Модуляторы нмда-рецептора и их применения

Иллюстрации

Показать все

Изобретение относится к соединениям, обладающим повышенной эффективностью в модуляции активности НМДА-рецептора. Такие соединения предназначены для применения в лечении заболеваний и расстройств, таких как расстройств обучения, когнитивных активностей, а также для устранения и/или снижения невропатической боли. 7 н. и 19 з.п. ф-лы, 21 ил., 2 табл., 9 пр.

Реферат

Родственные заявки

Данная заявка претендует на приоритет U.S.S.N. 61/098088, поданной 18 сентября 2008 года и тем самым включенной ссылкой во всей полноте.

Уровень техники

N-метил-d-аспартат (НМДА/NMDA)-рецептор представляет собой постсинаптический, ионотропный рецептор, который отвечает на действие, среди прочего, возбуждающих аминокислот глутамата и глицина и синтетического производного НМДА. НМДА-рецептор контролирует поток как дивалентных, так и моновалентных ионов в постсинаптические нейронные ячейки через канал, связанный с рецептором (Foster et al., Nature 1987, 329:395-396; Mayer et al., Trends in Pharmacol. Sci. 1990, 11:254-260). НМДА-рецептор вовлечен в течение развития в определение нейронной архитектуры и синаптической проводимости, и может быть включен в синаптические модификации в зависимости от опыта. Кроме того, НМДА-рецепторы, предположительно, вовлечены в долгосрочное потенцирование и расстройства центральной нервной системы.

НМДА-рецепторы играют важную роль в синаптической пластичности, которая лежит в основе многих высших познавательных функций, таких как восприимчивость к запоминанию, способность к удерживанию и обучению, а также в некоторых когнитивных путях и в ощущении боли (Collingridge et al., The НМДА Receptor, Oxford University Press, 1994). Кроме того, некоторые свойства НМДА-рецепторов дают основание предполагать, что они могут быть включены в обработку информации в головном мозге, который является основой самого сознания.

НМДА-рецептор пробудил особый интерес, так как он, вероятно, вовлечен в широкий спектр расстройств ЦНС. Например, во время ишемии головного мозга, вызванной ударом или травматическим повреждением, избыточные количества возбуждающего аминокислотного глутамата высвобождаются из поврежденных нейронов или нейронов с недостатком кислорода. Данный избыток глутамата присоединяется к НМДА-рецепторам, что открывает их ионные каналы, управляемые лигандами; в свою очередь, приток кальция дает высокий уровень внутриклеточного кальция, который активирует биохимический каскад, приводящий к деградации белка и гибели клетки. Данное явление, известное как эксайтотоксичность, также считается ответственным за неврологическое повреждение, связанное с другими расстройствами, от гипогликемии и остановки сердца до эпилепсии. Кроме того, имеются предварительные сообщения, указывающие на аналогичное вовлечение в хроническую нейродегенерацию при болезнях Хантингтона, Паркинсона и Альцгеймера. Активация НМДА-рецептора, как было показано, ответственна за судороги после удара, и в некоторых моделях эпилепсии активация НМДА-рецептора, как было показано, необходима для генерирования припадков. Также было признано нейропсихиатрическое вовлечение НМДА-рецептора, так как блокада Са++ канала НМДА-рецептора анестетиком для животных РСР (фенциклидином) вызывает психическое состояние у людей, подобное шизофрении (рассмотренное в работе Johnson, K. и Jones, S., 1990). Кроме того, НМДА-рецепторы также были вовлечены в некоторые типы пространственного восприятия.

НМДА-рецептор, как полагают, состоит из нескольких цепей белка, встроенных в постсинаптическую мембрану. Первые два типа субъединиц, открытых к настоящему времени, образуют большую внеклеточную область, которая, вероятно, содержит самую большую часть аллостерических связывающих сайтов, несколько трансмембранных областей, петлеобразных и сложенных так, чтобы образовать пору или канал, который является проницаемым для Са++, и карбоксильную концевую область. Открытие и закрытие канала регулируется связыванием различных лигандов с доменами (аллостерические сайты) белка, находящегося на внешней клеточной поверхности. Связывание лигандов, как полагают, воздействует на конформационное изменение в общей структуре белка, и это в результате сказывается на открытии канала, частичном открытии, частичном закрытии или закрытии.

