Пьезокерамический материал
Иллюстрации
Показать всеИзобретение относится к области сегнетомягких пьезокерамических материалов широкого применения, предназначенных для изготовления ультразвуковых устройств, работающих в режиме приема, пьезодатчиков различного назначения, а также для изготовления многослойных пьезокерамических элементов: актюаторов, биморфов и др., которые находят применение для контроля и точного позиционирования технологического оборудования в микроэлектронном производстве, для стыковки и подстройки оптических волокон, при автоюстировке и подстройке лазерных зеркал интерферометров, для управления лазерным лучом в различных системах. Пьезокерамический материал содержит следующие компоненты, мас.%: PbO 62,90-64,08; ZrO2 18,96-20,10; TiO2 10,85-11,63; SrO 1,53-2,64; WO3 0,34-0,62; Bi2O3 1,01-1,86; Ni2O3 0,08-0,23; CdO 0,59-1,18; GeO2 0,2-1,0. Технический результат изобретения заключается в снижении температуры спекания пьезокерамического материала (Тсп≤940°С) ниже температуры плавления серебра (Тпл=960,8°С), что обеспечивает возможности использования серебра для межслойных электродов, а также более высокие электрофизические параметры по сравнению с известными аналогами материалов этого класса. 1 пр., 1 табл.
Реферат
Изобретение относится к области сегнетомягких пьезокерамических материалов, применяемых для изготовления пьезоэлементов, которые используются в ультразвуковых устройствах, работающих в режиме приема, пьезодатчиков, а также для изготовления многослойных пьезокерамических элементов (актюаторов, биморфов, динамиков), состоящих из чередующихся слоев пьезокерамики и внутренних слоев металлических электродов.
Сегнетомягкие пьезокерамические материалы широкого применения характеризуются высокими значениями пьезомодулей и коэффициентов электромеханической связи при средних значениях относительной диэлектрической проницаемости. Одним из важнейших параметров сегнетомягких пьезокерамических материалов является высокая чувствительность к механическому напряжению.
К таким материалам из зарубежных относятся, например, PZT-5A (США) [1, 2], Pic-151 (Германия) [3], АС-900 (Япония) [4]. Отечественные пьезокерамические материалы такого класса представляют ЦТС-19 [5], ЦТС-26 [5], а также материалы по патенту RU №2288902 [6].
Высокая температура точки Кюри (более 200°С) сегнетомягких пьезокерамических материалов обеспечивает широкий интервал рабочих температур.
В таблице 1 приведены основные электрофизические параметры известных пьезокерамических материалов.
Таблица 1 | ||||||||||
Основные электрофизические параметры известных сегнетомягких пьезокерамических материалов широкого применения | ||||||||||
Материалы | tgδ·10-2 | ε 33 T ε 0 | -d31·10-12, Кл/Н | d33·10-12, Кл/Н | Kp | |g31|, мВ·м/Н | g33, мВ·м/Н | Ткюри, °C | Тспекания, °C | Лит-ра |
PZT-5A (США) | 2,0 | 1770 | 171 | 374 | 0,60 | 11,0 | 25,0 | 365 | 1250 | 1 |
Pic-151 (Германия) | 2,0 | 2400 | 210 | 500 | 0,62 | 11,5 | 22,0 | 250 | ≥1000 | 3 |
Hizirico AC-900 (Япония) | 2,2 | 3200 | 180 | 480 | 0,50 | 6,4 | 15,1 | 210 | 960 | 4 |
ЦТС-19 (Россия) | ≤2,8 | 1800 | 175 | 385 | 0,56 | 11,0 | 24,0 | 290 | 1220 | 5 |
ЦТС-26 (Россия) | ≤2,0 | 1800 | 162 | 350 | 0,55 | 10,0 | 22,0 | 350 | 1230 | 5 |
Патент RU №2288902 | 1,8 | 2100 | 220 | 510 | 0,62 | 11,8 | 27,4 | 275 | 960-980 | 6 |
Материалы данного класса, кроме AC-900 и Pic-151 (таблица 1), имеют высокую температуру спекания и в то же время довольно близкие и относительно высокие значения пьезомодулей, тангенса угла диэлектрических потерь, относительной диэлектрической проницаемости, коэффициента электромеханической связи и пьезоэлектрической чувствительности gij, которая рассчитывается по формуле:
g i j = d i j ε 33 T ε 0 ⋅ 8,854 ⋅ 10 − 12 ,
где dij - пьезомодули d31 или d33;
ε 33 T ε 0 - относительная диэлектрическая проницаемость.
