Облегченная цементирущая композиция на основе зольной пыли с высокой прочностью на сжатие и быстрым схватыванием

Иллюстрации

Показать все

Изобретение относится к способу изготовления быстросхватывающейся облегченной цементирующей композиции с улучшенной прочностью на сжатие для строительных изделий, таких как панели. Способ получения облегченной цементирующей смеси, имеющей улучшенную прочность на сжатие и устойчивость к воде, включает смешивание воды, цементирующего реагирующего порошка, соли щелочного металла лимонной кислоты в качестве ускорителя схватывания и облегченного наполнителя, где весовое соотношение воды к реагирующему порошку составляет приблизительно 0,17-0,35:1,0, реагирующий порошок включает 75-100 вес.% зольной пыли, содержащей по меньшей мере 50 вес.% зольной пыли класса С и 0-25 вес.% гидравлического цемента и/или гипса, при этом схватывание цементирующей смеси достигается в течение от 4 до 6 минут смешивания композиции без добавления замедлителя схватывания. Изобретение также касается композиции для получения облегченной цементной панели. 2 н. и 8 з.п. ф-лы, 9 ил., 9 табл.

Реферат

Перекрестная ссылка на родственную заявку

[001] Заявлен приоритет заявки на патент США №12/237,634, поданной 25 сентября 2008 г., включенной в данный документ ссылкой во всей ее полноте.

Область изобретения

[002] Данное изобретение в целом касается быстро схватывающихся цементирующих композиций, которые могут быть использованы в ряде применений, при которых желательно быстрое затвердение и достижение ранней прочности. В частности, данное изобретение касается цементирующих композиций, которые могут быть использованы для изготовления панелей с превосходной влагостойкостью для применения во влажных и сухих местоположениях в зданиях. Сборные бетонные продукты, такие как цементные панели, сделаны при условиях, которые обеспечивают быстрое схватывание цементирующей смеси так, что панели могут быть обработаны вскоре после того, как цементирующая смесь отлита в стационарную или движущуюся форму или на непрерывно движущуюся ленту. Идеально, такое схватывание цементной смеси может быть достигнуто за приблизительно 20 минут, предпочтительно за 10-13 минут, более предпочтительно за 4-6 минут, после смешивания цементной смеси с приемлемым количеством воды.

Предпосылки изобретения

[003] Патент США 6869474, Perez-Репа et al., включенный в данный документ ссылкой, обсуждает чрезвычайно быстрое схватывание цементирующих композиций для производства продуктов на основе цемента, таких как цементные панели, выполненных путем добавления алканоламина к гидравлическому цементу, такому как портландцемент, и формирования суспензии с водой при условиях, которые обеспечивают начальную температуру суспензии, по меньшей мере, 90°F (32°C). Могут быть включены дополнительные реагирующие материалы, такие как цемент с высоким содержанием оксида алюминия, кальция сульфат и пуццолановый материал, такой как зольная пыль. Чрезвычайно быстрое схватывание позволяет быстрое получение цементирующих продуктов. Обнаружили, что триэтаноламиновые добавки являются очень сильным ускорителем, способным производить составы с относительно коротким окончательным временем схватывания с повышенными уровнями зольной пыли и гипса и без потребности в кальций алюминатных цементах, включающих кальция алюминат. Однако, составы с триэтаноламином также имели относительно более низкую раннюю прочность на сжатие по сравнению с составами цементных панелей, содержащих кальция алюминатные цементы.

[004] Находящаяся на рассмотрении заявка на патент США №11/758,947, поданная 6 июня 2007 г.Perez-Репа et al., включенная в данный документ ссылкой, обсуждает чрезвычайно быстрое схватывание цементирующих композиций с ранней прочностью на сжатие для производства продуктов на основе цемента, таких как цементные панели, достигаемое путем добавления алканоламина и фосфата к гидравлическому цементу, такому как портландцемент, и формирования суспензии с водой при условиях, которые обеспечивают начальную температуру суспензии, по меньшей мере, 90°F (32°C). Могут быть включены дополнительные реагирующие материалы, такие как цемент с высоким содержанием оксида алюминия, кальция сульфат и пуццолановый материал, такой как зольная пыль. Кроме того, все композиции содержали значительное количество гидравлического цемента и гипса.

