Сорбент для диализа

Иллюстрации

Показать все

Изобретение относится к сорбентам для удаления метаболических отходов из диалитической жидкости. Сорбент включает первый слой, состоящий из смеси частиц иммобилизованного фермента, расщепляющего уремические токсины, и частиц катионообменника. Размер частиц катионообменника составляет от 10 до 1000 микрон. Сорбент может дополнительно содержать второй слой, состоящий из частиц катионообменника, и третий слой, состоящий из частиц анионообменника, смешанных с частицами активированного угля. Техническим результатом является возможность регулирования потерь давления диализата в первом слое сорбента в зависимости от размера частиц катионообменника в упомянутом слое. 16 з.п. ф-лы, 4 ил., 15 табл.

Реферат

Область техники

Представленное изобретение относится к сорбентам, используемым в устройствах диализа.

Уровень техники

Почки являются жизненно важным органом системы гомеостаза человеческого организма. Почки, действуя как естественный фильтр организма, удаляют из крови токсичные метаболические отходы, такие как мочевина. Почечная недостаточность или нарушение функции почек могут привести к накоплению токсинов, а также к электролитному дисбалансу в крови, что может привести к нежелательным последствиям, опасным для здоровья человека. В связи с этим пациентам с нарушенной работой почек, как правило, приходится проходить процедуру диализа с целью выведения токсичных отходов из крови для восстановления оптимального уровня электролитов в крови.

На протяжении последних нескольких лет преобладающей формой диализа, применяемого для пациентов с терминальной стадией почечной недостаточности (ТСПН), является гемодиализ. Гемодиализ предполагает использование экстракорпоральной системы для выведения токсинов непосредственно из крови пациента путем пропускания большого количества крови пациента через фильтрующий блок или диализатор. При использовании традиционных процедур гемодиализа пациенты должны проводить по несколько часов в неподвижном состоянии на протяжении всей процедуры диализа, что ограничивает двигательную активность пациентов. Другим недостатком процедуры гемодиализа является необходимость использования антикоагулянтов в процессе лечения, что неизбежно увеличивает риск внутренних кровотечений.

Другой формой диализа, используемой для лечения пациентов с почечной недостаточностью, является перитонеальный диализ, который чаще всего применяют следующими двумя способами: «непрерывный амбулаторный перитонеальный диализ» (НАПД) и «автоматический перитонеальный диализ» (АПД). При НАПД чистый диализат вводят в брюшную (перитонеальную) полость пациента, где посредством диффузии метаболические отходы и электролиты в крови выводятся в диализат через перитонеальную мембрану. Для обеспечения достаточной диффузии электролитов и метаболических отходов диализат удерживают в брюшной (перитонеальной) полости в течение примерно двух часов, после чего использованный диализат удаляют и заменяют свежим диализатом. Основными недостатками непрерывного амбулаторного перитонеального диализа являются низкий уровень выведения токсинов и необходимость постоянной замены использованного диализата, что может быть трудным для пациента и нарушать его повседневную деятельность.

С целью разрешения вышеупомянутых проблем, возникающих при лечении путем традиционных гемодиализа и непрерывного амбулаторного перитонеального диализа, были разработаны приборы автоматического перитонеального диализа (АПД). При АПД диализ осуществляется ночью или во время отдыха пациента. Диализат удаляется и заменяется автоматически. Это позволяет осуществлять более частую замену диализата и лучше выводить токсины при минимальном нарушении повседневной деятельности пациента.

