Способ и устройство определения угловой ориентации летательных аппаратов
Иллюстрации
Показать всеИзобретения могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности измерения углов крена, азимута и тангажа ЛА. Технический результат достигается тем, что учитываются меняющиеся во времени набеги фаз в аналоговых частях приемных трактов измерителя. Для этого изменяют порядок формирования элементов матрицы измерений, а именно вычисляют разности фаз между соответствующими эталонными и измеренными разностями фаз сигналов от S космических аппаратов (КА) с априорно известным местоположением, назначают в качестве опорных разностные сигналы одного из S обнаруженных КА, находят разность разности между разностными сигналами S-1 КА и соответствующими разностными сигналами опорного КА, возводят их в квадрат и суммируют по всем возможным парам антенных элементов и всем S-1 КА. Устройство определения угловой ориентации ЛА, реализующее способ, содержит M идентичных приемных каналов, где M≥4, блок формирования опорных сигналов, тактовый генератор, S корреляторов, S блоков анализа, S+1 коммутатор, блок начальной установки корреляторов, 2S блоков вычитания, два блока памяти, вычислитель-формирователь, блок управления, дешифратор, блок индикации, три входные установочные шины, радионавигатор и антенный элемент определенным образом соединенные между собой. 2 н.п. ф-лы, 13 ил.
Реферат
Заявляемые объекты объединены одним изобретательским замыслом, относятся к радиотехнике и могут быть использованы для определения угловой ориентации летательных аппаратов (объектов) в пространстве и на плоскости.
Известен способ угловой ориентации объекта по радионавигационным сигналам КА (варианты) (Пат. РФ №2122217, МПК6 G01S 5/02, опубл. в бюл. №32, 1998 г.). Способ основан на приеме сигналов от S КА двумя или более антенно-приемными устройствами, расположенными параллельно одной или двум осям объекта, выделении сигнала с частотой Доплера, определении набега фаз за интервал времени измерения и определении углового положения объекта, в течение интервала времени измерения производят m измерений фазовых сдвигов между парами антенно-приемных устройств, а угловое положение объекта определяют путем решения системы уравнений.
Недостатками способа-аналога и его вариантов являются необходимость обеспечения неподвижности летательного аппарата (объекта) во время проведения измерений и значительные временные затраты. Кроме того, аналоги при измерении путевого угла (азимута) не учитывают угол сноса объекта.
Известен способ угловой ориентации объектов по сигналам КА глобальных навигационных спутниковых систем (Пат. РФ №2105319, МПК6 G01S 5/00, опубл. 20.02.98, бюл. №5). Способ основан на приеме сигналов от КА глобальных навигационных спутниковых систем на антенную решетку (АР) из M, M≥4, пространственно разнесенных антенных элементов (АЭ), расположенных в одной плоскости параллельно двум осям симметрии объекта, измерении фазового сдвига между принятыми в АЭ сигналами от каждого КА, однократном изменении углового положения плоскости антенной решетки и повторном измерении фазового сдвига между принятыми в АЭ сигналами, определении углового положения осей измеряемого объекта путем решения основной системы уравнений и дополнительной системы уравнений.
Способ-аналог позволяет по сигналам КА глобальных навигационных спутниковых систем достаточно точно измерять ориентацию объектов (азимут и крен).
Недостатком аналога являются большие временные затраты на решение основной и дополнительной системы уравнений, последняя из которых является нелинейной. Кроме того, для определения углового положения объекта (АР) необходимо изменить угловое положение АР на произвольный угол, после чего вернуть антенны в исходное состояние (для обеспечения формирования дополнительной системы уравнений). Выполнение этого условия требует наличия на борту объекта устройства поворота АР или маневров самого объекта, что не всегда осуществимо. Другими недостатками аналога являются:
отсутствие возможности измерения угла тангажа;
при измерении путевого угла не учитывается (не измеряется) угол сноса объекта.