Соединения для НМДА-рецептора могут проявлять двойственный эффект (агонист/антагонист) на НМДА-рецептор через аллостерические сайты. Данные соединения обычно называют как “частичные агонисты”. В присутствии главного сайтового лиганда частичный агонист будет замещать некоторую часть лиганда и таким образом снижать поток Са++ через рецептор. В отсутствие или при пониженном уровне главного сайтового лиганда частичный агонист действует так, чтобы повышать поток Са++ через канал рецептора.

В данной области продолжает существовать потребность в новых и более необычных/потенциальных соединениях, которые способны к связыванию глицин-связывающего сайта НМДА-рецептора, и обеспечивают фармацевтические преимущества. Кроме того, в медицинских областях продолжает существовать потребность относительно форм таких соединений, пригодных для доставки пероральным путем.

Сущность изобретения

В настоящем описании предложены, по меньшей мере частично, соединения, которые представляют собой НМДА-модуляторы, например частичные агонисты соединения НМДА. Например, раскрытые в настоящем описании соединения представляют собой соединения, представленные формулой I:

и их фармацевтически приемлемые соли, стереоизомеры и N-оксиды; где

Т означает независимо для каждого местоположения CR4R4' и n равно 0, 1, 2 или 3;

А необязательно присутствует и выбран из фенила или пиридина, где А необязательно замещен одним или несколькими заместителями, выбираемыми из Ra;

R1 выбран из группы, состоящей из Н, гидроксила, -S(O)2-C1-C4алкила; -SO2, C1-C4алкила, С24алкенила, фенила, R7 или

где C1-C4алкил, С24алкенил или фенил необязательно замещен одним или несколькими заместителями, выбираемыми из Ra;

Х означает СН или N;

R3 и R3' независимо выбраны из группы, состоящей из Н, галогена, гидроксила, фенила, C1-C4алкила, амидо, амина или C2-C4алкенила, где C1-C4алкил, C2-C4алкенил и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R4 и R4' независимо выбраны из группы, состоящей из Н, галогена, гидроксила, фенила, C1-C4алкила, амидо, амина, C1-C4алкокси или C2-C4алкенила, где C1-C4алкил, C2-C4алкенил, C1-C4алкокси и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R2 выбран из группы, состоящей из Н, R7, -S(O)2, -S(O)2-C1-C4алкила, C1-C4алкила, гидроксила или фенила, где C1-C4алкил, С24алкенил и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R5 и R5' независимо выбраны из группы, состоящей из Н, галогена, C1-C4алкила, C1-C4алкокси, C2-C4алкенила, циано, амино, фенила и гидроксила, где C1-C4алкил, C2-C4алкенил и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R7 выбран из группы, состоящей из -С(О)-С14алкила или -С(О)-О-С14алкила, где С14алкил необязательно замещен 1, 2 или 3 заместителями, выбираемыми из Rb;

R8 выбран из группы, состоящей из H, -С(О)-С14алкила или -С(О)-О-С14алкила, где С14алкил необязательно замещен 1, 2 или 3 заместителями, выбираемыми из Ra;

Ra выбран, независимо для каждого местоположения, из группы, состоящей из карбокси, гидроксила, галогена, амино, фенила, C1-C4алкила и C1-C4алкокси;

Rb выбран, независимо для каждого местоположения, из группы, состоящей из карбокси, гидроксила, галогена, амино, фенила, C1-C4алкила, C1-C4алкокси и -NH-Rc; и

Rc выбран, независимо для каждого местоположения, из -С(О)-О-С14алкила и -С(О)-С14алкила.

В настоящем описании также предложены фармацевтически приемлемые композиции, содержащие раскрытое соединение и фармацевтически приемлемый эксципиент. Например, такие композиции могут быть подходящими для перорального введения пациенту.

Способ лечения когнитивного расстройства, такого как расстройство, связанное с потерей памяти или затрудненным обучением, включает введение пациенту, нуждающемуся в этом, эффективного количества раскрытого соединения. Например, в настоящем описании предложены способы лечения или ослабления потери памяти или затрудненного обучения у пациента, нуждающегося в этом.

В варианте осуществления предложены способы для лечения невропатической боли у пациента, нуждающегося в этом, включающие введение эффективного количества раскрытого соединения.

Также в настоящем описании раскрыты способы для лечения депрессии, обсессивно-компульсивного расстройства или шизофрении у пациента, нуждающегося в этом, причем способы включают введение эффективного количества раскрытого соединения. В другом варианте осуществления предложены способы для лечения посттравматического стрессового расстройства, алкогольной зависимости или привыкания к чрезмерному употреблению вызывающих привыкание лекарственных средств у пациента, нуждающегося в этом, причем способы включают введение эффективного количества раскрытого соединения.