[005] Патент США 4488909, Galer et al., включенный в данный документ ссылкой, обсуждает цементирующие композиции, способные к быстрому схватыванию. Композиции позволяют получение с высокой скоростью устойчивых к диоксиду углерода цементных панелей путем формирования по существу всего из потенциального эттрингита за приблизительно 20 минут после смешивания композиции с водой. Главными компонентами цементирующей композиции являются портландцемент, цемент с высоким содержанием оксида алюминия, кальция сульфат и известь. Могут быть добавлены пуццоланы, такие как зольная пыль, монтмориллонитовая глина, диатомовая земля и пумицит, до приблизительно 25%. Цементная композиция включает приблизительно 14-21 вес.% цемента с высоким содержанием оксида алюминия, который в комбинации с другими компонентами делает возможным быстрое формирование эттрингита и других кальций алюминатных гидратов, отвечающих за быстрое схватывание цементирующей смеси. В этом изобретении Galer et al. представили использующий алюминаты высоко глиноземный цемент (НАС) и использующий сульфат ионы гипс для формирования эттрингита и достижения быстрого схватывания их цементирующей смеси.

[006] Эттрингит представляет собой кальция алюминия сульфатное соединение, имеющее формулу Ca6Al2(SO4)3∙32Н2O или альтернативно 3 CaO∙Al2O3∙3CaSO4∙32H2O. Эттрингит формируется в виде длинных игольчатых кристаллов и обеспечивает быстрое раннее твердение цементных панелей так, что они могут быть обработаны вскоре после отлива в форму или на непрерывную отливающую и формирующую ленту.

[007] В общем, быстро схватывающийся состав по Galer et al испытывает некоторые ограничения. Эти ограничения, как показано ниже, являются еще большими проблемами в получении цементирующих продуктов, таких как цементные панели.

[008] Патент США №5536310, Brook et al., раскрывает цементирующую композицию, содержащую 10-30 частей по весу (pbw) гидравлического цемента, такого как портландцемент, 50-80 pbw зольной пыли, и 0,5-8,0 pbw выражены как свободная кислота карбоновой кислоты, такой как лимонная кислота, или ее соли щелочных металлов, например, трикалия цитрат или тринатрия цитрат, с другими традиционными добавками, включая замедляющие добавки, такие как борная кислота или бура, которые используются для ускорения реакция и времени схватывания композиции для преодоления раскрытого недостатка использования высокого содержания зольной пыли в цементных композициях.

[009] Патент США №5536458, Brook et al., раскрывает цементирующую композицию, содержащую гидравлический цемент, такой как поотландпемент.70- 80 частей по весу зольной пыли и 0,5-8,0 pbw свободной карбоновой кислоты, такой как лимонная кислота, или ее солей щелочных металлов, например, калия цитрат или натрия цитрат, с другими традиционными добавками, включая замедляющие добавки, такие как борная кислота или бура, которые используются для ускорения реакции и времени схватывания композиции для преодоления известного недостатка использования высокого содержания зольной пыли в цементных композициях.

[0010] Патент США №4494990, Harris, раскрывает цементирующую смесь портландцемента, например, 25-60 pbw, зольной пыли, например, 3-50 pbw, и менее 1 pbw натрия цитрата.

[0011] Патент США №6827776, Boggs et al., раскрывает гидравлическую цементную композицию, включающую портландцемент, зольную пыль, которая имеет время схватывания, контролированное рН, активаторной суспензии кислоты, предпочтительно лимонной кислоты, и основания, которое может быть гидроксидом щелочного или щелочноземельного металла или солью кислотного компонента.

[0012] Патент США №5490889, Kirkpatrick et al., раскрывает смешанный гидравлический цемент, состоящий из воды, зольной пыли (50,33-83,63 pbw), портландцемента, измельченного кремнезема, борной кислоты, буры, лимонной кислоты (0,04-2,85 pbw) и щелочнометаллического активатора, например, лития гидроксида (LiOH) или калия гидроксида.

[0013] Патент США №5997632, Styron, раскрывает гидравлическую цементную композицию, содержащую 88-98 вес.% зольной пыли, 1-10 вес.% портландцемента и от приблизительно 0,1-4,0 вес.% лимонной кислоты. Известь для достижения желаемого минимального содержания извести 21% обеспечена суббитумной зольной пылью или суббитумной зольной пылью в комбинации с обогащающим средством. В дополнение к лимонной кислоте Styron применяет щелочной источник, такой как калия или натрия гидроксид.

[0014] Окончательное время схватывания цементирующих смесей продуктов известного уровня техники составляет типично более 9 минут и может быть продлено до 2-3 часов для стандартных бетонных продуктов. Окончательное время схватывания обычно определяют как время, за которое цементирующие смеси схватываются, на протяжении которого бетонные продукты, изготовленные из них, могут быть обработаны и расположены друг над другом, хотя химические реакции могут продолжаться в течение длительных периодов.