Тем не менее все технологии диализа, описанные выше, имеют ряд недостатков. Например, при гемодиализе невозможно вывести токсины, связанные с белками, в то время как перитонеальный диализ влечет за собой значительную потерю полезных белков в организме пациента. Гемодиализ по методу НАПД или АПД не способен обеспечить оптимальное очищение от уремических токсинов из-за ограниченного объема используемого диализата (вследствие высокой его стоимости). В случаях, когда устройство гемодиализа включает в себя регенерирующий блок, например, сорбент, который восстанавливает использованный диализат, общий размер и вес данных приборов зачастую слишком велики для ношения, что неизбежно снижает подвижность пациента. Подобные приборы также являются неудобными из-за громоздкости сорбента, используемого для обеспечения надлежащего выведения токсинов, что связано с необходимостью периодического повторения процедур с помощью устройства. К тому же проточная система известных регенерирующих устройств гемодиализа требует наличия нескольких насосов, что в свою очередь увеличивает общий размер, вес и энергопотребление устройства. В альтернативных формах данных устройств, предлагаемых для использования в перитониальном диализе, предпринимаются попытки повысить портативность автоматических устройств перитониального диализа за счет снижения размеров регенерирующих блоков. Однако такой компромисс в пользу снижения размеров регенерирующих блоков существенно снижает эффективность удаления токсинов регенерирующими блоками или сорбентами, что в конечном итоге негативно сказывается на состоянии пациентов.

Существует необходимость создания устройства диализа, которое позволило бы преодолеть или, по меньшей мере, нивелировать один или несколько описанных выше недостатков. Такое устройство должно быть портативным, относительно легким и высокоэффективным в плане удаления токсинов. Соответственно, необходимо создание регенерирующего компонента или сорбента, который был бы компактным, имел исключительную способность к удалению токсинов и который был бы пригоден для использования в устройствах диализа.

Краткое описание изобретения

В соответствии с первым предпочтительным вариантом осуществления изобретения представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий слой частиц иммобилизированного фермента, расщепляющего уремические токсины, смешанного с катионообменниками. В одном из вариантов осуществления в качестве катионообменников выступает абсорбент аммиака. Катионообменники могут также включать ионы металла, фосфат которого слаборастворим в воде. В одном из вариантов представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий слой частиц ковалентно иммобилизированного фермента, расщепляющего уремические токсины, смешанного с абсорбентом аммиака, нерастворимым в воде, в качестве катионообменника. Преимуществом совместного присутствия катионообменников с частицами иммобилизированного фермента, расщепляющего уремические токсины, в единственном составном слое является повышение эффективности частиц фермента, расщепляющего уремические токсины, и предотвращение засорение картриджа нежелательным осадком в диализате. Катионообменники не только удаляют нежелательные катионы, но также служат буфером, поддерживающим относительно постоянный уровень рН для проведения ферментативной реакции с участием фермента, расщепляющего уремические токсины. Кроме того соседство фермента, расщепляющего уремические токсины, и катионообменников может повысить эффективность абсорбции нежелательных катионов, произведенных ферментом. К преимуществам также следует отнести и ковалентную иммобилизацию фермента, расщепляющего уремические токсины, предотвращающую утечку энзима в диализат. Преимущественно это устраняет необходимость в дополнительном слое сорбента для повторной абсорбции фермента, что является недостатком известных регенерирующих устройств диализата и негативно сказывается на объемах этих систем и их биосовместимости.

Согласно одному из вариантов, сорбенту первого преимущественного варианта может предшествовать слой частиц, абсорбирующих органические смеси, или подушка, абсорбирующая органические смеси. Преимущественно такой слой удаляет ингибиторы ферментов, таким образом, поддерживая активность и стабильность фермента, расщепляющего уремические токсины. В другом варианте сорбент первого предпочтительного варианта также включает слой катионообменников. В одном из вариантов в качестве катионообменников выступает абсорбент аммиака. Катионообменники также могут включать ионы металла, фосфат которого слаборастворим в воде. Преимуществом такого варианта является то, что такой слой обеспечивает удаление нежелательных катионов, которые не были задержаны в слое, состоящем из смеси катионообменников и иммобилизированного фермента, расщепляющего уремические токсины. В другом варианте описанный сорбент также может включать слой анионообменников, смешанных с частицами, абсорбирующими органические смеси. Наличие двух слоев смешанных частиц снижает общий размер и высоту сорбента, облегчает его производство и снижает общие потери давления, вызванные сорбентом при его использовании в устройстве диализа. Преимуществом такого варианта является то, что он повышает портативность устройства и удобства для пользователя, не умаляя эффективности удаления сорбентом метаболических отходов.

