Применение содержащих сложноэфирные группы полимеров в качестве противоусталостных присадок

Изобретение относится к применению содержащих сложноэфирные группы полимеров в качестве противоусталостных присадок. Описано применение содержащих сложноэфирные группы полимеров по меньшей мере с одним неполярным сегментом Р, характеризующимся тем, что его получают путем полимеризации состава мономеров, включающего а) от 0 до 40% масс., в пересчете на массу мономерной смеси для получения неполярных сегментов, одного или нескольких этиленненасыщенных сложных эфиров формулы (I), в которой R означает водород или метил, R1 означает неразветвленный или разветвленный алкильный остаток с 1-6 атомами углерода, R2 и R3 означают водород, b) от 5 до 100% масс., в пересчете на массу мономерной смеси для получения неполярных сегментов, одного или нескольких этиленненасыщенных сложных эфиров формулы (II), в которой R означает водород или метил, R4 означает неразветвленный или разветвленный алкильный остаток с 7-15 атомами углерода, R5 и R6 означают водород, с) от 0 до 80% масс., в пересчете на массу мономерной смеси для получения неполярных сегментов, одного или нескольких этиленненасыщенных сложных эфиров формулы (III), в которой R означает водород или метил, R7 означает неразветвленный или разветвленный алкильный остаток с 16-30 атомами углерода, R8 и R9 означают водород, и d) от 0 до 50% масс., в пересчете на массу мономерной смеси для получения неполярных сегментов, сомономера, и по меньшей мере одним полярным сегментом D, содержащим по меньшей мере восемь повторяющихся единиц, причем содержание диспергирующих повторяющихся единиц в сегменте D составляет по меньшей мере 30% масс. в пересчете на массу сегмента D, при этом диспергирующие повторяющиеся единицы являются производными одного или нескольких этиленненасыщенных полярных сложных эфиров формулы (IV), в которой R означает водород или метил, X означает кислород, серу или аминогруппу формулы -NH- или -NRa-, в которой Ra означает алкильный остаток с 1-40 атомами углерода, R10 означает остаток с 2-20 атомами углерода и по меньшей мере одним гетероатомом, R11 и R12 соответственно независимо друг от друга означают водород или группу формулы -COX′R10′, в которой X′ означает кислород или аминогруппу формулы -NH- или -NRa′-, в которой Ra′ означает алкильный остаток с 1-40 атомами углерода, и R10′ означает остаток с 1-100 атомами углерода, и/или производными гетероциклических виниловых соединений, в качестве противоусталостной присадки в смазочных материалах. Технический результат - получение противоусталостной присадки, обеспечивающей снижение к минимуму усталостного выкрашивания. 19 з.п. ф-лы, 3 табл., 5 прим.

Реферат

Настоящее изобретение относится к применению содержащих сложноэфирные группы полимеров в качестве противоусталостных присадок.

Задачей современных исследований в сфере эффективного использования топлив является все большее сокращение потерь на перемешивание и внутреннее трение смазочных масел. В связи с этим в последнее время наблюдается тенденция к использованию смазочных масел, которые обладают все более низкой вязкостью и образуют масляные пленки все меньшей толщины, что прежде всего относится к высоким эксплуатационным температурам. Негативным следствием подобной тенденции является увеличение ущерба, причиняемого прежде всего передаточным механизмам и подшипникам качения.

При конструировании передаточных механизмов следует учитывать необходимость достаточно полного смазывания всех контактирующих поверхностей зубчатых зацеплений и подшипников качения в любых режимах их эксплуатации. Следствием повреждения зубчатых колес и подшипников качения является возникновение чрезмерно высоких локальных нагрузок. При этом различают два следующих вида дефектов металлических поверхностей передаточных механизмов, прежде всего зубчатых зацеплений и подшипников качения.

1. Износ, обусловленный непрерывным поверхностным съемом материала, соответственно задир, обусловленный мгновенным съемом материала после приваривания трущихся поверхностей друг к другу.