[0015] Количество цемента с высоким содержанием оксида алюминия (также известного как кальция алюминатный цемент) в смеси реагирующего порошка в бетонных продуктах известного уровня техники также очень высокое. Типично, цемент с высоким содержанием оксида алюминия составляет более 14 вес.% смеси реагирующего порошка.

Краткое описание изобретения

[0016] Целью данного изобретения является обеспечение способа изготовления быстро схватывающейся цементирующей суспензии.

[0017] Другой целью данного изобретения является обеспечение облегченных цементирующих композиций с улучшенной ранней и окончательной прочностью на сжатие. Цементирующие композиции содержат калия цитрат, натрия цитраты или их смеси.

[0018] Данное изобретение включает способ обеспечения облегченной цементирующей смеси, обладающей быстрым схватыванием, улучшенной прочностью на сжатие и устойчивостью к воде, включающий: смешивание при окружающей или выше окружающей температурах воды, реагирующего порошка, ускоряющего схватывание количества соли щелочного металла лимонной кислоты и облегченного наполнителя, где соотношение воды к твердым веществам реагирующего порошка составляет приблизительно 0,17-0,35:1,0 и более, предпочтительно приблизительно 0,20-0,23:1,0, реагирующий порошок включает 75-100 вес.% зольной пыли и 0-25 вес.% гидравлического цемента и гипса.

[0019] Предпочтительно реагирующий порошок не содержит гидравлический цемент и гипс (гидратированный кальция сульфат).

[0020] Такой цементирующий реагирующий порошок включает, по меньшей мере, зольную пыль, а также может включать гидравлический цемент, например, портландцемент или кальция алюминатный цемент (САС) (также обычно называемый глиноземным цементом или цементом с высоким содержанием оксида алюминия), кальция сульфат и не содержащую зольную пыль минеральную добавку.

[0021] До 25 вес.% смеси цементирующего реагирующего порошка цементирующей композиции могут быть не содержащими зольную пыль минеральными добавками, обладающими большими, небольшими цементирующими свойствами или не обладающие цементирующими свойствами.

[0022] Цементирующий реагирующий порошок в целом содержит приблизительно 10-40 вес.% извести и более типично 20-30 вес.% извести. Однако добавка извести не требуется для получения быстрого схватывания, если ингредиенты реагирующего порошка уже содержат достаточно извести. Например, Типа С зольная пыль в целом содержит известь. Таким образом, смесь реагирующего порошка цементирующей композиции типично не содержит добавленную извне известь.

[0023] Типично суспензия имеет начальную температуру от комнатной температуры до приблизительно 100°F-115°F (от 24°C до приблизительно 38°-46°C).

[0024] Окончательное время схватывания (т.е. время, после которого цементирующие панели могут быть обработаны) цементирующей композиции, измеренной согласно игле Гилмора, должно составлять самое большее 20 минут, предпочтительно 10-13 минут или менее, более предпочтительно приблизительно 4-6 минут, после смешивания с приемлемым количеством воды. Более короткое время схватывания и более высокая ранняя прочность на сжатие помогает увеличить выход продукции и снизить затраты на изготовление продукта.

[0025] Очень быстро схватывающиеся цементирующие композиции данного изобретения могут быть использованы для ряда применений, при которых желательно быстрое затвердение и достижение ранней прочности. Применение соли щелочного металла лимонной кислоты, такой как калия цитрат и/или натрия цитрат, для ускорения схватывания цементирующей композиции, когда суспензию формируют при повышенных температурах, делает возможным увеличенную скорость получения цементирующих продуктов, таких как цементные панели.

[0026] Дозировка цитрата щелочного металла в суспензии находится предпочтительно в диапазоне приблизительно 1,5-6 вес.%, предпочтительно приблизительно 1,5-4,0 вес.%, более предпочтительно приблизительно 2-3,5 вес.%, и наиболее предпочтительно приблизительно 3,5 вес.% на основе цементирующих реагирующих компонентов данного изобретения. Калия цитраты или натрия цитраты являются предпочтительными. Как упомянуто выше, эти весовые проценты основаны на 100 частях по весу реагирующих компонентов (цементирующий реагирующий порошок). Таким образом, например, в 100 фунтах цементирующего реагирующего порошка может быть приблизительно 1,5-4,0 общих фунтов калия и/или натрия цитратов.