Описание чертежей

Фигуры 1А-1D указывают, что раскрытое соединение (АК52) бифазно изменяет возбуждающие постсинаптические токи (e.p.s.c.s.), опосредованные постсинаптическими НМДА-рецепторами, в синапсах коллатерали Шаффера-CA1 и селективно усиливает индукцию LTP. 1A: временной ход заметного снижения посредством АК52 (1 мкМ; сплошная полоса) НМДА-компонента токов e.p.s.c.s., вызванных коллатералями Шаффера в пирамидных нейронах поля CA1 (Каждая точка представляет собой среднее значение ±SEM для e.p.s.c. peNRXe-амплитуды 5 клеток). 1B: временной ход повышения от десятикратно сниженной концентрации АК52 (100 нM; серая полоса) НМДА-компонента токов e.p.s.c.s., вызванных коллатералями Шаффера в пирамидных нейронах поля CA1. (Каждая точка представляет собой среднее значение ±SEM для e.p.s.c. peNRX-амплитуды 5 клеток). 1C: временной ход LTD, вызванной рядом низкочастотных стимулов (2 Гц/10 мин; начало у стрелки) в синапсах коллатерали Шаффера-СА1 в срезах, предварительно обработанных с помощью 1 мкМ (залитые кружочки; n=10) и 100 нМ (залитые ромбы; n=6) NRX-10052, по сравнению с контролем необработанными срезами (незалитые кружочки; n=8). (Каждая точка представляет собой среднее значение ±SEM скорости нарастания нормализованного внеклеточного полевого EPSP для n срезов). 1D: временной ход экспериментов, сравнивающих LTP, вызванную рядом высокочастотных стимулов (3×100 Гц/500 мин; стрелка) в синапсах коллатерали Шаффера-CA1 в срезах, предварительно обработанных с помощью 1 мкМ (залитые кружочки; n=10) и 100 нМ (залитые ромбы; n=8) соединения NRX-10052, по сравнению с контролем необработанными срезами (незалитые кружочки; n=15). (Каждая точка представляет собой среднее значение ±SEM скорости нарастания нормализованного полевого е.р.s.p. для n срезов).

Фигура 2А-2Е указывает, как низкая концентрация раскрытого соединения В значительно повышает возбуждающие постсинаптические токи (e.p.s.c.s.), опосредованные фармакологически изолированным НМДА-рецептором, в синапсах коллатерали Шаффера-CA1 и потенциирует LTP, в то время как концентрация, повышенная в 20 раз, снижает НМДА e.p.s.c.s. 2А: временной ход заметного повышения с помощью соединения В (50 нМ; сплошная полоса) фармакологически изолированных НМДА e.p.s.c.s., вызванных однократным шоком коллатералей Шаффера, регистрируемых в CA1 пирамидных нейронах. 2В: временной ход повышения с помощью соединения В (50 нМ; сплошная полоса) НМДА e.p.s.c.s., вызванных взрывным импульсом (4 импульса/100 Гц). 2C: временной ход заметного снижения с помощью соединения В (1 мкМ; сплошная полоса) НМДА e.p.s.c.s., вызванных однократным шоком коллатералей Шаффера, регистрируемых в CA1 пирамидных нейронах. 2D: временной ход снижения с помощью соединения В (1 мкМ; сплошная полоса) НМДА e.p.s.c.s., вызванных взрывным импульсом (4 импульса/100 Гц) коллатералей Шаффера, регистрируемых в CA1 пирамидных нейронах. 2Е: повышение высокой частоты (100 Гц/500 мин ×3; сплошная стрелка) стимула коллатералей Шаффера, вызывающих LTP в синапсах на CA1 пирамидных нейронах с помощью 50 нМ соединения В (залитые кружочки), по сравнению с контролем необработанными срезами (незалитые кружочки) (Каждая точка представляет собой среднее значение ±SEM для e.p.s.c. peNRX-амплитуды n клеток).