В соответствии со вторым предпочтительным вариантом осуществления изобретения представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий слой катионообменников, средний размер частиц которых составляет от 10 до 1000 микрон. Согласно одному из вариантов, в качестве катионообменников выступают абсорбенты аммиака. Катионообменники также могут включать ионы металла, фосфат которого слаборастворим в воде. В одном из вариантов представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий частицы ковалентно иммобилизированного фермента, расщепляющего уремические токсины, средний размер которых составляет от 10 до 1000 микрон. Кроме того сорбент может включать частицы, абсорбирующие аммиак, такие как катионообменники, включающие аморфный, не растворимый в воде фосфат металла в протонированной и/или натриевой противоионной форме, средний размер которых составляет от 10 до 1000 микрон. Сорбент может также включать анионообменники, включающие аморфный и частично гидратизированный, не растворимый в воде оксид металла в его годроксидной, карбонатной, ацетатной и/или лактатной противоионной форме, средний размер которых составляет от 10 до 1000 микрон. Сорбент также может включать частицы, абсорбирующие органические смеси, средний размер которых составляет от 10 до 1000 микрон. Исследования показали, что использование именного такого размера частиц фермента, расщепляющего уремические токсины, катионообменников, анионообменников и частиц, абсорбирующих органические смеси, повышает эффективность удаления метаболических отходов, при этом обеспечивая низкое сопротивление потоку и минимальную растворимость соответствующих сорбентов. Преимущественно диализат, прошедший через сорбент, может быть почти полностью свободен от нежелательных ионов и метаболических отходов.

В соответствии с третьим предпочтительным вариантом осуществления изобретения представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий:

первый слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины;

второй слой, состоящий из катионообменников, средний размер частиц которых составляет от 10 до 1000 микрон; и

третий слой и четвертый слой, по меньшей мере, один из которых включает анионообменники, в то время как другой слой включает частицы, абсорбирующие органические смеси. В одном из вариантов в качестве катионообменников выступают абсорбенты аммиака. Катионообменники могут также включать ионы металла, фосфат которого слаборастворим в воде.

В одном из вариантов представлен сорбент для удаления метаболических отходов из диалитический жидкости, включающий:

первый слой, состоящий из частиц, абсорбирующих органические смеси, или подушки, абсорбирующей органической смеси;

второй слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины;

третий слой, состоящий из катионообменников, включающих аморфный, не растворимый в воде фосфат металла в протонированной и/или натриевой противоионной форме, средний размер частиц которых составляет от 10 до 1000 микрон; и

четвертый слой и пятый слой, по меньшей мере, один из которых включает анионообменники, включающие аморфный и частично гидратизированный, не растворимый в воде оксид металла в его гидроксидной, карбонатной, ацетатной и/или лактатной противоионной форме, средний размер частиц которых составляет от 10 до 1000 микрон, в то время как другой слой включает частицы, абсорбирующие органические смеси, средний размер которых составляет от 10 до 1000 микрон.

В другом варианте представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий:

первый слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины;

второй слой, состоящий из катионообменников, включающих ионы металла, фосфат которого слаборастворим в воде, средний размер частиц которых составляет от 10 до 1000 микрон;

третий слой, состоящий из анионообменников; и

четвертый слой, состоящий из частиц, абсорбирующих органические смеси.

Согласно другому варианту представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий:

первый слой, состоящий из частиц, абсорбирующих органические смеси, или подушки, абсорбирующей органической смеси;

второй слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины;

третий слой, состоящий из катионообменников, включающий аморфный, не растворимый в воде фосфат металла в протонированной и/или натриевой противоионной форме, средний размер частиц которых составляет от 10 до 1000 микрон;

четвертый слой, состоящий из анионообменников; и

пятый слой, состоящий из частиц, абсорбирующих органические смеси.

Согласно другому варианту представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий:

первый слой, состоящий из частиц, абсорбирующих органические смеси, или подушки, абсорбирующей органической смеси;

второй слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины, смешанного с катионообменниками;

третий слой, состоящий из катионообменников, смешанных с анионообменниками; и

четвертый слой, состоящий из частиц, абсорбирующих органические смеси.