Но пьезокерамические материалы АС-900, Pic-151 и ЦТС-46 по патенту RU №2288902 одни из немногих известных зарубежных и отечественных материалов, благодаря относительно низкой температуре спекания (Тспек=960÷1100°С), позволяющих вести изготовление многослойных монолитных изделий без использования в качестве межслойных электродов платины, что существенно снижает стоимость пьезокерамических изделий, а пьезосвойства остаются высокими. В качестве заменителя платины в данном случае используются электроды из сплавов серебра с палладием (обычно, в весовом соотношении - 70/30).
Изменить свойства пьезокерамики системы ЦТС в нужном направлении можно путем введения различных модифицирующих добавок (модификаторов) [7, 8]. Модификаторы группируются по типу замещений (изовалентного или гетеровалентного) и способу распределения атомов модификаторов по положениям A и (или) в решетке перовскита ABO3 (A - атом в кубооктаэдрической, B - атом в октаэдрической позициях). Введение модификаторов, имеющих большую валентность, чем замещаемые ими ионы, приводят к тому, что избыточная валентность вводимых элементов компенсируется образованием вакансий иона свинца. Такие добавки (модификаторы), получившие название «сегнетомягкие», снижают коэрцитивную силу, увеличивают подвижность доменных стенок и тем самым облегчают переориентацию доменов в электрическом поле.
Введение при определенном сочетании и количественном соответствии в материалы системы ЦТС модифицирующих добавок в виде оксидов бора (B2O3), ванадия (V2O5), кадмия (CdO), висмута (Bi2O3), вольфрама (WO3), никеля (Ni2O3) либо комплексных добавок позволяет наряду с повышением пьезохарактеристик существенно снижать температуру спекания керамики [7] и [9].
При снижении температуры спекания пьезокерамики до 900÷940°С появляется возможность использовать в качестве межслойных электродов не сплав серебра с палладием, а чистое серебро, температура плавления которого составляет Тпл=960,8°С, что значительно удешевляет производство актюаторов и других многослойных пьезоэлементов.
Кроме того, снижение температуры спекания свинецсодержащих заготовок пьезоэлементов из такого материала способствует улучшению экологических и экономических показателей пьезокерамического производства (снижение летучести паров свинца, увеличение срока службы термического оборудования и высокотемпературной оснастки).
Наиболее близким к заявленному сегнетомягкому пьезокерамическому материалу по химической композиции и пьезосвойствам являются принимаемые за прототип отечественные пьезокерамические материалы по патенту RU №2288902 [6].
Этот сегнетомягкий материал широкого применения имеет высокие пьезоэлектрические параметры (таблица 1), однако температура спекания пьезоэлементов из него находится вблизи температуры плавления серебра и поэтому в качестве межслойных электродов используются сплавы серебра с палладием в весовом соотношении - 70/30 или 80/20, что и является его основным недостатком.
Задачей, на решение которой направлено данное изобретение, является достижение технического результата, заключающегося в создании пьезокерамического материала, температура спекания которого ниже температуры плавления серебра и составляет Тспек=900÷940°С, что должно дать возможность наряду с удешевлением производства многослойных пьезоэлементов улучшить экологическую обстановку производства за счет снижения улетучивания паров свинца, а значит, и воспроизводимости стехиометрического состава пьезокерамики. Кроме того, должны быть достигнуты более высокие электрофизические параметры изделий, а именно:
пьезочувствительность g31=12,2÷12,3 мВ·м/Н и g33=27,5÷27,7 мВ·м/Н,
пьезомодуль d31=(225÷240)·10-12 Кл/Н и d33=(510÷540)·10-12 Кл/Н
и коэффициент электромеханической связи Kp=0,63÷0,65.