2. Усталость, проявляющаяся в виде серых пятен, соответственно выкрашивания. Подобные дефекты обусловлены касательными напряжениями в кристаллической решетке металла, приводящими к образованию трещин глубиной от 20 до 40 мкм, соответственно от 100 до 500 мкм, и последующему выкрашиванию.

Указанные повреждения зубчатых зацеплений и подшипников качения широко известны и подробно описаны, например, в „Gears-Wear and Dama-ge to Gear Teeth", ISO DIS 10825, а также в публикации Nr. WL 82 102/2 DA „Wälzlagerschäden” фирмы FAG (Schaeffler KG), Швейнфурт, 2004.

Износ зубчатых зацеплений и подшипников качений, обусловленный непрерывным поверхностным съемом материала, происходит преимущественно при низких скоростях вращения, при которых поверхностные микронеровности вследствие чрезмерно незначительной толщины масляной пленки вступают в непосредственный контакт друг с другом. Происходящее в соответствии с подобным механизмом разрушение металла показано, например, на Фиг.10.10 (боковая поверхность зуба с явными признаками износа), приведенной в Т. Mang, W. Dresel (издатели), “Lubricants and Lubrication”, издательство Wiley-VCH, Вейнгейм 2001. Неравномерный износ в виде полос на поверхности элемента качения показан на Фиг.68, приведенной в публикации Nr. WL 82 102/2 DA „Wälzlagerschäden” фирмы FAG (Schaeffler KG), Швейнфурт, 2004.

В отношении противодействия износу благоприятным является использование противоизносных присадок в смазочных материалах, а также повышение вязкости последних.

Задиры на боковых поверхностях зубьев чаще всего возникают при скоростях вращения зубчатых передач от средних до высоких. В этом случае происходит кратковременное взаимное приваривание контактирующих поверхностей и немедленный последующий отрыв друг от друга. Типичный дефект подобного типа показан, например, на Фиг.10.11, приведенной в Т. Mang, W. Dresel (издатели), “Lubricants and Lubrication”, издательство Wiley-VCH, Вейнгейм, 2001. Указанные повреждения наблюдаются в зоне контактирующих друг с другом боковых поверхностей зубьев (нередко в зоне их головок) с присущими им высокими угловыми скоростями. Речь при этом идет о мгновенно возникающих дефектах, причиной которых может стать даже однократное превышение допустимой нагрузки. Для подшипников качения также характерно образование задиров, наблюдаемое прежде всего в случае крупногабаритных подшипников, которые используют, например в передаточных механизмах цементных мельниц. Вследствие низкой рабочей вязкости смазочного материала, чрезмерных нагрузок и/или чрезмерно высокой частоты вращения между роликами и бортом, например, конического роликового подшипника отсутствует образование масляной пленки достаточной толщины, что обусловливает локальное взаимное приваривание соответствующих поверхностей (смотри, например, Фиг.81, приведенную в публикации Nr. WL 82 102/2 DA „Wälzlagerschäden” фирмы FAG (Schaeffler KG), Швейнфурт, 2004).

Введение в смазочные материалы противозадирных присадок уменьшает вероятность возникновения задиров более чем в пять раз.

Указанная в пункте 2 усталость прежде всего проявляется в виде серых пятен, соответственно усталостного выкрашивания.

Образование серых пятен начинается с появления тонкой трещины в кристаллической решетке металла на расстоянии от поверхности, составляющем от 20 до 40 мкм. Трещина распространяется к поверхности металла и обусловливает отслаивание, которое можно визуально обнаружить по появлению серых пятен. В случае зубчатых зацеплений серые пятна на боковых поверхностях зубьев можно наблюдать практически в любом диапазоне угловых скоростей. Серые пятна, показанные, например, на фиг.10.13, приведенной в Т. Mang, W. Dresel (издатели), “Lubricants and Lubrication”, издательство Wiley-VCH, Вейнгейм, 2001, появляются преимущественно в зоне скользящего контакта. Как показано на Фиг.49, приведенной в публикации Nr. WL 82 102/2 DA. „Wälzlagerschäden” фирмы FAG (Schaeffler KG), Швейнфурт, 2004, весьма неглубокие раковины в виде серых пятен на поверхности качения образуются также в зоне скользящего контакта подшипников качения.