Наиболее близким по технической сущности к заявляемому является способ определения угловой ориентации летательных аппаратов (Пат. РФ №2374659, МПК G01/S 5/00, опубл. 27.11.2009 г., бюл. №33). Способ основан на том, что на подготовительном этапе или в процессе полета ЛА сферу над антенной решеткой равномерно разбивают на N=D/D0 элементарных зон привязки, где D и D0 - соответственно площади сферы на удалении нескольких тысяч километров от центра АР и элементарной зоны привязки, каждой зоне привязки присваивают порядковый номер bn, n=1, 2, …, N, определяют координаты местоположения центров элементарных зон привязки, АР выполняют из M, M≥4, пространственно разнесенных антенных элементов, расположенных в одной плоскости параллельно двум осям симметрии ЛА, для каждой пары АЭ Am0, m=1, 2, …, M-1 рассчитывают эталонные значения разностей фаз прихода сигналов относительно координат местоположения центров каждой элементарной зоны привязки ∆φэт.m0(α0,β0,θ0)n, где αi,βj,θl - соответственно значения углов тангажа, крена и азимута АР, последовательно дискретно изменяют ориентацию АР на заданные значения углов ∆α, ∆β, ∆θ в предварительно заданных интервалах {αmin,αmax}, {βmin,βmax} и {θmin,θmax}, (αmax-αmin)/∆α=I, (βmax-βmin)/∆β=J, (θmax-θmin)/∆θ=L координат центра АР относительно центра элементарных зон привязки, для каждого положения АР (αi,βj,θl) и для каждого центра элементарных зон привязки рассчитывают и запоминают эталонные значения разностей фаз ∆φэт.m0(αi,βj,θl)n в процессе работы принимают сигналы от первого обнаруженного космического аппарата (КА) глобальной навигационной спутниковой системы, измеряют разности фаз принимаемых сигналов в антенных элементах АР ∆φизм.m0(α,β,θ), вычисляют разность между эталонными разностями фаз, соответствующими углами АР α0,β0,θ0 для bn-й элементарной зоны привязки, и измеренными разностями фаз сигналов первого КА с априорно известным местоположением Δ ϕ m 0 1 ( α 0 , β 0 , θ 0 ) n = Δ ϕ э т . m 0 ( α 0 , β 0 , θ 0 ) n − Δ ϕ и з м . m 0 1 ( α , β , θ ) , измеренные разности фаз возводят в квадрат и суммируют по всем M-1 используемым в работе парам АЭ, результаты вычислений ∆φ1(α0,β0,θ0) запоминают, принимают сигналы других КА и определяют значения ∆φs(α0,β0,θ0) для всех S наблюдаемых КА, s=1, 2, …, S, результаты вычислений суммируют по всем S отмеченным в работе КА и запоминают в элементе r(1,1,1) трехмерной матрицы измерений R(α,β,θ), вычисляют значения ∆φ(αi,βj,θl) для всех возможных углов ориентации АР (αi,βj,θl), i=0, 1, 2, …, I; j=0, 1, 2, …, J; l=0, 1, 2, …, L, а полученные результаты записывают в соответствующие элементы r(i+1,j+1,l+1) трехмерной матрицы измерений R(α,β,θ), за измеренную ориентацию АР и ЛА принимают значения углов (αi,βj,θl), соответствующие элементу r(i+1,j+1,l+1) матрицы измерений R(α,β,θ), имеющему минимальное значение.
Способ-прототип позволяет сократить временные затраты на измерение углов крена и азимута с учетом угла сноса и обеспечивает дополнительное измерение угла тангажа.
В качестве недостатка следует отметить следующее. Известные аналоги и прототип не отслеживают изменения в набеге фазы φкан в аналоговой части приемных трактов, который входит в состав измеренной фазы сигнала. Последнее с течением времени приводит к некорректным результатам. В следствии этого возникает необходимость в регулярном выполнении операции калибровки аналоговых трактов.