Фигуры 3А-3С показывают 100 нМ и 1 мкМ концентрации раскрытого соединения (АК51) как для усиления токов (e.p.s.c.s.), опосредованных фармакологически изолированным постсинаптическим НМДА-рецептором, в синапсе коллатерали Шаффера-CA1, так и для потенцирования LTP. 3А: временной ход заметного повышения с помощью NRX-10051 (100 нМ; сплошная полоса) фармакологически изолированных НМДА e.p.s.c.s., вызванных одиночным шоком коллатералей Шаффера, регистрируемых в CA1 пирамидных нейронах (n=x). 3B: временной ход повышения с помощью AK51 (1 мкМ; сплошная полоса) фармакологически изолированных НМДА e.p.s.c.s., вызванных одиночным шоком коллатералей Шаффера, регистрируемых в CA1 пирамидных нейронах (n=y). 3С: повышение LTP, вызванное высокочастотным стимулом коллатералей Шаффера (100 Гц/500 мин ×3; сплошная стрелка), в синапсах на CA1 пирамидных нейронах с помощью 100 нМ () и 1 мкМ (залитые кружочки) АК51 по сравнению с контролем необработанными срезами (незалитые кружочки). 3D: временной ход LTD, вызванной рядом низкочастотных стимулов (2 Гц/10 мин; начало со стрелки) в синапсах коллатерали Шаффера-CA1 в срезах, предварительно обработанных с помощью 1 мкМ (залитые кружочки; n=10) или 100 нМ (залитые ромбы; n=6) соединения NRX-10051, по сравнению с контролем необработанными срезами (незалитые кружочки; n=8). Каждая точка представляет собой среднее значение ±SEM е.р.s.с. реNRX амплитуды n клеток).

Фигура 4 показывает, что раскрытое соединение повышает НМДА-ток и LTP. А: протяженность во времени эффекта 20-минутного применения в ванне 100 нМ АК51 (сплошная полоса) на нормализованный фармакологически изолированный управляемый НМДА-рецепторами ток в CA1 пирамидных нейронах при регистрации целых клеток (средняя величина ±SEM, n=5). B: протяженность во времени эффекта 20 мин применения в ванне раствора 1 мкМ АК51 (сплошная полоса) на нормализованный фармакологически изолированный управляемый НМДА-рецепторами ток в CA1 пирамидных нейронах при регистрации целых клеток (средняя величина ±SEM, n=6). C: протяженность во времени эффекта применения в ванне раствора 100 нМ АК51 (сплошная полоса, залитые кружочки, n=8) по сравнению с необработанными контрольными срезами (незалитые кружочки, n=6) на величину долговременной потенциации (LTP) скорости нарастания внеклеточного возбуждающего постсинаптического потенциала (среднее значение ±SEM, fEPSP), вызванного высокочастотной стимуляцией коллатералей Шаффера (стрелка, 2×100 Гц/500 мсек). D: протяженность во времени эффекта применения в ванне раствора 1 мкМ АК51 (сплошная полоса, залитые кружочки, n=8) по сравнению с необработанными контрольными срезами (незалитые кружочки, n=6) на величину LTP скорости нарастания fEPSP (среднее значение ±SEM), вызванного высокочастотной стимуляцией коллатералей Шаффера (стрелка, 2×100 Гц/500 мсек). Е: протяженность во времени эффекта применения в ванне 1 мкМ АК51 (сплошная полоса, залитые кружочки, n=10) по сравнению с необработанными контрольными срезами (незалитые кружочки, n=8) на величину долговременной депрессии скорости нарастания fEPSP (среднее значение±SEM), вызванной низкочастотной стимуляцией коллатералей Шаффера (стрелка, 2 Гц/10 мин).

Фигура 5 показывает результаты Т-лабиринт-теста на крысах при использовании раскрытого соединения.

Фигура 6 изображает результаты анализа невропатической боли в формалине на крысах.

Фигура 7 показывает, что один изомер раскрытого соединения АК-55-А потенциально повышает НМДА поток и LTP, тогда как АК-55-В не повышает.

Фигура 8 отражает количественный анализ с помощью ГХ/МС и показывает площадь под кривой для АК-51 и [2H7]пролинового внутреннего стандарта и была проанализирована с помощью ГХ/МС селективным мониторингом ионов, сопровождающим TBDMS-дериватизацию, основанную на методах, приспособленных от Wool et al. Journal of Chromatography B, 831, 313-9 (2005). Ионы, использованные для SIM, были 241,2 (данное соединение) и 350,3 (дейтерированный пролин). R2 = 0,9998 (квадратичная нелинейная регрессия).

Подробное описание

Данное раскрытие в основном направлено на соединения, которые способны модулировать НМДА, например на НМДА-антагонисты или частичные агонисты и композиции, и/или способы применения раскрытых соединений.

Следующие определения использованы на протяжении описания данного раскрытия.