Согласно другому варианту представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий:

первый слой, состоящий из частиц, абсорбирующих органические смеси, или подушки, абсорбирующей органической смеси;

второй слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины, смешанного с катионообменниками и анионообменниками;

третий слой, состоящий из частиц, абсорбирующих органические смеси.

В другом варианте представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий:

первый слой, состоящий из частиц, абсорбирующих органические смеси;

второй слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины, смешанных с катионообменниками и анионообменниками.

В другом варианте представлен сорбент для удаления метаболических отходов из диалитической жидкости, включающий:

частицы иммобилизированного фермента, расщепляющего уремические токсины, смешанные с катионообменниками, анионообменниками и частицами, абсорбирующими органические смеси.

Определения

Слова и термины, используемые в представленных материалах, имеют следующие значения.

Термин «сорбент», широко используемый здесь, относится к классу материалов, отличающихся способностью впитывать определенное требуемое вещество.

Термин «нетоксичный» означает вещества, которые не вызывают неблагоприятные реакции или вызывают незначительные неблагоприятные реакции в человеческом организме.

Термин «загрязняющие вещества» в контексте настоящего описания означает любые компоненты, обычно токсичные, содержащиеся в диализате, в целом наносящие вред здоровью человека, которые необходимо удалить в ходе диалитического процесса детоксификации. Обычно загрязняющие вещества включают аммоний, фосфаты, мочевину, креатинин, уремическую кислоту, однако данный перечень не является исчерпывающим.

Термин «катионообменники» относится к частицам, способным к захвату или иммобилизации катионов или положительно заряженных соединений при контакте с такими соединениями, обычно посредством пропускания раствора положительно заряженных соединений через поверхность частиц-катионообменников.

Термин «анионообменники» относится к частицам, способным к захвату или иммобилизации анионов или отрицательно заряженных соединений при контакте с такими соединениями, обычно посредством пропускания раствора отрицательно заряженных соединений через поверхность частиц-анионообменников.

Термин «биологически совместимый», используемый в настоящем документе, относится к свойству материала, который не провоцирует появление неблагоприятных биологических реакций в теле человека или животного.

Термин «размер частиц», используемый в настоящем документе, относится к диаметру или эквивалентному диаметру частицы. Термин «средний размер частиц» означает, что большинство частиц в размере будут близки к указанному размеру частиц, однако будут присутствовать и такие частицы, размер которых больше или меньше указанного размера частиц. Пик в распределении частиц по размерам будет приходиться на указанный размер. Так, например, если средний размер частиц составляет 50 микрон, будут присутствовать частицы, крупнее или мельче 50 микрон, но основное количество частиц, предпочтительно 80%, и более предпочтительно 90%, будут размером приблизительно 50 микрон, и пик в распределении частиц по размерам будет 50 микрон.

Термин "регенерировать", использующийся в настоящем документе, относится к действию, обеспечивающему детоксификацию диализата, путем удаления из него уремических токсинов.

Термин "восстанавливать", использующийся в настоящем документе, относится к действию по преобразованию регенерированного диализата практически в то же состояние с таким же химическим составом, какой имел свежий перитонеальный диализат до диализа.

Слово «практически» не исключает значения «полностью», например, композиция, «практически не содержащая» компонент Y, может быть полностью лишена компонента Y. При необходимости слово «практически» может быть исключено из определения настоящего изобретения.

Если иное специально не указано, термины «включающий» и «включать» и все их грамматические формы подразумевают открытый перечень, то есть они предполагают наличие перечисленных элементов, но также допускают наличие и дополнительных, неперечисленных элементов.

В настоящем документе термин "приблизительно" в контексте концентраций компонентов рецептур обычно обозначает +/-5% указанного значения, еще чаще +/-4% указанного значения, еще чаще +/-3% указанного значения, еще чаще +/-2% указанного значения, и еще гораздо чаще +/-1% указанного значения, и еще гораздо чаще +/-0,5% указанного значения.