Усталостное выкрашивание также является дефектом, который можно наблюдать в широком диапазоне угловых скоростей деталей. В подобном случае дефект также начинается с образования трещины в кристаллической решетке металла на глубине от 100 до 500 мкм. Трещина разрастается в направлении поверхности металла и оставляет обусловленные выкрашиванием следы в виде мелких раковин. В случае зубчатых зацеплений указанные дефекты образуются премущественно в средней части боковых поверхностей зубьев, тогда как в случае подшипников качения они чаще всего возникают на поверхности вращающихся колец. Подобные дефекты показаны, в частности, на Фиг.10.14 и Фиг.10.15, приведенных в Т. Mang, W. Dresel (издатели), “Lubricants and Lubrication”, издательство Wiley-VCH, Вейнгейм 2001, а также на фиг.43, приведенной в публикации Nr. WL 82 102/2 DA „Wälzlagerschäden” фирмы FAG (Schaeffler KG), Швейнфурт, 2004. Таким образом, в отличие от образования серых пятен дефекты возникают в зоне контакта роликов, поскольку именно в этих зонах действуют максимальные переменные нагрузки с максимальными амплитудами.

В отличие от дефектов в виде износа и задиров широко распространенные усталостные дефекты в виде серых пятен и выкрашивания не могут быть целенаправленно предотвращены с помощью современных присадок, в частности, указанных выше противоизносных и противозадирных присадок (смотри R.M. Mortier, S.T. Orszulik (издатели), “Chemistry and Technology of Lubricants”, издательство Blackie Academic & Professional, Лондон, 2-е издание, 1997; J. Bartz, „Additive für Schmierstoffe”, издательство Expert, Реннинген-Мальмсгейм, 1994; Т. Mang, W. Dresel (издатели), “Lubricants and Lubrication”, издательство Wiley-VCH, Вейнгейм, 2001). Выполненные до последнего времени общие исследования показывают, что противодействовать образованию серых пятен и усталостному выкрашиванию можно лишь варьируя вязкость смазочных материалов. При этом повышение вязкости способствует увеличению времени до наступления усталости (смотри, например, U. Schedl, „FVA-Forschungsvorhaben 2/IV: Pittingtest - Einfluss der Schmierstoffs auf die Grübchenlebensdauer einsatzgehärteter Zahnräder im Einstufen- und Lastkollektivversuch”, Объединение по исследованию двигателестроения, выпуск 530, Франкфурт, 1997).

С целью оптимизации реологических характеристик смазочных масел, например, трансмиссионных или моторных масел, в них давно используют полиалкил(мет)акрилаты, которые частично могут быть функционализованы сомономерами, прежде всего соединениями, содержащими азот или кислород. К подобным модификаторам индекса вязкости прежде всего относятся полимеры, функционализованные диметиламиноэтилметакрилатом (патент США US 2737496 фирмы Е.I. Dupont de Nemours and Co.), диметиламиноэтилметакриламидом (патент США US 4021357 фирмы Texaco Inc.) или гидроксиэтилметакрилатом (патент США US 3249545 фирмы Shell Oil. Со).

Используемые в смазочных маслах модификаторы индекса вязкости на основе полиалкил(мет)акрилатов постоянно совершенствуются. Так, например, в последнее время часто сообщается об использовании в смазочных маслах полимеров, содержащих подобные блокам последовательности.

Так, например, в патенте США US 3506574 (фирма Rohm and Haas) описаны содержащие подобные последовательности полимеры, состоящие из полиалкил(мет)акрилата в качестве базового полимера, к которому на дополнительной стадии синтеза прививают N-винилпирролидон.

Кроме того, в международной заявке WO 2001/40339, соответственно немецкой заявке на патент DE 102005041528 (фирма RohMax GmbH Additives), описаны предназначенные для использования в смазочных маслах блок-сополимеры, соответственно звездообразные блок-сополимеры, которые могут быть получены, в частности, радикальной полимеризацией с переносом атомов.