Известно устройство угловой ориентации объектов по сигналам КА глобальных навигационных спутниковых систем по Пат. РФ №2185637, МПК7 G01S 5/00, 5/02, опубл. 20.07.2002, бюл. №20.
Устройство-аналог содержит M, M≥, идентичных приемных каналов из последовательно соединенных: антенного элемента, малошумящего усилителя, радиотракта и блока цифровой обработки, блок формирования опорных сигналов, первая группа выходов которого соединена со вторыми входами радиотрактов приемных каналов, вторая группа выходов соединена со вторыми входами блоков цифровой обработки приемных каналов, тактовый генератор, первый выход которого соединен со входом формирователя опорных сигналов, а второй выход подключен ко входу синхронизации вычислительного процессора, группы информационных входов которого соединены с соответствующими группами информационных выходов блоков цифровой обработки приемных каналов.
Недостатками устройства-аналога являются значительные временные затраты на измерение углов крена и азимута, не учитывается угол сноса ЛА и требуется дополнительное измерение угла тангажа.
Наиболее близким по технической сущности к заявляемому устройству определения угловой ориентации летательных аппаратов является устройство по Пат. РФ №2374659, МПК G01S 5/00, опубл. 27.11.2009.
Устройство определения угловой ориентации летательных аппаратов включает M, M≥4, идентичных приемных каналов из последовательно соединенных антенного элемента, малошумящего усилителя, радиотракта и блока цифровой обработки, предназначенного для преобразования аналогового сигнала в цифровую форму и разложения его на квадратуры, две группы выходов которого являются первой и второй группами информационных выходов соответствующего канала приема, блок формирования опорных сигналов, выход которого соединен со вторыми входами радиотрактов приемных каналов, тактовый генератор, S корреляторов, S блоков анализа, предназначенных для оценки качества принимаемых от космических аппаратов сигналов, S+1 коммутатор, блок начальной установки корреляторов, S блоков вычисления разности фаз, S блоков вычитания, блок памяти, вычислитель-формирователь, предназначенный для формирования трехмерной матрицы измерений R(α,β,θ), блок принятия решения, предназначенный для нахождения элемента трехмерной матрицы измерений с минимальным значением, блок управления, предназначенный для хранения координат центров элементарных зон привязки и сравнения этих координат с координатами обнаруженного космического аппарата, блок индикации, первую, вторую и третью входные установочные шины, радионавигатор и M+1-й антенный элемент, выход которого подключен ко входу радионавигатора, первый информационный выход которого соединен со входом управления блока начальной установки корреляторов, группы информационных входов которого объединены с соответствующими группами информационных входов корреляторов и соответствующими группами информационных выходов приемных каналов, тактовые входы которых объединены и соединены с тактовыми входами блоков цифровой обработки приемных каналов, выходом тактового генератора, входами синхронизации корреляторов, тактовыми входами блока управления, блоков вычисления разности фаз, блока памяти, блоков вычитания, вычислителя-формирователя, блока принятия решения, блока начальной установки корреляторов, S+1-го коммутатора, блоков анализа, вторые группы информационных выходов которых соединены с группами информационных входов соответствующих блоков вычисления разности фаз, первые выходы блоков анализа соединены со входами управления соответствующих коммутаторов, третьи группы выходов блоков анализа соединены с первыми группами информационных входов соответствующих коммутаторов, группы информационных входов блоков анализа соединены с группами информационных выходов соответствующих корреляторов, первые группы входов управления которых соединены с соответствующими первыми группами информационных выходов блока начальной установки корреляторов, вторые группы входов управления корреляторов соединены с группами выходов соответствующих коммутаторов, вторые группы информационных входов которых соединены с соответствующими вторыми группами информационных выходов блока начальной установки корреляторов, группы информационных выходов блоков вычисления разности фаз соединены с соответствующими группами входов S+1-го коммутатора, группа адресных входов которого соединена с группой адресных выходов блока начальной установки корреляторов, a S групп информационных выходов соединены с группами входов вычитаемого соответствующих блоков вычитания, группы входов уменьшаемого которых объединены и соединены с группой информационных выходов блока памяти, группа информационных входов которого является второй входной установочной шиной устройства определения угловой ориентации летательных аппаратов, а группа адресных входов соединена с группой информационных выходов блока управления, вторая группа информационных входов которого является первой входной установочной шиной устройства определения угловой ориентации летательных аппаратов, первая группа информационных входов блока управления соединена со второй группой информационных выходов радионавигатора, S групп информационных входов вычислителя-формирователя соединены с группами информационных выходов соответствующих блоков вычитания, а группа информационных выходов вычислителя-формирователя соединена с первой группой информационных входов блока принятия решения, вторая группа информационных входов которого соединена с третьей входной установочной шиной устройства определения угловой ориентации летательных аппаратов, а группа информационных выходов соединена с группой информационных входов блока индикации.