[0027] Типичный цементирующий реагирующий порошок данного изобретения включает 75-100 вес.% зольной пыли и 0-25 вес.% гидравлического цемента, такого как портландцемент, или гипса. Типично, по меньшей мере, половина зольной пыли является Типа С зольной пылью.

[0028] Другой типичный цементирующий реагирующий порошок включает 75-100 вес.% зольной пыли, 0-20 вес.% кальция алюминатного цемента, 0-7 вес.% кальция сульфата на основе веса реагирующего порошка, не включает гипс и не включает гидравлический цемент, отличный от кальция алюминатного цемента.

[0029] Существует синергическое взаимодействие между цитратом щелочного металла и зольной пылью. Добавление соли щелочного металла обладает преимуществами достижения увеличения ранней и долговременной прочности на сжатие для композиций, содержащих высокие количества зольной пыли по сравнению с сопоставимыми композициями, использующими ускорители, подобные кальций алюминатным цементам, триэтаноламину или едким гидроксидам щелочных металлов.

[0030] Кроме того, добавление цитратов щелочных металлов улучшает текучесть смеси по сравнению с другими ускорителями, такими как алюминия сульфат, который может привести к преждевременному затвердеванию бетонных смесей.

[0031] Также могут присутствовать другие добавки, например, инертный наполнитель, которые не являются рассматриваемым цементирующим реагирующим порошком, но являются частью общей цементирующей композиции. Такие другие добавки включают одно или более из песка, наполнителя, облегченных заполнителей, снижающих воду средств, таких как суперпластификаторы, ускоряющих схватывание средств, замедляющих схватывание средств, вовлекающих воздух средств, вспенивающих средств, средств контроля сжатия, средств, модифицирующих вязкость суспензии (сгустители), окрашивающих средств и внутренних отверждающих средств, могут быть включены как желательные в зависимости от возможного способа и применения цементирующей композиции данного изобретения.

[0032] Облегченные цементирующие композиции данного изобретения могут быть использованы для получения сборных бетонных строительных продуктов, таких как цементирующие панели с превосходной влагостойкостью для применения во влажных и сухих месторасположениях в зданиях. Сборные бетонные продукты, такие как цементные панели, делают при условиях, которые обеспечивают быстрое схватывание цементирующей смеси так, что панели могут быть обработаны сразу после отлива цементирующей смеси в стационарную или движущуюся форму или на непрерывно движущуюся ленту.

[0033] Облегченные цементирующие композиции могут быть использованы в любом применении бетонного продукта, включая бетонные панели, настил, покрытия, отделки, верхний слой, а также заплаточные смеси для бетонных дорог. Бетонные продукты, сделанные из облегченных композиций данного изобретения, обладают особенными преимуществами для применения, которое требует устойчивости к воде, по сравнению с композициями, которые содержат гипс, и применений, которые требуют более высокой прочности на сжатие, чем содержащие цемент композиции, которые обладают более высоким углеродным следом.

[0034] Все проценты, соотношения и пропорции в данном документе являются весовыми, если не определено иное.

Краткое описание графических материалов

[0035] ФИГ.1 является графиком результатов Примера 1, показывающим эффект увеличения натрия цитрата на степень повышения температуры для смесей с бурой, борной кислотой и лимонной кислотой.

[0036] ФИГ.2 является графиком результатов Примера 1, показывающим эффект увеличения натрия цитрата на повышение температуры для смесей с борной кислотой и лимонной кислотой.

[0037] ФИГ.3 является графиком результатов Примера 2, показывающим эффект увеличения калия гидроксида на повышение температуры для смесей с лимонной кислотой и натрия цитратом.

[0038] ФИГ.4 является графиком результатов Примера 4, показывающим повышение температуры для смесей с калия цитратом без калия гидроксида.

[0039] ФИГ.5 является графиком результатов Примера 5, показывающим повышение температуры для смесей, включающих калия цитрат или натрия цитрат, смешанный с водой при комнатной температуре.

[0040] ФИГ.6 является графиком результатов Примера 8, показывающим повышение температуры для смесей, содержащих различные соотношения зольной пыли и портландцемента типа III, использующего весовое соотношение воды к цементу 0,30:1.

[0041] ФИГ.7 является графиком результатов Примера 9, показывающим эффект повышения температуры для смесей 1-4 в этом примере с различными соотношениями воды к зольной пыли без портландцемента.