Термин “алкенил”, как он используется в настоящем описании, относится к ненасыщенному линейному или разветвленному углеводороду, имеющему, по меньшей мере, одну углерод-углеродную двойную связь, такому как линейная или разветвленная группа из 2-12, 2-10 или 2-6 атомов углерода, называемая в настоящем описании как С212алкенил, С210алкенил и С26алкенил соответственно. Типичные алкенильные группы включают, но без ограничения только ими, винил, аллил, бутенил, пентенил, гексенил, бутадиенил, пентадиенил, гексадиенил, 2-этилгексенил, 2-пропил-2-бутенил, 4-(2-метил-3-бутен)пентенил и т.д.

Термин “алкокси”, как он используется в настоящем описании, относится к алкильной группе, присоединенной к кислороду (-О-алкил). Типичные алкоксигруппы включают, но без ограничения только ими, группы с алкильными группами с 1-12, 1-8 или 1-6 атомами углерода, называемые в настоящем описании как С112алкокси, С18алкокси и С16алкокси соответственно. Типичные алкоксигруппы включают, но без ограничения только ими, метокси, этокси и т.д. Аналогично, типичные алкеноксигруппы включают, но без ограничения только ими, винилокси, аллилокси, бутенокси и т.д.

Термин “алкил”, как он используется в настоящем описании, относится к насыщенному линейному или разветвленному углеводороду. Типичные алкильные группы включают, но без ограничения только ими, метил, этил, пропил, изопропил, 2-метил-1-пропил, 2-метил-2-пропил, 2-метил-1-бутил, 3-метил-1-бутил, 2-метил-3-бутил, 2,2-диметил-1-пропил, 2-метил-1-пентил, 3-метил-1-пентил, 4-метил-1-пентил, 2-метил-2-пентил, 3-метил-2-пентил, 4-метил-2-пентил, 2,2-диметил-1-бутил, 3,3-диметил-1-бутил, 2-этил-1-бутил, бутил, изобутил, трет-бутил, пентил, изопентил, неопентил, гексил, гептил, октил, и т.д.

Алкильные, алкенильные и алкинильные группы могут быть необязательно замещены, если не указано особо, одной или несколькими группами, выбираемыми из алкокси, алкила, циклоалкила, амино, галогена и -С(О)алкила. В других вариантах осуществления алкильные, алкенильные и алкинильные группы не замещены, т.е. они являются незамещенными.

Термин “алкинил”, как он используется в настоящем описании, относится к ненасыщенному линейному или разветвленному углеводороду, имеющему, по меньшей мере, одну углерод-углеродную тройную связь. Типичные алкинильные группы включают, но без ограничения только ими, этинил, пропинил и бутинил.

Термин “амид” или “амидо”, как он используется в настоящем описании, относится к радикалу вида -RaC(O)N(Rb)-, -RaC(O)N(Rb)Rc- или -C(O)NRbRc-, где Ra, Rb и Rc, каждый независимо, выбраны из алкокси, алкила, алкенила, алкинила, амида, амино, арила, арилалкила, карбамата, циклоалкила, сложного эфира, простого эфира, формила, галогена, галогеналкила, гетероарила, гетероциклила, водорода, гидроксила, кетона и нитро. Амид может быть присоединен к другой группе через углерод, азот, Rb, Rc или Ra. Амид также может быть циклическим, например Rb и Rc, Ra и Rb, Ra и Rc могут быть связаны для образования 3-12-членного кольца, а именно 3-10-членного кольца или 5-6-членного кольца. Термин “карбоксамидо” относится к структуре -С(О)NRbRc.

Термин “амин” или “амино”, как он используется в настоящем описании, относится к радикалу вида -NRdRe, где Rd и Re независимо выбраны из водорода, алкила, алкенила, алкинила, арила, арилалкила, циклоалкила, галогеналкила, гетероарила и гетероциклила. Амино также может быть циклическим, например Rd и Re связаны вместе с N c образованием 3-12-членного кольца, например морфолино или пиперидинила. Термин амино также включает соответствующие четвертичные аммониевые соли любой аминогруппы, например -[N(Rd)(Re)(Rf)]+. Типичные аминогруппы включают аминоалкильные группы, в которых, по меньшей мере, один из Rd, Re или Rf представляет собой алкильную группу. В некоторых вариантах осуществления Rd и Re представляют собой водород или алкил.

Термины “гало” или “галоген” или “гал”, как они используются в настоящем описании, относятся к F, Cl, Br или I. Термин “галогеналкил”, как он используется в настоящем описании, относится к алкильной группе, замещенной одним или несколькими атомами галогена.