Устройство-прототип обеспечивает сокращение временных затрат на измерение углов крена и азимута с учетом угла сноса и дополнительное измерения угла тангажа. Однако прототипу также присущ недостаток. Для обеспечения заданных точностных характеристик требуется периодическое выполнение калибровки аналоговой части приемных трактов.
Целью заявляемых технических решений является разработка способа и устройства определения угловой ориентации летательных аппаратов, обеспечивающих повышение точности оценивания пространственных углов объекта за счет исключения влияния набегах фазы в аналоговых трактах измерителя.
В заявляемом способе представленная цель достигается тем, что в известном способе определения угловой ориентации летательных аппаратов, включающем на подготовительном этапе или в процессе полета ЛА равномерное разбивание сферы над АР на N=D/D0 элементарных зон привязки, где D и D0 - соответственно площади сферы на удалении нескольких тысяч километров от центра АР и элементарной зоны привязки, присвоение каждой зоне привязки порядкового номера bn, n=1, 2, …, N, определение координат местоположения центров элементарных зон привязки, выполнение АР из M, M≥4, пространственно разнесенных антенных элементов, расположенных в одной плоскости параллельно двум осям симметрии ЛА, расчет для каждой пары АЭ Am0, m=1, 2, …, M-1, эталонных значений разностей фаз прихода сигналов относительно координат местоположения центров каждой элементарной зоны привязки ∆φэт.m0(α0,β0,θ0)n, где αi,βj,θl - соответственно значения углов тангажа, крена и азимута АР, последовательное дискретное изменение ориентации АР на заданные значения углов ∆α,∆β,∆θ в предварительно заданных интервалах {αmin,αmax}, {βmin,βmax} и {θmin,θmax}, (αmax-αmin)/∆α=I, (βmax-βmin)/∆β=J, (θmax-θmin)/∆θ=L без изменения координат центра АР относительно центра элементарных зон привязки, расчет и запоминание эталонных значений разностей фаз ∆φэт.m0(αi,βj,θl) для каждого положения АР (αi,βj,θl) и для каждого центра элементарных зон привязки, в процессе работы прием сигналов от первого обнаруженного космического аппарата глобальной навигационной спутниковой системы, измерение разности фаз принимаемых сигналов в антенных элементах АР Δ ϕ и з м . m 0 1 ( α , β , θ ) , вычисление разности между эталонными разностями фаз, соответствующими углами АР α0,β0,θ0 для bn-й элементарной зоны привязки и измеренными разностями фаз сигналов первого КА с априорно известным местоположением Δ ϕ m 0 1 ( α 0 , β 0 , θ 0 ) n = Δ ϕ э т . m 0 ( α 0 , β 0 , θ 0 ) n − Δ ϕ и з м . m 0 1 ( α , β , θ ) , возведение в квадрат измеренных разностей фаз и их суммирование по всем M-1 используемым в работе парам АЭ, запоминание результатов вычислений ∆φ1(α0,β0,θ0) прием сигналов других КА и определение значений ∆φs(α0,β0,θ0) для всех S наблюдаемых КА, s=1, 2, …, S, суммирование результатов вычислений по всем S отмеченным в работе КА и запоминание в элементе r(1,1,1) трехмерной матрицы измерений R(α,β,θ), вычисление значения ∆φ(αi,βj,θl) для всех возможных углов ориентации АР (αi,βj,θl), i=0, 1, 2, …, I; j=0, 1, 2, …, J; l=0, 1, 2, …, L, запись полученных результатов в соответствующие элементы r(i+1,j+1,l+1) трехмерной матрицы измерений R(α,β,θ), принятие за измеренную ориентацию АР и ЛА значений углов (αi,βj,θl), соответствующих элементу r(i+1,j+1,l+l) матрицы измерений R(α,β,θ), имеющему минимальное значение. Для формирования матрицы измерений R(α,β,θ) найденные для первого КА разности фаз Δ ϕ m 0 1 ( α 0 , β 0 , θ 0 ) n вычитают из соответствующих значений Δ ϕ m 0 s ( α 0 , β 0 , θ 0 ) n остальных S-1 КА: Δ Δ ϕ m 0 s 1 ( α 0 , β 0 , θ 0 ) = Δ ϕ m 0 s ( α 0 , β 0 , θ 0 ) n − Δ ϕ m 0 1 ( α 0 , β 0 , θ 0 ) n . Результаты вычитания возводят в квадрат и суммируют по всем M-1 используемым в работе парам АЭ и S-1 КА для формирования значения ∆φ(α0,β0,θ0) с последующим запоминанием в элементе r(1,1,1) трехмерной матрицы измерений R(α,β,θ), аналогично формируют остальные элементы r[i,j,l) матрицы R(α,β,θ) для всех возможных углов ориентации АР (αi,βj,θl).