В представленном документе определенные варианты осуществления изобретения могут даваться с указанием на диапазон применения. Следует понимать, что описание с указанием на диапазон применения осуществляется единственно с целью удобства и краткости и не должно истолковываться как жесткое ограничение диапазонов применения. Следовательно, описание диапазона должно рассматриваться как намеренное изложение всех возможных поддиапазонов, а также отдельных числовых значений в рамках конкретного диапазона. Например, описание диапазона от 1 до 6 должно рассматриваться как диапазон, описывающий поддиапазоны от 1 до 3, от 1 до 4, от 1 до 5, от 2 до 4, от 2 до 6, от 3 до 6 и т.д., а также как отдельные числовые значения в рамках заданного диапазона, например, 1, 2, 3, 4, 5 и 6. Данное правило применимо вне зависимости от широты диапазона.

Варианты осуществления изобретения

В данном разделе раскрываются примеры осуществления сорбента для диализа, однако представленное изобретение не ограничивается данными вариантами. Сорбент способен удалять метаболические отходы, такие как мочевина, из жидкости, приходящей в контакт с указанным сорбентом.

Согласно одному из вариантов сорбент включает первый слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины, смешанного с катионообменниками; второй слой, состоящий из катионообменников; и третий слой, состоящий из анионообменников, смешанных с частицами, абсорбирующими органические смеси. Согласно одному из вариантов в качестве катионообменников выступают абсорбенты аммиака. Катионообменники также могут включать ионы металла, фосфат которого слаборастворим в воде. В одном из вариантов сорбент включает второй слой, заключенный между первым и третьим слоями. В таком случае при использовании сорбента диалитическая жидкость проходит через указанный первый слой в указанный третий слой, проходя через указанный второй слой. В сорбент также может быть включен дополнительный слой абсорбента органических смесей.

Согласно другому варианту сорбент включает первый слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины; второй слой, состоящий из катионообменников, причем указанные катионообменники включают ионы металла, фосфат которого слаборастворим в воде; третий и четвертый слои, являющиеся соответственно слоем анионообменников и слоем частиц, абсорбирующих органические смеси, или наоборот. В сорбент также может быть включен дополнительный слой абсорбента органических смесей.

В одном из вариантов сорбент включает первый слой, скрепленный со вторым слоем, второй слой, скрепленный с третьим слоем, третий слой, скрепленный с четвертым, при этом в процессе использования сорбента диалитическая жидкость проходит из указанного первого слоя в указанный второй слой, из указанного второго слоя в указанный третий слой, а из указанного третьего слоя в указанный четвертый слой. В одном из вариантов второй слой располагают между указанным первым и указанным третьим слоями, а указанный третий слой - между указанными вторым и четвертым слоями.

Согласно одному из вариантов сорбент включает первый слой, состоящий из частиц или подушки, абсорбирующих органические смеси, за которым следует второй слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины, смешанных с частицами, абсорбирующими аммиак, такими как катионообменники, включающие аморфный, не растворимый в воде фосфат металла в протонированной и/или натриевой противоионной форме; третий слой, состоящий из частиц, абсорбирующих аммиак, таких как катионообменники, включающие аморфный, не растворимый в воде фосфат металла в протонированной и/или натриевой противоионной форме; и четвертый слой, состоящий из анионообменников, включающих аморфный и частично гидратизированный, не растворимый в воде оксид металла в годроксидной, карбонатной, ацетатной и/или лактатной противоионной форме, смешанных с частицами, абсорбирующими органические смеси.

В одном из вариантов сорбент включает второй слой, располагаемый между первым и третьим слоями, и третий слой, располагаемый между вторым и четвертым слоями, таким образом, что при использовании сорбента диалитическая жидкость проходит из указанного первого слоя в указанный четвертый слой, через указанные второй и третий слои.

В одном из вариантов сорбент включает первый слой, состоящий из частиц или подушки, абсорбирующих органические молекулы, второй слой, состоящий из частиц иммобилизированного фермента, расщепляющего уремические токсины; третий слой, состоящий из катионообменников, включающих аморфный, не растворимый в воде фосфат металла в протонированной и/или натриевой противоионной форме; четвертый и пятый слои, являющиеся соответственно слоем анионообменников, включающих аморфный и частично гидратизированный, не растворимый в воде оксид металла в его годроксидной, карбонатной, ацетатной и/или лактатной противоионной форме, и слоем частиц, абсорбирующих органические смеси, или наоборот.