Поставленная задача решается тем, что в пьезокерамический материал, включающий оксиды свинца, циркония, титана, стронция, вольфрама, никеля и кадмия дополнительно вводят окись германия при следующем соотношении компонентов, мас.%:
PbO | 62,90÷64,08 |
ZrO2 | 18,96÷20,10 |
TiO2 | 10,85÷11,63 |
SrO | 1,53÷2,64 |
WO3 | 0,34÷0,62 |
Bi2O3 | 1,01÷1,86 |
Ni2O3 | 0,08÷0,23 |
CdO | 0,59÷1,18 |
GeO2 | 0,2÷1,0 |
Особенность введения добавки окиси германия заключается в том, что модифицирование пьезокерамического материала окислом металла с более высокой валентностью, в нашем случае окисью германия, во время спекания компенсирует диффузию серебра из электродных слоев. Предпосылкой для этого является одновременное присутствие окиси свинца, а окись свинца создает жидкую фазу внутри образующейся пьезокерамической структуры, которая поддерживает диффузию серебра. Процесс диффузии серебра является квазисаморегулирующимся [10]. Движущей силой для процесса диффузии серебра является гетеровалентное заполнение А-позиций в ЦТС-кристаллической решетке, которое компенсируется одновалентным серебром. При достижении стехиометрического состава движущая сила исчезает, так что дальнейшая диффузия серебра прекращается. Встраивание серебра в пьезокерамику поддерживает рост зерен. Несмотря на пониженную на 150÷200°С температуру спекания в этом случае достигаются увеличенные размеры зерен, способствующие хорошим пьезосвойствам, а для керамики без модифицирования приходится повышать температуру спекания для достижения такого же результата.
Таким образом, отличительным признаком изобретения является то, что в сегнетомягкий пьезокерамический материал дополнительно введена окись германия, при следующем соотношении компонентов, мас.%:
PbO | 62,90÷64,08 |
ZrO2 | 18,96÷20,10 |
TiO2 | 10,85÷11,63 |
SrO | 1,53÷2,64 |
WO3 | 0,34÷0,62 |
Bi2O3 | 1,01÷1,86 |
Ni2O3 | 0,08÷0,23 |
CdO | 0,59÷1,18 |
GeO2 | 0,2÷1,0 |
Указанный отличительный признак позволяет достичь названного технического результата, заключающегося в том, что пьезокерамический материал позволяет спекать заготовки многослойных пьезоэлементов из него при температурах спекания 900÷940°С, которые ниже температуры плавления серебра, что дает возможность в качестве межслойных электродов использовать не сплав серебра с палладием, а одно серебро. Это ведет к существенному снижению стоимости монолитных многослойных пьезоэлементов, например, для актюаторов.
Кроме того, отличительным признаком изобретения является изменение соотношения основных сырьевых компонентов, а именно оксидов свинца, циркония и титана в сторону некоторого уменьшения их абсолютных величин по сравнению с отечественным пьезокерамическим материалом, принимаемым за прототип по патенту RU №2288902. Это стало возможным за счет снижения температуры спекания и, следовательно, к уменьшению улетучиваемости паров окиси свинца и, в конечном счете, к стабилизации стехиометрического состава пьезокерамики [11].
Неконтролируемое улетучивание окиси свинца приводит к нарушению стехиометрии и получению материала с неопределенным составом и пьезосвойствами. Уменьшение улетучивания окиси свинца улучшает экологию при производстве пьезокерамических материалов.
Если рассмотреть изготовление актюатора, обеспечивающего деформацию более 45 мкм при подаче напряжения U=100 В, состоящего из 20 шт. многослойных пьезоэлементов 6×6×2,65 мм, которые в свою очередь состоят из 50 керамических слоев каждый и на которые наносятся межслойные электроды либо из сплава серебро-палладий (обычно, в весовом соотношении - 70/30) либо из одного серебра, то можно заметить семикратное снижение стоимости материала электродов за счет использования одного серебра.
Кроме того, достигнут технический результат, заключающийся в том, что заявляемый пьезокерамический материал имеет более высокие пьезосвойства (таблица 2), чем известные зарубежные и отечественные материалы этого класса.
Пример изготовления
Материал получен твердофазным синтезом, пьезокерамические образцы из материала получены спеканием на воздухе.