[0042] ФИГ.8 является графиком результатов Примера 9, показывающим повышение температуры для смесей 3, 5, 6 и 7 для смесей с различными соотношениями зольной пыли и портландцемента типа III с цитратом при весовом соотношении воды к комбинированному весу зольной пыли и портландцемента 0,20:1.

[0043] ФИГ.9 является графиком результатов смесей Примера 10 с различными дозировками калия цитрата, использующими только зольную пыль без портландцемента, и показывает, что добавление калия цитрата значительно повышает степень повышения температуры основанных на зольной пыли смесей.

Детальное описание изобретения

[0044] Данное изобретение включает способ обеспечения облегченной цементирующей смеси, обладающей улучшенной прочностью на сжатие и устойчивостью к воде, включающий: смешивание воды, реагирующего порошка, соли щелочного металла лимонной кислоты и облегченного наполнителя, где соотношение воды к твердым веществам реагирующего порошка составляет приблизительно 0,17-0,35:1,0, типично приблизительно 0,17-0,30:1,0, более предпочтительно приблизительно 0,2-0,23:1,0. Реагирующий порошок включает 75-100 вес.% зольной пыли и 0-25 вес.% гидравлического цемента и/или гипса. Типично смеси данного изобретения цементирующего реагирующего порошка включают зольную пыль с калия цитратом и/или натрия цитратом и водой при начальной температуре суспензии от, по меньшей мере, комнатной температуры до 115°F (24°C-41°C) для выхода быстрого схватывания предпочтительно менее 10-13 минут, более предпочтительно приблизительно 4-6 минут или менее.

[0045] Данное изобретение также обеспечивает цементирующие композиции с улучшенной характеристикой быстрого окончательного схватывания и улучшенной ранней прочностью на сжатие.

[0046] Типичные ингредиенты представлены в следующей таблице А.

[0047]
ТАБЛИЦА
Ингредиент Широкий частей на основе сухого веса на 100 частей реагирующего порошка Предпочтительный частей на основе сухого веса на 100 частей реагирующего порошка Более предпочтительныйчастей на основе сухого веса на 100 частей реагирующего порошка
Реагирующий 100 частей 100 частей 100 частей
Порошок
Зольная пыль 75-100 88,5-100
Портландцемент менее 5 приблизительно 0
Кальция менее 5 приблизительно 0
алюминатный цемент менее 2 приблизительно 0
Кальция сульфат менее 2 приблизительно 0
Гипс менее 25 менее 25
Не содержащая зольную пыль минеральная добавка добавленная известь факультативная* нет
соль щелочного металла лимонной кислоты 1,5-6 1,5-4 2-3,5
облегченный наполнитель 1-200 2-125
не содержащая зольную пыль минеральная добавка менее 25 менее 11,5
замедлитель схватывания
средство, захватывающее воздух 0,01-1
вторичный неорганический ускоритель схватывания менее 1 менее 0,25 менее 0,1
суперпластификатор 2 макс. 0,1-1
средства контроля сжатия, окрашивающие средства, средства, модифицирующие вязкость (сгустители) и внутренние отверждающие средства 1 макс.
* добавления извести не требуется, если ингредиенты реагирующего порошка уже содержат достаточно извести.

[0048] В целом весовое соотношение воды к цементирующему реагирующему порошку составляет приблизительно 0,15-0,3:1,0. Инертные облегченные наполнители не являются частью цементирующего реагирующего порошка.

[0049] Не вдаваясь в конкретную теорию, теоретически предсказали, что повышение раннего срока и прочности на сжатие достигаются с быстрыми схватываниями путем обеспечения цементирующего реагирующего порошка с высоким минеральным содержанием зольной пыли 75-100 вес.% и предпочтительно без портландцемента или кальция алюминатного цемента или гипса, и смешивания цементирующего реагирующего порошка, цитрата щелочного металла и воды для формирования суспензии при повышенных температурах выше 20°C так, что формирование щелочных алюмосиликатных гидратов, и/или гидратов алюмосиликата, и/или соединений кальция алюмосиликата, представленных в зольной пыли, могут происходить как результат гидратации этой смеси реагирующего порошка с цитратом щелочного металла.

[0050] Таким образом, приемлемое количество воды обеспечено для гидратации цементирующего реагирующего порошка и для быстрого формирования щелочных алюмосиликатных гидратов и других гидратов, присутствующих в зольной пыли. В целом, количество добавленной воды будет больше теоретически требуемого для гидратации цементирующего реагирующего порошка. Такое повышенное содержание воды облегчает применимость цементирующей суспензии. Типично, в суспензии весовое соотношение воды к смеси реагирующего порошка составляет приблизительно 0,20-0,35:1, более типично приблизительно 0,20-0,30:1, предпочтительно приблизительно 0,20-0,23:1. Количество воды зависит от потребностей отдельных материалов, присутствующих в цементирующей композиции.