В одном из вариантов сорбент включает первый слой, скрепленный со вторым слоем, второй слой, скрепленый с третьим слоем, а третий слой, скрепленый с четвертым слоем, и четвертый слой, скрепленный с пятым, при этом в процессе использования сорбента диалитическая жидкость проходит из указанного первого слоя в указанный второй слой, из указанного второго слоя в указанный третий слой, а из указанного третьего слоя в указанный четвертый слой, а из указанного четвертого слоя в указанный пятый слой. В одном из вариантов второй слой располагают между указанным первым и указанным третьим слоями, указанный третий слой - между указанными вторым и четвертым слоями, а указанный четвертый - между указанными третьим и пятым слоями.

Частицы фермента, расщепляющего уремические токсины, могут обладать способностью преобразовывать мочевину в карбонат аммония. Согласно одному из вариантов в качестве фермента, расщепляющего уремические токсины, выступает по меньшей мере одно из следующих веществ: уреаза, уриказа, креатининаза. В наиболее предпочтительном варианте осуществления представленного изобретения в качестве фермента, расщепляющего уремические токсины, выступает уреаза. По одному из вариантов уреаза может быть заменена любым веществом, способным к преобразованию мочевины в продукты, которые могут быть абсорбированы сорбентом. Предпочтительно, чтобы такое вещество обладало способностью преобразовывать мочевину в карбонат аммония.

В одном из вариантов в качестве ионов металла, фосфат которого слаборастворим в воде, выступают ионы металла, выбранного из следующей группы: титан, цирконий, гафний или их сочетания. В одном из вариантов в качестве ионов металла, фосфат которого слаборастворим в воде, выступают ионы циркония.

В одном из вариантов катионообменники включают аморфный, не растворимый в воде фосфат металла в протонированной и/или натриевой противоионной форме, причем металл может быть выбран из следующей группы: титан, цирконий, гафний или их сочетания. В одном из вариантов таким металлом выступает цирконий.

Под слаборастворимыми фосфатами в данном изобретении понимают фосфаты, растворимость которых в воде не превышает 10 мг/л. Предпочтительно в качестве катионообменников выступают частицы фосфата циркония.

Анионообменники могут включать аморфный и частично гидратизированный, не растворимый в воде оксид металла в его гидроксидной, карбонатной, ацетатной и/или лактатной противоионной форме, при этом металл может быть выбран из следующей группы: титан, цирконий, гафний или их сочетания. Согласно одному из вариантов таким металлом выступает цирконий.

Анионообменниками могут быть частицы оксида циркония. Предпочтительно анионообменниками являются частицы гидратированного оксида циркония.

Абсорбер органических смесей может быть выбран из группы, включающей, в числе прочего, активированные угли, молекулярное сито (микрофильтр), циолиты или диатомовит. Частицами, абсорбирующими органические смеси, могут быть частицы активированного угля. В одном из вариантов в качестве абсорбента органических смесей в первом слое используют фильтровальную подушку из активированного угля. Согласно другому варианту абсорбент органических смесей включает частицы активированного угля.

Уреаза может быть иммобилизированной. Иммобилизация может быть осуществлена при помощи любого известного вещества-основы, способного обеспечить иммобилизацию частиц уреазы. В одном из вариантов осуществления представленного изобретения в качестве такого вещества используют биосовместимый носитель. Биосовместимым веществом может быть полимер на основе углеводов, органический полимер, полиамид, полиэстер или неорганический полимерный материал. Биосовместимый носитель может быть гомогенным, то есть состоящим из одного вещества, или составным, то есть включающим, по меньшей мере, два вещества. Биосовместимый носитель может быть, по меньшей мере, одним из следующих веществ: целлюлоза, эюпергит®, диоксид кремния (например, силикагель), фосфат циркония, оксид циркония, полиамид, поликапролактон, хитозан.