В качестве исходных сырьевых компонентов использовались оксиды: PbO, TiO2, ZrO2, SrO, WO3, Bi2O3, CdO, Ni2O3, GeO2 квалификации «ч». Исходные сырьевые компоненты в виде порошков в соотношении с их расчетными концентрациями и с учетом содержания основного вещества взвешивали на аналитических весах и смешивали в вибромельнице со стальными шарами в течение 30 минут, после магнитной сепарации шихта подвергалась температурной обработке в высокоглиноземистых капселях при Тс=830±10°С в течение 4 часов, после чего синтезируемый материал дробили и подвергали помолу в вибромельнице в течение 25 минут. Смолотый материал просеивался через сито №0056, подвергался магнитной сепарации, потом методом газопроницаемости с помощью прибора ПСХ-4 определяли величину удельной поверхности полученного материала, которая лежала в диапазоне 400÷500 м2/кг.
В порошок материала вводили связку 5,5 мас.% пятипроцентного водного раствора поливинилового спирта. Заготовки стандартных пьезокерамических образцов размером ⌀25×3 мм прессовали давлением 80÷100 МПа. Спекание заготовок проводили при температуре Тсп=920 и 940°С в течение 6 часов в засыпке, обеспечивающей атмосферу паров окиси свинца в высокоглиноземистых капселях. На отшлифованные по толщине и диаметру образцы до размера ⌀20×1 мм наносили серебряную пасту, которую вжигали в конвейерной печи при Т=830÷850°С. Поляризацию стандартных образцов проводили в полиэтилсилоксаоновой жидкости при Т=140÷150°С с выдержкой под постоянным электрическим полем 3·106 В/м в течение 30 минут.
Определение электрофизических параметров образцов проводили при температуре 25±10°С не ранее, чем через 5 суток после поляризации. Измерение и расчет параметров выполняется в соответствии с методиками [4].
В таблице 2 приведены основные электрофизические характеристики заявляемого материала в зависимости от состава.
Полученные экспериментальные данные свидетельствуют о том, что заявляемый сегнетомягкий пьезокерамический материал обладает оптимальными с точки зрения решаемой задачи характеристиками в интервале концентраций компонентов, указанных в формуле изобретения (состав 3 таблица 2). В сравнении с пьезокерамичскими материалами AC-900, Pie-151, ЦТС-46 по патенту RU №2288902 (таблица 1), полученный материал имеет более высокие значения g31, g33, d31, d33 и Kp и, главное, спекание керамики осуществляется при температурах 920÷940°С, что ниже температуры плавления серебра. Это дает возможность в качестве межслойных электродов в монолитных многослойных пьезоэлементах из этого материала использовать серебро без добавки палладия.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Каталог фирмы «Vemitron», США.
2. Б.Яффе, У.Кук, Ч.Яффе. Пьезоэлектрическая керамика. М.: Мир, 1974, с.288.
3. Каталог фирмы «Piezotechnology «Pi», Германия.
4. Каталог фирмы «Hayashi» chemical Industry Co. Ltd., Япония.
5. Материалы пьезокерамические. Технические условия. Отраслевой стандарт ОСТ 0444-87. М., 1987, с.16.
6. Патент №2288902, Россия, 2005.
7. П.О.Грибовский. Керамические твердые схемы. М.: Энергия, 1971, с.78.
8. Гринева Л.Д., Фесеню Е.Г. Классификация модификаторов системы титанат - цирконий свинца «Кристаллизация и свойства кристаллов». Новочеркасск, 1974, с.99-107.
9. Патент №7305743, США, 2004.
10. Патент №2169964, Россия, 2001.
11. И.А.Глозман. Пьезокерамика. М.: Энергия, 1972, с.249, 250.
Пьезокерамический материал, включающий оксиды свинца, циркония, титана, стронция, вольфрама, висмута, кадмия и никеля, отличающийся тем, что он дополнительно содержит окись германия при следующем соотношении компонентов, мас. %:
PbO | 62,90÷64,08 |
ZrO2 | 18,96÷20,10 |
TiO2 | 10,85÷11,63 |
SrO | 1,53÷2,64 |
WO3 | 0,34÷0,62 |
Bi2O3 | 1,01÷1,86 |
CdO | 0,59÷1,18 |
Ni2O3 | 0,08÷0,23 |
GeO2 | 0,20÷1,00 |