительно расположен между свободным пространством над продуктом в ферментационном резервуаре 1 и устройством подачи газа 8 с тем, чтобы путем направления подаваемого газа в следующем порядке: свободное пространство, трубопровод и устройство подачи газа 8, могло проводиться извлечение и рециркуляция.
Кроме того, устройство сенсора-регулятора pH 9 и насос подачи раствора для регулировки pH 10, при необходимости, присоединены к ферментационному резервуару 1 с тем, чтобы регулировать pH культуральной жидкости. Конечно, для регулирования pH культуральной жидкости путем подачи и кислоты, и щелочи в культуру, предпочтительно используется множество насосов подачи раствора, регулирующего pH. Кроме того, при необходимости, регулятор температуры 11 также присоединен к нему с тем, чтобы регулировать температуру культуральной жидкости для получения химического продукта с высокой продуктивностью. Кроме того, в качестве регулировок физико-химических состояний культуральной жидкости измерительными и регулирующими устройствами были проиллюстрированы pH и температура; однако при необходимости, регулирующие процессы могут проводиться в отношении растворенного кислорода и ORP (окислительно-восстановительного потенциала), и концентрация микроорганизмов в культуральной жидкости могут быть, кроме того, измерены анализатором, таким как трубопроводный химический сенсор, с тем, чтобы на основании полученного индекса, могли регулироваться физико-химические условия. Кроме того, путем использования в качестве индексов измеренных в физико-химической среде культуральной жидкости величин, полученных измерительными и регулирующими устройствами, по требованию, может регулироваться количество загрузки среды и ее скорость.
Сепарационная мембрана 3 может быть установлена внутри резервуара мембранной сепарации 2, и, таким же образом, как и в отношении ферментационного резервуара 1, форма и тому подобные параметры резервуара мембранной сепарации 2, не ограничиваются, пока трубопровод циркуляции может быть присоединен к нему. В качестве сепарационной мембраны 3, независимо от используемых неорганических и органических материалов, могут использоваться любые сепарационные мембраны, пока только микроорганизмы или клетки культуры могут отфильтровываться от культуральной жидкости, содержащей микроорганизмы или клетки культуры; однако предпочтительно используется пористая мембрана, выполняющая целесообразную функцию сепарации и проникновения, в соответствии со свойствами перерабатываемой жидкости и видам применения жидкости, которые будут описаны ниже, и мембрана предпочтительно обладает устойчивостью к стерилизации (например, при 120°С в течение 30 минут). Кроме того, сепарационная мембрана 3 соединена с насосом 4 с тем, чтобы создать трансмембранную разность давления между стороной сепарационной мембраны, с которой находится необработанная жидкость, и стороной, в которую она должна проникнуть.
Резервуары мембранной сепарации 2 и ферментационный резервуар 1 предпочтительно сконструированы так, чтобы иметь объемы для установки отношения объема культуральной жидкости в ферментационном резервуаре к объему культуральной жидкости в резервуаре мембранной сепарации равным 4 или более до 100 или менее. То есть, путем учета того, что, в целом, в резервуарах содержится культуральная жидкость, имеющая примерно 80% объема каждого из резервуара мембранной сепарации 2 и ферментационного резервуара 1, резервуары желательно сконструированы так, чтобы установить отношение объема ферментационного резервуара к объему резервуара мембранной сепарации, равное 4 или более до 100 или менее. При такой конструкции становится возможным изготовление компактного аппарата, а также удлинение времени удерживания культуральной жидкости в ферментационном резервуаре с тем, чтобы могли быть достигнуты соответствующие условия культивирования, снижены затраты на электрическое питание, повышена скорость получения химического продукта и могло быть достигнуто легкое управление приведением аппарата в действие.
Обводной трубопровод 26, который соединен с резервуаром мембранной сепарации на стороне вытекания из него культуральной жидкости, путем обхода резервуара сепарационной мембраны со стороны притока культуральной жидкости резервуара мембранной сепарации 2, вставлен в трубопровод циркуляции (трубопровод переноса жидкости 17 и трубопровод переноса жидкости 15) так, чтобы без подачи одной части культуральной жидкости, переносимой из ферментационного резервуара 1 в резервуар мембранной сепарации 2, часть культуральной жидкости могла быть объединена с не фильтрованной культуральной жидкостью в трубопроводе переноса жидкости 15, путем обхода резервуара мембранной сепарации 2. Кроме того, в настоящем варианте осуществления, один конец обводного трубопровода 26 соединен с трубопроводом переноса жидкости 17, причем другой конец соединен с трубопроводом переноса жидкости 15; однако в другой конструкции, обводной трубопровод 26 соединен с ферментационным резервуаром 1, путем обхода резервуара мембранной сепарации 2, со стороны притока культуральной жидкости резервуара мембранной сепарации 2, или соединен с частью между ферментационным резервуаром 1 и стороной притока культуральной жидкости резервуара мембранной сепарации 2. То есть, один конец (со стороны выше по потоку) линии обхода 26 может быть соединен с трубопроводом переноса жидкости 17, причем другой конец (со стороны ниже по потоку) соединен с ферментационным резервуаром 1 с тем, чтобы обеспечить непосредственный обратный сток в ферментационный резервуар 1 одной части культуральной жидкости, которая обошла резервуар мембранной сепарации 2. Альтернативно, указанные два конца обводного трубопровода 26 могут быть соединены с трубопроводом переноса жидкости 17 с тем, чтобы обеспечить возможность непосредственного объединения одной части культуральной жидкости, которая обошла резервуар мембранной сепарации 2, с культуральной жидкостью в трубопроводе переноса жидкости 17, подаваемой из ферментационного резервуара 1.