Наряду с этим сообщалось о преимуществах блочной структуры модификаторов индекса вязкости, состоящих в том, что подобные модификаторы обладают дополнительными функциями уменьшения износа или уменьшения трения, обеспечивающего снижение расхода топлива.

Из международной заявки WO 2004/087850 известны, например, содержащие блок-сополимеры смазочные композиции, которые обладают отличными фрикционными свойствами. При этом блок-сополимеры выполняют функцию антифрикционных присадок.

В международной заявке WO 2006/105926, в частности, описаны блок-сополимеры на основе целенаправленно подобранных мономеров с содержащими азот и кислород функциональными группами, а также применение указанных полимеров в качестве антифрикционных и диспергирующих присадок.

Из международной заявки WO 2006/007934 (фирма RohMax Additive GmbH) известно об использовании привитых сополимеров в качестве противоизносных присадок в смазочных материалах, прежде всего моторном масле. Кроме того, в международной заявке WO 2005/097956 фирмы RohMax Additive GmbH описаны смазочные материалы, которые в качестве противоизносной присадки содержат привитые сополимеры с водородными мостиками.

Как показано выше, в настоящее время существует множество вариантов уменьшения обусловленного износом или задиром ущерба с помощью присадок. Однако усталости материалов до последнего времени можно противодействовать лишь благодаря использованию относительно высоковязких масел или выполнению зубчатых зацеплений и/или подшипников качения из специальных материалов. Обеим указанным возможностям присущи недостатки, причем использование новых специальных материалов является дорогостоящим и требует дополнительной оптимизации. Использование высоковязких масел обусловливает высокое внутреннее трение, а, следовательно, повышенный расход топлива. В этом отношении могут оказаться полезными прежде всего те соединения, которые можно было бы использовать в качестве противоусталостных присадок без происходящего при этом повышения вязкости смазочного материала.

С учетом рассмотренного выше уровня техники в основу настоящего изобретения была положена задача предложить присадку для уменьшения усталости материалов (противоусталостную присадку). При этом прежде всего следовало свести к минимуму указанное выше образование серых пятен, соответственно усталостное выкрашивание.

Другая задача настоящего изобретение состояла в том, чтобы подобную присадку можно было получать простым и экономичным методом, предусматривающим использование прежде всего коммерчески доступных компонентов. Кроме того, должна быть предусмотрена возможность промышленного производства подобной присадки, не требующего использования новых или доростоящих установок.

Задача настоящего изобретения состояла также в том, чтобы подобная присадка могла придавать смазочному материалу множество необходимых свойств. Благодаря этому можно было бы свести к минимуму общее количество используемых в смазочной композиции присадок.

Кроме того, присадка не должна негативно влиять на расход топлива или совместимость смазочного материала с окружающей средой.

Указанные задачи, а также другие задачи изобретения, которые не сформулированы в явном виде, однако вытекают из контекста описания, согласно изобретению решаются благодаря применению содержащих сложноэфирные группы полимеров по меньшей мере с одним неполярным сегментом P и по меньшей мере одним полярным сегментом D, отличительные признаки которых указаны в пункте 1 формулы изобретения.

В соответствии с этим объектом настоящего изобретение является применение содержащих сложноэфирные группы полимеров по меньшей мере с одним неполярным сегментом P и по меньшей мере одним полярным сегментом D, причем сегмент D содержит по меньшей мере восемь повторяющихся единиц и причем массовое содержание диспергирующих повторяющихся единиц в сегменте D составляет по меньшей мере 30% в пересчете на его массу, в качестве противоусталостной присадки в смазочных материалах.

Таким образом, удалось обнаружить присадку для смазочных масел, неожиданно обеспечивающую уменьшение усталости материала (противоусталостную присадку). При этом подобные присадки обеспечивают уменьшение указанного выше образования серых пятен, соответственно усталостного выкрашивания.