Согласно одному из вариантов иммобилизацию уреазы биосовместимым носителем осуществляют путем способа иммобилизации, выбранного из группы, включающей: активацию глутаровым альдегидом, активацию с использованием эпоксидной группы, активациию эпихлоргидрином, активацию бромуксусной кислотой, активацию бромистым цианом, активацию тиолами, связывание N-гидроксисукцинимида с диимидом-амидом. Способ иммобилизации может также включать использование линкеров на основе кремневодорода, таких как (3-аминоприл)тиэтоксисилан, (3-глицидилоксипропил)триметоксисилан или (3-меркаптопропил) триметоксисилан. Кроме того, поверхность биосовместимого носителя может быть функционализирована реактивным и/или стабилизирующим слоем, таким как декстран или полиэтиленгликоль, и молекулами-линкерами и стабилизирующими молекулами, такими как этилендиамин, 1,6-диаминогексан, тиоглицерин, меркаптоэтанол или трегалоза. Уреаза может быть использована в очищенной форме или в форме суммарного экстракта канавалии мечевидной или иного подходящего источника уреазы.

Согласно одному из вариантов, средний размер частиц уреазы может составлять приблизительно от 10 микрон до 1000 микрон, приблизительно от 100 микрон до 900 микрон, приблизительно от 200 микрон до 900 микрон, приблизительно от 300 микрон до 800 микрон, приблизительно от 400 микрон до 700 микрон, приблизительно от 500 микрон до 600 микрон, приблизительно от 25 микрон до 250 микрон, приблизительно от 25 микрон до 100 микрон, приблизительно от 250 микрон до 500 микрон, приблизительно от 250 микрон до 1000 микрон, приблизительно от 125 микрон до 200 микрон, приблизительно от 150 микрон до 200 микрон, приблизительно от 100 микрон до 175 микрон, приблизительно от 100 микрон до 150 микрон.

По одному из вариантов от 1000 до 10000 единиц уреазы иммобилизуют при помощи указанного бисовместимого носителя. Общая масса иммобилизированной уреазы и носителя варьируется приблизительно от 0,5 г до 30 г.

В одном из вариантов уреазу можно заменить любым веществом, способным преобразовывать мочевину в какое-либо нетоксичное соединение. Предпочтительно данное вещество обладает способностью преобразовывать мочевину в карбонат аммония.

Средний размер частиц фосфата циркония может составлять приблизительно от 10 микрон до 1000 микрон, приблизительно от 100 микрон до 900 микрон, приблизительно от 200 микрон до 900 микрон, приблизительно от 300 микрон до 800 микрон, приблизительно от 400 микрон до 700, приблизительно от 500 микрон до 600 микрон, приблизительно от 25 микрон до 200 микрон или приблизительно от 25 микрон до 150 микрон, или приблизительно от 25 микрон до 80 микрон, или приблизительно от 25 микрон до 50 микрон, или приблизительно от 50 микрон до 100 микрон, или приблизительно от 125 микрон до 200 микрон, или приблизительно от 150 микрон до 200 микрон, или приблизительно от 100 микрон до 175 микрон, или приблизительно от 100 микрон до 150 микрон, или приблизительно от 150 микрон до 500 микрон, или приблизительно от 250 микрон до 1000 микрон.

Частицы фосфата циркония могут быть иммобилизованы при помощи любого известного вещества-основы, способного обеспечить иммобилизацию частиц фосфата циркония. По одному из вариантов таким вспомогательным веществом выступает биосовместимый носитель. По одному из вариантов иммобилизацию частиц фосфата циркония осуществляют посредством физического уплотнения частиц до заранее определенного объема. Согласно одному из вариантов иммобилизацию частиц фосфата циркония осуществляют путем спекания фосфата циркония или смеси фосфата циркония и подходящего керамического материала. Биосовместимый носитель может быть гомогенным носителем, то есть изготовленным из одного вещества, или составным носителем, изготовленным из, как минимум, двух веществ. Биосовместимым веществом может быть полимер на основе углевода, органический полимер, полиамид, полиэстер, полиакрилат, полиэфир, полиолефин, или неорганический полимерный или керамический материал. В качестве биосовместимого субстрата может выступать, по меньшей мере, одно из следующих веществ: целлюлоза, эюпергит, диоксид кремния, нейлон, поликапролактон, хитозан.