Термины “гетероциклил” или “гетероциклическая группа” являются признанными в данной области и относятся к насыщенным или частично ненасыщенным 3-10-членным кольцевым структурам, в альтернативном случае, к 3-7-членным кольцам, циклические структуры которых включают от одного до четырех гетероатомов, таких как азот, кислород или сера. Гетероциклы могут представлять собой моно-, би- или другие полициклические кольцевые системы. Гетероцикл может быть конденсирован с одним или несколькими арильными, частично ненасыщенными или насыщенными кольцами. Гетероциклильные группы включают, например, биотинил, хроменил, дигидрофурил, дигидроиндолил, дигидропиранил, дигидротиенил, дитиазолил, гомопиперидинил, имидазолидинил, изохинолил, изотиазолидинил, изоксазолидинил, морфолинил, оксоланил, оксазолидинил, феноксантенил, пиперазинил, пиперидинил, пиранил, пиразолидинил, пиразолинил, пиридил, пиримидинил, пирролидинил, пирролидин-2-онил, пирролинил, тетрагидрофурил, тетрагидроизохинолил, тетрагидропиранил, тетрагидрохинолил, тиазолидинил, тиоланил, тиоморфолинил, тиопиранил, ксантенил, лактоны, лактамы, такие как азетидиноны и пирролидиноны, сультамы, сультоны, и тому подобное. Гетероциклическое кольцо может быть замещено в одном или нескольких положениях заместителями, такими как алканоил, алкокси, алкил, алкенил, алкинил, амидо, амидино, амино, арил, арилалкил, азидо, карбамат, карбонат, карбокси, циано, циклоалкил, сложный эфир, простой эфир, формил, галоген, галогеналкил, гетероарил, гетероциклил, гидроксил, имино, кетон, нитро, фосфат, фосфонато, фосфинато, сульфат, сульфид, сульфонамидо, сульфонил и тиокарбонил. В некоторых вариантах осуществления гетероциклическая группа не замещена, т.е. гетероциклическая группа является незамещенной.

Термин “гетероциклоалкил” является признанным в данной области и относится к насыщенной гетероциклической группе, определенной выше. Термин “гетероциклилалкокси”, как он используется в настоящем описании, относится к гетероциклической группе, присоединенной к алкоксигруппе. Термин “гетероциклилоксиалкил” относится к гетероциклической группе, присоединенной к кислороду (-О-), который присоединен к алкильной группе.

Термины “гидрокси” или “гидроксил”, как они используются в настоящем описании, относятся к радикалу -ОН.

“Фармацевтически или фармакологически приемлемый” включает молекулярные частицы и композиции, которые не вызывают вредные, аллергические или другие неблагоприятные реакции при введении животному или человеку, как предназначено. “Препараты для введения человеку” должны соответствовать стандартам стерильности, пирогенности, общей безопасности и чистоты, как требуется биологическими стандартами Управления FDA.

Как он используется в настоящем раскрытии, термин “частичный агонист НМДА-рецептора” определен как соединение, которое способно к присоединению к глицин-связывающему сайту НМДА-рецептора; в низких концентрациях агонист НМДА-рецептора действует в основном как агонист и в высоких концентрациях он действует как антагонист. Данные концентрации экспериментально определены для каждого и любого “частичного агониста”.

Как он используется в настоящем описании, термин “фармацевтически приемлемый носитель” или “эксципиент” включает любые и всевозможные растворители, дисперсионные среды, покрытия, бактерициды и фунгициды, изотонические средства и средства, замедляющие абсорбцию, и тому подобные, которые являются физиологически совместимыми. В одном варианте осуществления носитель является подходящим для парентерального введения. В альтернативном случае носитель может быть подходящим для внутривенного, внутрибрюшинного, внутримышечного, подъязычного или перорального введения. Фармацевтически приемлемые носители включают стерильные водные растворы или дисперсии и стерильные порошки для импровизированного приготовления стерильных инъецируемых растворов или дисперсии. Использование таких сред и агентов для фармацевтически активных веществ хорошо известно в данной области. Кроме того, поскольку любые обычные среды или агент несовместимы с активным соединением, их использование в фармацевтических композициях данного изобретения предусмотрено. В композиции также могут быть включены дополнительные активные соединения.