Кроме того, подобные присадки можно получать простым и экономичным методом, предусматривающим использование прежде всего коммерчески доступных компонентов. При этом присадки можно производить в промышленном масштабе без необходимости использования новых или дорогостоящих установок.

Наряду с этим подлежащие использованию согласно изобретению полимеры обладают особенно благоприятным комплексом свойств. Так, например, подобным полимерам неожиданно удается придавать повышенную стойкость к сдвигу, благодаря чему соответствующий смазочный материал чрезвычайно долго сохраняет стабильность. Кроме того, подлежащая применению согласно изобретению присадка способна придавать смазочному материалу множество необходимых свойств. Так, например, смазочные материалы, которые содержат указанные полимеры со сложноэфирными группами, могут обладать отличными низкотемпературными или реологическими свойствами. Благодаря этому может быть сведено к минимуму общее количество различных присадок. Кроме того, содержащие сложноэфирные группы полимеры совместимы со многими присадками. Благодаря этому соответствующий смазочный материал может удовлетворять самым разнообразным требованиям.

Вместе с тем подлежащие применению согласно изобретению присадки не оказывают негативного влияния на расход топлива или совместимость смазочных материалов с окружающей средой.

В соответствии с настоящим изобретением под содержащими сложноэфирные группы полимерами подразумевают полимеры, которые могут быть получены полимеризацией мономерных смесей, содержащих этиленненасыщенные соединения по меньшей мере с одной сложноэфирной группой, называемые ниже сложноэфирными мономерами. Таким образом, указанные полимеры содержат сложноэфирные группы в виде фрагментов боковых цепей. К подобным полимерам прежде всего относятся полиалкил(мет)акрилаты, полиалкилфумараты и/или полиалкилмалеаты.

Сложноэфирные мономеры являются известными соединениями. К ним относятся прежде всего (мет)акрилаты, малеаты и фумараты, которые могут содержать различные спиртовые остатки. Под (мет)акрилатами подразумевают метакрилаты и акрилаты, а также их смеси. Метакрилаты и акрилаты являются широко известными соединениями.

Содержащий сложноэфирные группы полимер предпочтительно включает по меньшей мере 40% масс., особенно предпочтительно по меньшей мере 60% масс., прежде всего предпочтительно по меньшей мере 80% масс. и еще более предпочтительно по меньшей мере 90% масс. повторяющихся единиц, которые являются производными сложноэфирных мономеров.

Согласно изобретению полимеры содержат по меньшей мере один неполярный сегмент Р и по меньшей мере один полярный сегмент D, причем сегмент D включает по меньшей мере восемь повторяющихся единиц и причем массовое содержание диспергирующих повторяющихся единиц в сегменте D составляет по меньшей мере 30% в пересчете на его массу.

Термин «повторяющаяся единица» хорошо известен специалистам. Используемые согласно изобретению полимеры предпочтительно можно получать радикальной полимеризацией мономеров. В процессе радикальной полимеризации происходит раскрытие двойных связей с образованием ковалентных связей. В соответствии с этим повторяющаяся единица образуется из соответствующего исходного мономера.

Предлагаемые в изобретении полимеры содержат полярные и неполярные сегменты. При этом под сегментом подразумевают участок полимерной цепи. Сегменты могут содержать одно или несколько мономерных звеньев и обладать в основном постоянным составом. Сегменты могут обладать также градиентным составом с варьируемой вдоль цепи концентрацией разных мономерных звеньев (повторяющихся единиц). Полярные сегменты D отличаются от неполярных сегментов P содержанием диспергирующих повторяющихся единиц. Неполярные сегменты P могут содержать не более чем ограниченное количество диспергирующих повторяющихся единиц (мономерных звеньев), в то время как полярные сегменты D содержат значительное количество подобных повторяющихся единиц (мономерных звеньев).