Благодаря новой совокупности признаков в заявляемом способе устраняется набег фазы, возникающий в аналоговых трактах измерителя, что позволяет повысить точность оценивания пространственной ориентации летательного аппарата.
В заявляемом устройстве определения угловой ориентации летательных аппаратов поставленная цель достигается тем, что в известном устройстве, состоящем из M, M≥4, идентичных приемных каналов из последовательно соединенных антенного элемента, малошумящего усилителя, радиотракта и блока цифровой обработки, предназначенного для преобразования аналогового сигнала в цифровую форму и разложения его на квадратуры, две группы выходов которого являются первой и второй группами информационных выходов соответствующего канала приема, блока формирования опорных сигналов, выход которого соединен со вторыми входами радиотрактов приемных каналов, тактового генератора, S корреляторов, S блоков анализа, предназначенных для оценки качества принимаемых от космических аппаратов сигналов, S+1 коммутаторов, блока начальной установки корреляторов, S блоков вычисления разности фаз, S первых блоков вычитания, первого блока памяти, вычислителя-формирователя, предназначенного для формирования трехмерной матрицы измерений R(α,β,θ), блока принятия решения, предназначенного для нахождения элемента трехмерной матрицы измерений с минимальным значением, блока управления, предназначенного для хранения координат центров элементарных зон привязки и сравнения этих координат с координатами обнаруженного космического аппарата, блока индикации, первой, второй и третьей входных установочных шин, радионавигатора и M+1-го антенного элемента, выход которого подключен ко входу радионавигатора, первый информационный выход которого соединен со входом управления блока начальной установки корреляторов, группы информационных входов которого объединены с соответствующими группами информационных входов корреляторов и соответствующими группами информационных выходов приемных каналов, тактовые входы которых объединены и соединены с тактовыми входами блоков цифровой обработки приемных каналов, выходом тактового генератора, входами синхронизации корреляторов, тактовыми входами блока управления, блоков вычисления разности фаз, первого блока памяти, первых блоков вычитания, вычислителя-формирователя, блока принятия решения, блока начальной установки корреляторов, S+1-го коммутатора, блоков анализа, вторые группы информационных выходов которых соединены с группами информационных входов соответствующих блоков вычисления разности фаз, первые выходы блоков анализа соединены со входами управления соответствующих коммутаторов, третьи группы выходов блоков анализа соединены с первыми группами информационных входов соответствующих коммутаторов, группы информационных входов блоков анализа соединены с группами информационных выходов соответствующих корреляторов, первые группы входов управления которых соединены с соответствующими первыми группами информационных выходов блока начальной установки корреляторов, вторые группы входов управления корреляторов соединены с группами выходов соответствующих коммутаторов, вторые группы информационных входов которых соединены с соответствующими вторыми группами информационных выходов блока начальной установки корреляторов, группы информационных выходов блоков вычисления разности фаз соединены с соответствующими группами входов S+1-го коммутатора, группа адресных входов которого соединена с группой адресных выходов блока начальной установки корреляторов, a S групп информационных выходов соединены с группами входов