Термин “фармацевтически приемлемая соль(и)”, как он используется в настоящем описании, относится к солям кислотных или основных групп, которые могут находиться в соединениях, использованных в данных композициях. Соединения, включенные в данные композиции, которые являются основными по природе, способны к образованию большого разнообразия солей с различными неорганическими и органическими кислотами. Кислоты, которые могут быть использованы для приготовления фармацевтически приемлемых кислотно-аддитивных солей таких основных соединений, являются такими кислотами, которые образуют нетоксичные кислотно-аддитивные соли, т.е. соли, содержащие фармакологически приемлемые анионы, включающие, но без ограничения только ими, следующие соли: малат, оксалат, хлорид, бромид, иодид, нитрат, сульфат, бисульфат, фосфат, кислый фосфат, изоникотинат, ацетат, лактат, салицилат, цитрат, тартрат, олеат, таннат, пантотенат, битартрат, аскорбат, сукцинат, малеат, гентизинат, фумарат, глюконат, глюкаронат, сахарат, формиат, бензоат, глутамат, метансульфонат, этансульфонат, бензолсульфонат, п-толуолсульфонат и памоат (т.е. 1,1'-метилен-бис-(2-гидрокси-3-нафтоат)). Соединения, включенные в данные композиции, которые содержат аминогруппировку, могут образовать фармацевтически приемлемые соли с различными аминокислотами, в дополнение к кислотам, упомянутым выше. Соединения, включенные в данные композиции, которые являются кислыми по природе, способны к образованию основных солей с различными фармакологически приемлемыми катионами. Примеры таких солей включают соли щелочных металлов или соли щелочноземельных металлов и, в частности, соли кальция, магния, натрия, лития, цинка, калия и железа.

Соединения данного раскрытия могут содержать один или несколько хиральных центров и/или двойных связей и поэтому могут существовать как стереоизомеры, такие как геометрические изомеры, энантиомеры или диастереомеры. Термин “стереоизомеры” при использовании в настоящем описании включает в себя все геометрические изомеры, энантиомеры или диастереомеры. Данные соединения могут быть обозначены символами “R” или “S”, зависящими от конфигурации заместителей вокруг стереогенного атома углерода. Данное изобретение охватывает различные стереоизомеры данных соединений и их смеси. Стереоизомеры включают энантиомеры и диастереомеры. Смеси энантиомеров или диастереомеров могут быть обозначены “(±)” по номенклатуре, но специалист согласится, что структура может обозначать хиральный центр косвенным образом.

Индивидуальные стереоизомеры соединений данного изобретения могут быть приготовлены синтетически из коммерчески доступных исходных продуктов, которые содержат асимметрический или стереогенный центры, или приготовлением рацемических смесей с последующими методами разделения, хорошо известными обычному специалисту в данной области. Данные методы разделения проиллюстрированы (1) присоединением смеси энантиомеров к хиральному вспомогательному веществу, выделением полученной смеси диастереомеров перекристаллизацией или хроматографией и освобождением оптически чистого продукта от вспомогательного вещества, (2) образованием соли с применением оптически активного разделяющего средства или (3) прямым разделением смеси оптических энантиомеров на хиральных хроматографических колонках. Стереоизомерные смеси могут быть также разделены на их составные стереоизомеры хорошо известными методами, такими как хирально-фазовая газовая хроматография, хирально-фазовая высокоэффективная жидкостная хроматография, кристаллизация соединения в виде хирального солевого комплекса или кристаллизация соединения в хиральном растворителе. Стереоизомеры также могут быть получены из стереомерно чистых промежуточных продуктов, реагентов и катализаторов хорошо известными методами асимметрического синтеза.

Геометрические изомеры также могут существовать в соединениях данного изобретения. Символ обозначает связь, которая может быть простой, двойной или тройной связью, описанной в настоящей работе. Данное изобретение охватывает различные геометрические изомеры и их смеси, полученные от перегруппировок заместителей вокруг углерод-углеродной двойной связи или перегруппировок заместителей вокруг карбоциклического кольца. Заместители вокруг углерод-углеродной двойной связи обозначены как находящиеся в “Z” или “E” конфигурации, где термины “Z” и “E” использованы в соответствии со стандартами ИЮПАК. Если не указано особо, структуры с изображением двойных связей охватывают как “E”, так и “Z” изомеры.

Заместители вокруг углерод-углеродной двойной связи в альтернативном случае могут быть обозначены как “цис” или “транс”, где “цис” изображает заместители на той же самой стороне двойной связи и “транс” изображает заместители на противоположных сторонах двойной связи. Перегруппировку заместителей вокруг карбоциклического кольца обозначают как “цис” или “транс”. Термин “цис” изображает заместители на той же самой стороне плоскости кольца, и термин “транс” изображает заместители на противоположных сторонах плоскости кольца. Смеси соединений, в которых заместители расположены как на одной, так и на противоположных сторонах плоскости кольца, обозначены как “цис/транс”.