[0051] Щелочные алюмосиликатные гидраты, и/или другие гидраты алюмосиликата, и/или кальций алюмосиликатных соединений формируются очень быстро в процессе гидратации, таким образом, сообщая быстрое схватывание и твердость смесям, сделанным со смесью цементирующего реагирующего порошка композиции данного изобретения. При изготовлении продуктов на основе цемента, таких как цементные панели, первоначально происходит формирование щелочных алюмосиликатных гидратов, и/или других гидратов алюмосиликата, и/или кальций алюмосиликатных соединений, которые делают возможным обработку цементных панелей за несколько минут после смешивания цементирующей композицией данного изобретения с приемлемым количеством воды.

[0052] Схватывание композиции характеризуется начальным и конечным временем схватывания, измеренным с применением игл Гилмора, описанных в процедуре теста ASTM С266. Конечное время схватывания также соответствует времени, когда бетонный продукт, например бетонная панель, приобретает достаточную прочность так, что он может быть обработан или транспортирован, в случае бетонного пола или дороги. Относительно более высокий ранний срок (3-5 часов) прочности на сжатие может быть преимуществом для бетонного материала, поскольку он может выдержать более высокие нагрузки без деформации. Специалисту в данной области будет понятно, что реакции отверждения продолжаются в течение продолжительных периодов после достижения конечного времени схватывания.

[0053] Ранняя прочность композиции характеризуется измерением прочности на сжатие через 3-5 часов отверждения, как определено в ASTM С109. Достижение высокого быстрого твердения позволяет легкую обработку расположенных друг над другом панелей.

Цементирующий реагирующий порошок

[0054] Цементирующий реагирующий порошок содержит зольную пыль и факультативно не содержащие зольную пыль минеральные добавки, гидравлический цемент и факультативно гипс. Цементирующий реагирующий порошок типично содержит 75-100% зольной пыли и 0-25 вес.% компонента, выбранного из группы, включающей гидравлический цемент, гипс и не содержащие зольную пыль минеральные добавки. Цементирующий реагирующий порошок предпочтительно содержит 88,5-100 вес.% зольной пыли. Цементирующий реагирующий порошок более предпочтительно содержит 88,5-100 вес.% зольной пыли и не содержит гидравлический цемент и гипс.

[0055] Предпочтительно цементирующий реагирующий порошок содержит 10-40 вес.% извести. Однако эта известь в целом не является добавленной известью. Предпочтительнее она является включенной в другой ингредиент цементирующего реагирующего порошка, например, зольную пыль.

[0056] Основной ингредиент цементирующего реагирующего порошка цементирующей композиции данного изобретения представляет собой содержащую зольную пыль минеральную добавку, предпочтительно Типа С зольную пыль. Зольная пыль описана ниже в разделе, озаглавленном Содержащие зольную пыль и не содержащие зольную пыль минеральные добавки.

[0057] В дополнение к зольной пыли цементирующий реагирующий порошок может включать 0-25 вес.% факультативных цементирующих добавок, таких как портландцемент, кальций алюминатный цемент, кальция сульфат или гипс (природный гипс). Однако, цементирующие композиции с более низким содержанием воды данного изобретения, т.е. цементирующие композиции с весовым соотношением воды к реагирующему порошку приблизительно 0,17-0,35:1,0, с этими факультативными цементирующими добавками обладают значительно сниженной прочностью на сжатие по сравнению с такими же композициями с более низким содержанием воды данного изобретения без дополнительных цементирующих добавок.

[0058] Например, в некоторых смесях цементирующих реагирующих порошков, когда прочность на сжатие не является необходимой, или когда используются более высокие соотношения воды к реагирующему порошку, например, соотношения выше приблизительно 0,35:1,0, может быть использован портландцемент при приблизительно 0-25 вес.% и зольная пыль при 75-100 вес.%.

Содержащие зольную пыль и не содержащие зольную пыль минеральные добавки

[0059] Гидравлический цемент традиционных композиций реагирующего порошка главным образом заменяется зольной пылью, обладающей пуццолановыми свойствами, особенно Класса С зольной пылью, вместе с другим факультативными не содержащими зольную пыль минеральными добавками, обладающими значительными, небольшими или не обладающими цементирующими свойствами. Не содержащие зольную пыль минеральные добавки, обладающие пуццолановыми свойствами, являются особенно предпочтительными в цементирующем реагирующем порошке данного изобретения.