вычитаемого соответствующих первых блоков вычитания, группы входов уменьшаемого которых объединены и соединены с группой информационных выходов первого блока памяти, группа информационных входов которого является второй входной установочной шиной устройства определения угловой ориентации летательных аппаратов, а группа адресных входов соединена с группой информационных выходов блока управления, вторая группа информационных входов которого является первой входной установочной шиной устройства определения угловой ориентации летательных аппаратов, первая группа информационных входов блока управления соединена со второй группой информационных выходов радионавигатора, группа информационных выходов вычислителя-формирователя соединена с первой группой информационных входов блока принятия решения, вторая группа информационных входов которого соединена с третьей входной установочной шиной устройства определения угловой ориентации летательных аппаратов, а группа информационных выходов соединена с группой информационных входов блока индикации, дополнительно введены последовательно соединенные дешифратор, второй блок памяти и S вторых блоков вычитания. Группы входов уменьшаемого вторых блоков вычитания соединены с группами информационных выходов соответствующих S первых блоков вычитания. Группа информационных входов дешифратора соединена с группой адресных выходов блока начальной установки корреляторов. Сумматор, группы информационных входов которого соединены с группами информационных выходов соответствующих S первых блоков вычитания, а группа информационных выходов соединена с группой информационных входов второго блока памяти, группа информационных выходов которого соединена с группой входов вычитаемого вторых блоков вычитания. Тактовые входы вторых блоков вычитания объединены с тактовыми входами второго блока памяти и S первых блоков вычитания. Группы информационных выходов вторых блоков вычитания соединены с соответствующими группами информационных входов вычислителя-формирователя.
Перечисленная новая совокупность существенных признаков за счет того, что вводятся новые элементы и связи позволяет достичь цели изобретения: обеспечить повышение точности оценивания пространственной ориентации ЛА.
Заявляемые объекты поясняются чертежами, на которых показаны:
на фиг.1 - структурная схема двухканального аналогового тракта;
на фиг.2 - порядок выполнения операций:
а, б) - формирование элементарных зон привязки и присвоение им порядкового номера;
в) - определение координат центра элементарных зон привязки;
на фиг.3 - вариант формирования массива эталонных значений раразностей фаз ∆φэт.m0(αi,βj,θl)n;
на фиг.4 - вариант формирования массива измеренных значений разностей фаз Δ ϕ и з м . m 0 s ( α , β , θ ) ;
на фиг.5 - очередность вычисления ∆φ(α0,β0,θ0) элемента r(1,1,1) матрицы измерений R(α,β,θ) для соответствующего значения углов (αi,βj,θl);
на фиг.6 - вариант формирования трехмерной матрицы измерений R(α,β,θ);
на фиг.7 - структурная схема заявляемого устройства определения угловой ориентации летательных аппаратов;
на фиг.8 - алгоритм расчета эталонных значений разностей фаз прихода сигналов;
на фиг.9 - алгоритм работы блока анализа 8.s;
на фиг.10 - алгоритм работы блока начальной установки корреляторов;
на фиг.11 - алгоритм формирования матрицы измерений R(α,β,θ);
на фиг.12 - алгоритм работы блока принятия решения;
на фиг.13 - приведены результаты моделирования точности оценивания пространственного параметра для различных вариантов искажения фазовых параметров в трактах приема измерителя:
а) при отсутствии набега фазы в аналоговых трактах каналов приема;
б) при наличии незначительного набега фазы в каналах приема;
в) при большом набеге фазы в каналах приема;
г) при большом набеге фазы в каналах приема и реализации заявляемых способе и устройстве.