Соединения, раскрываемые в настоящем описании, могут существовать в сольватированных, а также в несольватированных формах с фармацевтически приемлемыми растворителями, такими как вода, этанол и тому подобное, и подразумевается, что данное изобретение охватывает как сольватированные, так и несольватированные формы. В одном варианте осуществления соединение является аморфным. В одном варианте осуществления соединение является полиморфным. В другом варианте осуществления соединение находится в кристаллической форме.

Изобретение также охватывает соединения изобретения, меченые изотопами, которые идентичны соединениям, цитируемым в настоящем описании, за исключением того, что один или несколько атомов замещены атомом, имеющим атомную массу или массовый номер, отличный от атомной массы или массового номера, обычно имеющихся в природе. Примеры изотопов, которые могут быть в числе соединений данного изобретения, включают изотопы водорода, углерода, азота, кислорода, фосфора, фтора и хлора, такие как 2Н, 3Н, 13С, 14С, 15N, 18O, 17O, 31P, 32P, 35S, 18F и 36Cl, соответственно.

Некоторые меченые изотопами раскрытые соединения (например, меченные соединения 3Н и 14С) применимы в анализах составов и/или распределения тканевого субстрата. Тритий (т.е. 3Н) и углерод-14 (т.е. 14С) изотопы особенно предпочтительны по легкости их приготовления и обнаружения. Кроме того, замещение более тяжелыми изотопами, такими как дейтерий (т.е. 2Н), может давать некоторые терапевтические преимущества, происходящие от большей метаболической стабильности (например, повышенный период полувыведения in vivo или требования к сниженной дозировке) и, следовательно, может быть предпочтительным при некоторых обстоятельствах. Мечение изотопами соединения данного изобретения обычно можно приготовить последующими процедурами, аналогичными раскрытым, например, в примерах настоящего описания, путем замены немеченного изотопом реагента на меченный изотопом реагент.

Как он используется в настоящем раскрытии, “НМДА” определен как N-метил-d-аспартат.

В данном описании термин “терапевтически эффективное количество” означает количество предназначенного соединения, которое будет вызывать биологическую или медицинскую реакцию ткани, системы, животного или человека, которую пытается получить исследователь, ветеринар, доктор или другой клиницист. Соединения данного изобретения вводят в терапевтически эффективных количествах, чтобы лечить заболевание. В альтернативном случае, терапевтически эффективное количество соединения представляет собой количество, требуемое для достижения желаемого терапевтического и/или профилактического эффекта, а именно, количество, которое приводит к определенному результату, поскольку то количество должно было дать максимальное усиление поведенческого (например, обучения), физиологического ответа (например, LTP индукции) или ингибирования невропатической боли.

Соединения

Раскрытые соединения включают соединения, представленные формулой I:

I

и их фармацевтически приемлемые соли, стереоизомеры и N-оксиды; где

Т означает, независимо для каждого местоположения, CR4R4', и n равно 0, 1, 2 или 3;

А необязательно присутствует и выбран из фенила или пиридина, где А необязательно замещен одним или несколькими заместителями, выбираемыми из Ra;

R1 выбран из группы, состоящей из Н, гидроксила, -S(O)2-C1-C4алкила; -SO2, C1-C4алкила, С24алкенила, фенила, R7 или

где C1-C4алкил, С24алкенил или фенил необязательно замещен одним или несколькими заместителями, выбираемыми из Ra;

Х означает СН или N;

R3 и R3' независимо выбраны из группы, состоящей из Н, галогена, гидроксила, фенила, C1-C4алкила, амидо, амина или C2-C4алкенила, где C1-C4алкил, C2-C4алкенил и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R4 и R4' независимо выбраны из группы, состоящей из Н, галогена, гидроксила, фенила, C1-C4алкила, амидо, амина, C1-C4алкокси или C2-C4алкенила, где C1-C4алкил, C2-C4алкенил, C1-C4алкокси и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R2 выбран из группы, состоящей из Н, R7, -S(O)2, -S(O)2-C1-C4алкила, C1-C4алкила, гидроксила или фенила, где C1-C4алкил, С24алкенил и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R5 и R5', каждый независимо, выбраны из группы, состоящей из Н, галогена, C1-C4алкила, C1-C4алкокси, C2-C4алкенила, циано, амино, фенила и гидроксила, где C1-C4алкил, C2-C4алкенил и фенил необязательно замещены одним или несколькими заместителями, выбираемыми из Ra;

R7 выбран из группы, состоящей из -С(О)-С14алкила или -С(О)-О-С14алкила, где С14алкил необязательно