[0060] ASTM С618-97 определяет пуццолановые материалы как "кремнистые или кремнистые и глиноземные материалы, которые сами по себе обладают небольшой цементирующей ценностью или не обладают цементирующей ценностью, но будут, в тонко измельченной форме и в присутствии влаги, химически реагировать с кальция гидроксидом при обычных температурах для формирования соединений, обладающих цементирующими свойствами." Различные природные и созданные человеком материалы назвали пуццолановыми материалами, обладающими пуццолановыми свойствами. Некоторые примеры пуццолановых материалов включают пемзу, перлит, диатомовую землю, тонкую кремнеземную пыль, туф, трас, рисовую шелуху, метакаолин, молотый гранулированный доменный шлак и зольную пыль.

[0061] Все из этих пуццолановых материалов могут быть использованы либо отдельно или в комбинированной форме как часть цементирующего реагирующего порошка данного изобретения.

[0062] Зольная пыль являются предпочтительным пуццоланом в цементирующей смеси реагирующего порошка данного изобретения. Виды зольной пыли, содержащие высокое количество кальция оксида и кальция алюмината (такие как Класса С зольная пыль ASTM С618 стандарта), являются предпочтительными, как объяснено ниже. Другие минеральные добавки, такие как кальция карбонат, вермикулит, глины и дробленая слюда, также могут быть включены как минеральные добавки.

[0063] Зольная пыль является тонким порошковым побочным продуктом, образованным из сгорания угля. Электростанции, использующие котлы, сжигая измельченный уголь, производят большую часть коммерчески доступных видов зольной пыли. Эти виды зольной пыли состоят главным образом из стекловидных сферических частиц, а также остатков гематита и магнетита, древесного угля и некоторых кристаллических фаз, образованных во время охлаждения. Структура, композиция и свойства частиц зольной пыли зависят от структуры и композиции угля и процессов сгорания, при которых формируется зольная пыль. ASTM С618 стандарт различает два главных класса видов зольной пыли для использования в бетоне - Класс С и Класс F. Эти два класса видов зольной пыли в целом происходят от различных видов угля, которые являются результатом различий в процессах формирования угля, происходящих во время геологических периодов. Класса F зольная пыль обычно образуется при сжигании антрацита или битуминозного угля, тогда как Класса С зольная пыль обычно образуется из лигнита или полубитуминозного угля.

[0064] ASTM С618 стандарт различает Класс F и Класс С зольной пыли главным образом по их пуццолановым свойствам. Соответственно, в ASTM С618 стандарте главное спецификационное различие между Класса F зольной пылью и Класса С зольной пылью заключается в минимальном пределе SiO2+Al2O3+Fe2O3 в композиции. Минимальный предел SiO2+Al2O3+Fe2O3 для Класса F зольной пыли составляет 70%, а для Класса С зольной пыли составляет 50%. Таким образом, виды Класса F зольной пыли более пуццолановые, чем виды Класса С зольной пыли. Хотя подробно не определено в ASTM С618 стандарте, виды Класса С зольной пыли типично имеют высокое содержание оксида кальция (извести).

[0065] Класса С зольная пыль обычно обладает цементирующими свойствами в дополнение к пуццолановым свойствами из-за свободной извести (оксид кальция), тогда как Класс F редко является цементирующим, когда смешан с водой отдельно. Присутствие высокого содержания кальция оксида придает видам Класса С зольной пыли цементирующие свойства, что ведет к формированию кальция силиката и кальций алюминатных гидратов при смешивании с водой. Как будет видно в примерах ниже, Класса С зольная пыль, как обнаружили, обеспечивает лучшие результаты, особенно в предпочтительных составах, в которых не использованы кальций алюминатный цемент и гипс.

[0066] Типично, по меньшей мере, 50 вес.% зольной пыли в цементирующем реагирующем порошке является Типа С зольной пылью. Типичнее, по меньшей мере, 75 вес.% цементирующего реагирующего порошка является Типа С зольной пылью. Еще более предпочтительно, по меньшей мере, 88,5 вес.% цементирующего реагирующего порошка является Типа С зольной пылью.