Средство регуляции количества текущей жидкости 25 установлено в обводной трубопровод 26 резервуара мембранной сепарации 2. Текущее количество культуральной жидкости, подаваемой в резервуар мембранной сепарации 2, может регулироваться указанным средством регуляции количества текущей жидкости. Средство регуляции количества текущей жидкости может представлять собой или клапан, или насос, и, с точки зрения затрат, предпочтительно используется клапан. В случае, когда клапан выбран в качестве средства регуляции количества текущей жидкости, количество культуральной жидкости, подаваемой в резервуар мембранной сепарации 2, может быть снижено путем открытия клапана. Напротив, путем закрытия клапана, всей культуральной жидкости, текущей через трубопровод переноса жидкости 17, предоставляется возможность течь в резервуар мембранной сепарации 2. Хотя конструкция клапана конкретно не ограничивается, предпочтительно используется мембранный клапан или дроссельный клапан, потому что после паровой стерилизации, культуральная жидкость или тому подобная вряд ли остается ввиду структуры клапана.
Кроме того, в случае, когда в качестве средства регуляции количества текущей жидкости 25 выбран насос, то процесс переноса жидкости может осуществляться так, чтобы обеспечить возможность потока культуральной жидкости в том же направлении, что и культуральной жидкости, текущей через резервуар мембранной сепарации 2, с тем, чтобы путем увеличения количества переноса жидкости насосом, могло быть уменьшено количество культуральной жидкости, подаваемой в резервуар мембранной сепарации 2, в то же время, напротив, путем остановки переноса жидкости насосом, вся культуральная жидкость, текущая через трубопровод переноса жидкости 17, направляется в резервуар мембранной сепарации 2.
Количество текущей культуральной жидкости, подаваемой в резервуар мембранной сепарации 2, в основном регулируется, в зависимости от давления на стороне притока культуральной жидкости резервуара мембранной сепарации. По этой причине, манометр 29 установлен в аппарате, как показано на фиг. 1. Давление на стороне притока культуральной жидкости резервуара мембранной сепарации измеряется манометром 29, и в случае, когда измеренная величина выше, чем желательная величина, то активируется средство регуляции количества текущей жидкости 25 с тем, чтобы одна часть культуральной жидкости, переносимая из ферментационного резервуара 1, могла обойти резервуар мембранной сепарации 2 и циркулировать.
Кроме того, в трубопровод циркуляции установлен насос 5, который регулирует протекающее количество культуральной жидкости, переносимой из ферментационного резервуара. Насос может быть установлен в трубопровод переноса жидкости 17 или трубопровод переноса жидкости 15 (обратный путь в ферментационный резервуар), и может быть также установлен в оба трубопровода. Хотя система, форма и материал для элементов насосов, контактирующих с жидкостью, конкретно не ограничиваются, в трубопроводе циркуляции предпочтительно используются такие насосы, которые устойчивы к паровой стерилизации.
На фиг. 6 показано соотношение между линейной скоростью культуральной жидкости в трубопроводе циркуляции и количеством осажденных дрожжевых штаммов, обладающих способностью продуцировать молочную кислоту, и на основании этого, обнаружено, что в случае, когда линейная скорость культуральной жидкости в трубопроводе циркуляции (трубопровод переноса жидкости 17 и трубопровод переноса жидкости 15) составляет 2,5 см/с или более, то культуральная жидкость может циркулировать без возможного осаждения бактерий внутри трубопровода. Поэтому, путем выявления линейной скорости потока культуральной жидкости внутри трубопровода переноса жидкости 17, переносимой из ферментационного резервуара, и/или не фильтрованной культуральной жидкости внутри трубопровода переноса жидкости 15, предпочтительно выбирается такой режим работы средства регуляции количества текущей жидкости 25 и насоса 5, чтобы установить линейную скорость на уровень 2,5 см/с или более. Кроме того, по той же причине, устанавливается линейная скорость культуральной жидкости в обводном трубопроводе 26, предпочтительно равная 2,5 см/с или более.
Кроме того, в случае, когда, как описано ранее, одна часть культуральной жидкости, которая обошла резервуар мембранной сепарации, объединяется с культуральной жидкостью в ферментационном резервуаре или с культуральной жидкостью, переносимой из ферментационного резервуара в резервуар мембранной сепарации, путем выявления линейной скорости культуральной жидкости, переносимой из ферментационного резервуара, то режим работы средства регуляции количества текущей жидкости 25 и насоса 5 выбирается так, чтобы установить линейную скорость на уровень 2,5 см/с или более. Кроме того, как будет описано позднее, в случае, когда не фильтрованная культуральная жидкость из трубопровода переноса жидкости 15 стекает обратно для объединения с культуральной жидкостью в ферментационном резервуаре, в то же время, стекая назад с тем, чтобы непосредственно объединяться с одной частью культуральной жидкости трубопровода переноса жидкости 17, то предпочтительно в каждом из двух трубопроводов устанавливается линейная скорость культуральной жидкости, равная 2,5 см/с или более. То есть, в настоящем изобретении, каждая из линейной скорости культуральной жидкости, переносимой из ферментационного резервуара