В приведенных выше способах определения пространственной ориентации ЛА основной операцией является нахождения отклонения между измеренной разностью фаз и эталонной. Однако ни в одном из них не акцентируется внимание на набеге фазы φкан, который входит в состав измеренной фазы.
На фиг.1 приведена структурная схема двухканального аналогового тракта. Пусть на входе нулевого (опорного) приемного канала регистрируется фаза сигнала φ0, а первого канала φ1. Несмотря на наличие общего опорного генератора, в каждом из них происходит уникальный набег фазы φкан0 и φкан1 соответственно. Последнее вызвано разбросом параметров комплектующих элементов и особенностями их установки. Характеристики аналоговых трактов со временем претерпевают изменения. Кроме того, ремонт трактов приема или их замена в процессе эксплуатации (последнее часто имеет место в измерителях на беспилотных летательных аппаратах) также усложняет ситуацию. Все это влечет за собой ошибки оценивания пространственных параметров ЛА. В настоящее время в качестве основного средства борьбы с ними выступает калибровка каналов, которую необходимо выполнять регулярно.
Предлагаемый способ позволяет исключить влияние набега фазы φкан. Суть его состоит в том, что для определения пространственной ориентации объекта используются сигналы от нескольких источников. Все они принимаются одними и теми же каналами, набег фазы в которых будет одинаковым.
В общем виде разность фаз сигнала первого КА между первым и нулевым (опорным) каналами имеет вид
Δ ϕ 1,0 1 = | Δ ϕ э т .1,0 1 − Δ ϕ и з м .1,0 1 + ϕ к а н .1 − ϕ к а н .0 | .
Для сигналов второго КА Δ ϕ 0,1 2 может быть записана в следующем виде:
Δ ϕ 1,0 2 = | Δ ϕ э т .1,0 2 − Δ ϕ и з м .1,0 2 + ϕ к а н .1 − ϕ к а н .0 | .
При выполнении операции вычитания Δ Δ ϕ 1,0 2,1 = Δ ϕ 1,0 2 − Δ ϕ 1,0 1 (сигналы второго и первого источников проходят через одни и теже тракты) становится возможным избавиться от набега фазы. Таким образом, вычитая результаты измерений одного источника, например Δ ϕ 0,1 1 , из соответствующих измерений всех остальных источников устраняется их зависимость от набега фазы в аналоговых трактах, что в конечном счете повышает точность измерения пространственных углов ЛА (α,β,θ).
Реализация заявляемого способа поясняется следующим образом. На подготовительном этапе выполняются следующие операции. Сферу над антенной решеткой равномерно разбивают на N=D/D0 элементарных зон привязки (см. фиг.1а). Размеры элементарной зоны привязки соответствуют предварительно заданной точности измерения угловой ориентации объекта (точности измерения углов тангажа α1, крена βj и азимута θl антенной решетки). Сфера над АР рассчитывается на удалении ~20 тыс. км (высоте полета КА глобальных навигационных спутниковых систем). Далее находятся географические координаты центров элементарных зон привязки {X, Y, Z}n и каждой из них присваивается порядковый номер bn(αi,βj,θl) (см. фиг.1б, в) из набора n=1, 2, …, N.
На следующем этапе рассчитываются эталонные значения разностей фаз прихода сигналов (см. фиг.8) для каждой пары антенных элементов Am0, m=1, 2, …, M-1, относительно координат местоположения центров каждой элементарной зоны привязки.