[0067] Типичными минералами, выявленными в зольной пыли, являются кварц (Si02), муллит (Al2Si2O13), геленит (Ca2Al2SiO7), гематит (Fe2O3), магнетит (Fe3O4), среди других. Кроме того, в зольной пыли также выявлены полиморфные минералы алюминия силиката, обычно обнаруживаемые в горных породах, таких как силлиманит, кианит и андалузит, все три представлены молекулярной формулой Al2SiO5.

[0068] Типичная приемлемая Класса С зольная пыль, полученная из полубитуминозного угля, имеет следующую композицию, приведенную в таблице В.

ТАБЛИЦА В
Компонент Пропорция (вес.%)
SiO2 20-40
Al2O2 10-30
Fe2O3 3-10
MgO 0,5-8
SO3 1-8
С 0,5-2
H2O 0,33-3
CaO 25-35
К2O 0,5-4
Na2O 0,5-6

[0070] Мелкозернистость зольной пыли типично является такой, что менее приблизительно 34% задерживается на сите 325 меш (ряд США), как протестировано ASTM тестовой процедурой С-311 ("Sampling and Testing Procedures for Fly Ash as Mineral Admixture for Portland Cement Concrete"). Такая зольная пыль предпочтительно извлекается и используется сухой, по причине ее само-схватывающейся природы.

Гидравлический цемент

[0071] Зольная пыль связывает, главным образом, весь цементирующий материал реагирующего порошка данного изобретения. В некоторых случаях реагирующий порошок также может включать факультативные цементирующие добавки, такие как гидравлические цементы, или может быть добавлен гипс. Однако эти факультативные цементирующие добавки не являются предпочтительными, поскольку они снижают предельную прочность на сжатие композиций облегченного наполнителя данного изобретения.

[0072] Гидравлические цементы являются материалами, которые схватываются и твердеют после комбинирования с водой в результате химических реакций с подмешанной водой, и которые после затвердения сохраняют прочность и устойчивость даже под водой. Портландцемент является типичным гидравлическим цементом. Следует понимать, что, как используется в данном документе, "гидравлический цемент" не включает гипс, который не добавляет прочности под водой, хотя типично некоторое количество гипса включают в портландцемент. Спецификация ASTM С 150 стандарта для портландцемента определяет портландцемент как гидравлический цемент, полученный путем измельчения клинкера, состоящего по существу из гидравлических кальция силикатов, обычно содержащих одну или более из форм кальция сульфата в качестве добавки при дроблении.

[0073] Для изготовления портландцемента однородную смесь известняка и глины обжигают в печи для формирования портландцементного клинкера. Следующие четыре главных фазы портландцемента присутствуют в клинкере -трикальция силикат (3CaO∙SiO2, также известный как C3S), дикальция силикат (2CaO∙SiO2, называемый C2S), трикальция алюминат (3CaO∙Al∙Al2O3 или С3А) и тетракальция алюмоферрит (4CaO∙Al2O3∙Fe2O3 или C4AF). Образованный клинкер, содержащий вышеупомянутые соединения, дробят с кальция сульфатами до желаемой мелкозернистости для получения портландцемента.

[0074] Другие соединения, присутствующие в незначительных количествах в портландцементе, включают двойные соли сульфатов щелочных металлов, кальция оксид и магния оксид. Когда цементные панели должны быть сделаны из портландцемента, портландцемент типично будет иметь форму очень мелких частиц так, что площадь поверхности частицы более 4000 см2/грамм и типично 5000-6000 см2/грамм, как измерено методом измерения площади поверхности Блейна (ASTM С 204). Из различных признанных классов портландцемента ASTM Типа III портландцемент является наиболее предпочтительным в цементирующем реагирующем порошке цементирующих композиций данного изобретения. Это из-за его относительно более быстрой реакционной способности и развития высокого быстрого твердения.

[0075] В данном изобретении избегается необходимость использования гидравлического цемента, подобного Типу III портландцемента, и относительно быстрое развитие ранней прочности может быть получено с использованием только зольной пыли вместо смесей, содержащих Типа III портландцемент. Другие признанные типы цементов, которые не нужны в композиции данного изобретения, включают Типа I портландцемент или другие гидравлические цементы, включая Типа II портландцемент, белый цемент, шлаковые цементы, такие как цемент из доменного шлака, и пуццолановые смешанные цементы, расширяющиеся цементы, кальция сульфоалюминатные цементы и скважинные цементы.

Кальция алюминатный цемент

[0076] Кальция алюминатный цемент (САС) является другим типом гидравлического цемента, который может формировать компонент смеси реагирующего порошка некоторых вариантов