Под диспергирующими мономерами прежде всего подразумевают соединения с функциональными группами, причем содержащие подобные функциональные группы полимеры способны удерживать частицы, прежде всего частицы сажи в растворе (смотри R.M. Mortier, S.T. Orszulik (издатели), “Chemistry and Technology of Lubricants”, издательство Blackie Academic & Professional, Лондон, 2-е издание, 1997). К подобным диспергирующим мономерам прежде всего относятся мономеры с содержащими бор, фосфор, кремний, серу, кислород или азот группами, причем предпочтительными являются мономеры, функционализованные кислородом или азотом.

Полярные сегменты D согласно изобретению содержат по меньшей мере восемь, предпочтительно по меньшей мере двенадцать и еще более предпочтительно по меньшей мере пятнадцать повторяющихся единиц. При этом полярные сегменты D содержат по меньшей мере 30% масс., предпочтительно по меньшей мере 40% масс. диспергирующих повторяющихся единиц в пересчете на массу полярного сегмента D. Помимо диспергирующих повторяющихся единиц полярный сегмент D может содержать также повторяющиеся единицы, которые не обладают диспергирующим действием. Различные повторяющиеся единицы могут быть статистически распределены вдоль полярного сегмента D. Кроме того, полярный сегмент D может обладать блочной или градиентной структурой, в связи с чем недиспергирующие и диспергирующие повторяющиеся единицы могут быть распределены в пределах полярного сегмента D неравномерно.

Неполярный гидрофобный сегмент P можно содержать незначительное количество диспергирующих повторяющихся единиц, предпочтительно составляющее менее 20% масс., особенно предпочтительно менее 10% масс. и еще более предпочтительно менее 5% масс. в пересчете на массу неполярного сегмента P. В соответствии с особенно целесообразным вариантом неполярный сегмент P преимущественно не содержит диспергирующих повторяющихся единиц.

Неполярный сегмент Р полимера со сложноэфирными группами может содержать от 5 до 100% масс., прежде всего от 20 до 98% масс., предпочтительно от 30 до 95% масс. и еще более предпочтительно от 70 до 92% масс. повторяющихся единиц, которые являются производными сложноэфирных мономеров с 7-15 атомами углерода в спиртовом остатке.

В соответствии с особым вариантом неполярный сегмент P полимера со сложноэфирными группами может содержать от 0 до 80% масс., предпочтительно от 0,5 до 60% масс., особенно предпочтительно от 2 до 50% масс. и еще более предпочтительно от 5 до 20% масс. повторяющихся единиц, которые являются производными сложноэфирных мономеров с 16-40 атомами углерода в спиртовом остатке.

Кроме того, неполярный сегмент P полимера со сложноэфирными группами может содержать от 0 до 40% масс., предпочтительно от 0,1 до 30% масс. и особенно предпочтительно от 0,5 до 20% масс. повторяющихся единиц, которые являются производными сложноэфирных мономеров с 1-6 атомами углерода в спиртовом остатке.

Неполярный сегмент Р полимера со сложноэфирными группами предпочтительно содержит по меньшей мере 40% масс., особенно предпочтительно по меньшей мере 60% масс., прежде всего предпочтительно по меньшей мере 80% масс. и еще более предпочтительно по меньшей мере 90% масс. повторяющихся единиц, которые являются производными сложноэфирных мономеров.

Мономерные смеси, из которых могут быть получены неполярные сегменты предлагаемых в изобретении полимеров со сложноэфирными группами, могут содержать от 0 до 40% масс., прежде всего от 0,1 до 30% масс., особенно предпочтительно от 0,5 до 20% масс. одного или нескольких этиленненасыщенных сложных эфиров формулы (I):

,

в которой R означает водород или метил, R1 означает неразветвленный или разветвленный алкильный остаток с 1-6 атомами углерода, R2 и R3 соответственно независимо друг от друга означают водород или группу формулы -COOR′, в которой R′ означает водород или алкильную группу с 1-6 атомами углерода.