Согласно одному из вариантов частицы фосфата циркония могут быть заменены любыми иными частицами, обладающими способностью абсорбировать ионы аммония и прочие катионы. Предпочтительно такие частицы способны абсорбировать катионы, выбранные из группы, включающей: ионы аммония, кальция, магния, натрия и калия. Частицы, абсорбирующие аммиак, в обмен на абсорбированные аммоний-ионы и другие катионы могут также выделять ионы, такие как натрий и водород. По одному из вариантов абсорбент аммиака также действует как буфер, поддерживающий постоянный уровень рН для реакции уреазы.

Средний размер частиц оксида циркония может составлять приблизительно от 10 микрон до 1000 микрон, приблизительно от 100 микрон до 900 микрон, приблизительно от 200 микрон до 900 микрон, приблизительно от 300 микрон до 800 микрон, приблизительно от 400 микрон до 700, приблизительно от 500 микрон до 600 микрон, приблизительно от 10 микрон до 200 микрон или приблизительно от 10 микрон до 100 микрон, или приблизительно от 10 микрон до 30 микрон, или приблизительно от 10 микрон до 20 микрон, или приблизительно от 20 микрон до 50 микрон, или приблизительно от 25 микрон до 50 микрон, или приблизительно от 30 микрон до 50 микрон, или приблизительно от 40 микрон до 150 микрон, или приблизительно от 80 микрон до 120 микрон, или приблизительно от 160 микрон до 180 микрон, или приблизительно от 25 микрон до 250 микрон, или приблизительно от 250 микрон до 500 микрон, или приблизительно от 250 микрон до 1000 микрон.

Частицы оксида циркония могут быть иммобилизованы при помощи любого известного вещества-основы, способного обеспечить иммобилизацию частиц оксида циркония. Согласно одному из вариантов иммобилизацию частиц оксида циркония осуществляют посредством физического уплотнения частиц до заранее определенного объема. По одному из вариантов иммобилизацию частиц оксида циркония достигают путем спекания оксида циркония или смеси оксида циркония и подходящего керамического материала. В одном из вариантов вспомогательным веществом является биосовместимый носитель. Биосовместимым веществом может быть полимер на основе углевода, органический полимер, полиамид, полиэстер, полиакрилат, полиэфир, полиолефин, или неорганический полимерный или керамический материал. В качестве биосовместимого субстрата может выступать, по меньшей мере, одно из следующих веществ: целлюлоза, эюпергит®, двуокись кремния, нейлон, поликапролактон, хитозан.

Согласно одному из вариантов частицы оксида циркония могут быть заменены любыми частицами, обладающими способностью абсорбировать фосфат-ионы и иные анионы. Предпочтительно указанные частицы способны абсорбировать анионы, выбранные из группы, включающей ионы фосфата, фторида, нитрата и сульфата. Частицы оксида циркония в обмен на абсорбированные анионы также могут выделять ионы, такие как ацетат, лактат, бикарбонат и гидроксид. По одному из вариантов частицы доиксида циркония также обладают выраженной способностью связывать железо, алюминий и тяжелые металлы, выбранные из следующей группы: мышьяк, висмут, кадмий, кобальт, медь, свинец, ртуть, никель, палладий, серебро.

Средний размер частиц активированного угля может составлять приблизительно от 10 микрон до 1000 микрон, приблизительно от 10 микрон до 250 микрон, приблизительно от 20 микрон до 200 микрон, приблизительно от 25 микрон до 150 микрон, приблизительно от 50 микрон до 100 микрон, приблизительно от 25 микрон до 250 микрон или приблизительно от 100 микрон до 200 микрон, или приблизительно от 100 микрон до 150 микрон, или приблизительно от 150 микрон до 300 микрон, или приблизительно от 200 микрон до 300 микрон, или приблизительно от 400 микрон до 900 микрон, или приблизительно от 500 микрон до 800 микрон, или приблизительно от 600 микрон до 700 микрон, или приблизительно от 250 микрон до 500 микрон, или приблизительно от 250 микрон до 1000 микрон.

Согласно одному из вариантов частицы активированного угля могут быть заменены любым