Порядок расчета эталонных значений разностей фаз ∆φэт.m0(α0,β0,θ0) следующий. Вводят топологию антенной решетки объекта. Последняя включает взаимные расстояния между антенными элементами АР и ее ориентацию. При проведении моделирования АР целесообразно условно размещать в центре исследуемого района на высоте предстоящих измерений, например 2-3 км. В процессе расчета значений ∆φэт.m0(α0,β0,θ0)n моделируют размещение эталонного источника поочередно в центрах всех элементарных зон привязки bn, n=1, 2, …, N. Последовательно дискретно изменяют ориентацию АР на заданные значения углов ∆α, ∆β, ∆θ в предварительно определенных пределах {αmin, αmax}, {βmin, βmax} и {θmin, θmax}, {αmax-αmin)/∆α=I, (βmax-βmin)/∆β=J, (θmax-θmin)/∆θ=L без изменения координат центра АР относительно центров элементарных зон привязки. Следует отметить, что значения ∆α, ∆β, ∆θ находятся в соответствии с количеством элементарных зон привязки N=(I+1)·(J+1)·(L+1) и определяются заданной точностью выполняемых измерений. При этом полагается, что фронт приходящей к АР волны плоский. Для используемых комбинаций пар антенных элементов АР и всех возможных углов αi, βj, θl вычисляются значения разностей фаз ∆φэт.m0(αi,βj,θl)n для каждой элементарной зоны привязки bn:
Δ ϕ э т . m 0 ( α i , β j , θ l ) n = 2 π f s U m 0 ( γ n , μ n ) / C , ( 1 )
где U m 0 ( γ n , μ n ) = cos ( γ n ) cos ( μ n ) ( x 0 − x n ) + sin ( γ n ) cos ( μ n ) ( γ 0 − γ n ) + + cos ( γ n ) ( z 0 − z n ) − ( 2 )
расстояние между плоскими фронтами волн в m-м и нулевом антенных элементах, пришедших из bn-й элементарной зоны привязки к решетке под углами γn в азимутальной и µn в вертикальной плоскостях, m≠0; xm,ym,zm и x0,y0,z0 - координаты m-го и нулевого антенных элементов решетки, C - скорость света, fs - частота сигнала s-го спутника (см. фиг.2).
Координаты местоположения АЭ для различных значений углов антенной решетки определяются следующим образом:
xm=(cos(β)cos(θ)-sin(α)sin(β)sin(θ))xm0-cos(α)sin(θ)ym0+(sin(β)sin(θ)-sin(α)cos(β)cos(θ))zm0;
ym=(cos(β)sin(θ)+sin(α)sin(β)sin(θ))xm0+cos(α)sin(θ)ym0+(sin(β)sin(θ)-sin(α)cos(β)cos(θ))zm0;
zm=-cos(α) sin(β)xm0+sin(α)ym0+cos(α)cos(β)zm0,
где xm0, ym0, zm0 - координаты антенных элементов решетки при α=0, β=0 и θ=0, m=0, 1, …, M-1.
Полученные в результате вычислений значения разностей фаз ∆φэт.m0(αi, βj, θl)n оформляют в виде эталонного массива данных, вариант представления информации в котором показан на фиг.3.
В процессе работы при обнаружении сигналов от КА глобальной навигационной спутниковой системы формируют массив измеренных разностей фаз Δ ϕ и з м . m 0 s ( α , β , θ ) , структура представления информации в котором приведена на фиг.4. Здесь представлены значения Δ ϕ и з м . m 0 s ( α , β , θ ) для всех возможных сочетаний пар антенных элементов Am0 и заданного числа КА. Количество последних S обычно определяется возможностями измерителя, например S=6, наличием в зоне видимости в данном районе в заданное время минимально необходимого количества КА и др.
В рамках заявляемого способа достоверность информации о поле сигнала достигается:
габаритными характеристиками (разносом между антенными элементами АР);
размерностью (количеством антенных элементов М) АР;
характеристиками антенных элементов и их взаимной ориентацией.
Осущ