Примерами соединений формулы (I), в частности, являются:

(мет)акрилаты, фумараты и малеаты, которые являются производными насыщенных спиртов, в частности, метил(мет)акрилат, этил(мет)акрилат, н-пропил(мет)акрилат, изопропил(мет)акрилат, н-бутил(мет)акрилат, трет-бутил(мет)акрилат, пентил(мет)акрилат и гексил(мет)акрилат,

циклоалкил(мет)акрилаты, такие как циклопентил(мет)акрилат и циклогексил(мет)акрилат,

(мет)акрилаты, которые являются производными ненасыщенных спиртов, в частности, 2-пропинил(мет)акрилат, аллил(мет)акрилат и винил(мет)-акрилат.

Мономерные смеси, подлежащие полимеризации с целью получения неполярных сегментов P, преимущественно содержат от 5 до 100% масс., предпочтительно от 10 до 98% масс., прежде всего предпочтительно от 20 до 95% масс. одного или нескольких этиленненасыщенных сложных эфиров формулы (II):

,

в которой R означает водород или метил, R4 означает неразветвленный или разветвленный алкильный остаток с 7-15 атомами углерода, R5 и R6 соответственно независимо друг от друга означают водород или группу формулы -COOR′′, в которой R′′ означает водород или алкильную группу с 7-15 атомами углерода.

Примерами соединений формулы (II), в частности, являются:

(мет)акрилаты, фумараты и малеаты, которые являются производными насыщенных спиртов, в частности, 2-этилгексил(мет)акрилат, гептил(мет)-акрилат, трет-бутилгептил(мет)акрилат, октил(мет)акрилат, 3-изо-пропилгептил(мет)акрилат, нонил(мет)акрилат, децил(мет)акрилат, ундецил(мет)акрилат, 5-метилундецил(мет)акрилат, додецил(мет)акрилат, 2-метилдодецил(мет)акрилат, тридецил(мет)акрилат, 5-метилтридецил-(мет)акрилат, тетрадецил(мет)акрилат и пентадецил(мет)акрилат, (мет)акрилаты, которые являются производными ненасыщенных спиртов, например, такие как олеил(мет)акрилат,

циклоалкил(мет)акрилаты, такие как 3-винилциклогексил(мет)акрилат и борнил(мет)акрилат,

а также соответствующие фумараты и малеаты.

Кроме того, предпочтительные мономерные смеси, используемые для получения неполярных сегментов P, содержат от 0 до 80% масс., предпочтительно от 0,5 до 60% масс., особенно предпочтительно от 2 до 50% масс., еще более предпочтительно от 5 до 20% масс. одного или нескольких этиленненасыщенных сложных эфиров формулы (III):

,

в которой R означает водород или метил, R7 означает неразветвленный или разветвленный алкильный остаток с 16-40, предпочтительно 16-30 атомами углерода, R8 и R9 соответственно независимо друг от друга означают водород или группу формулы -COOR′′′, в которой R′′′ означает водород или алкильную группу с 16-40, предпочтительно 16-30 атомами углерода.

Примерами соединений формулы (III), в частности, являются:

(мет)акрилаты, которые являются производными ненасыщенных спиртов, в частности, гексадецил(мет)акрилат, 2-метилгексадецил(мет)акрилат, гептадецил(мет)акрилат, 5-изопропилгептадецил(мет)акрилат, 4-трет-бутил-октадецил(мет)акрилат, 5-этилоктадецил(мет)акрилат, 3-изопропилокта-децил(мет)акрилат, октадецил(мет)акрилат, нонадецил(мет)акрилат, эйкозил(мет)акрилат, цетилэйкозил(мет)акрилат, стеарилэйкозил(мет)-акрилат, докозил(мет)акрилат и/или эйкозилтетратриаконтил(мет)акрилат,

циклоалкил(мет)акрилаты, такие как 2,4,5-три-трет-бутил-3-винилцикло-гексил(мет)акрилат и 2,3,4,5-тетра-трет-бутилциклогексил(мет)акрилат,

а также соответствующие фумараты и малеаты.

Сложные эфиры с длинноцепочечным спиртовым остатком, прежде всего соединения формул (II) и (III), могут быть получены, например, взаимодействием (мет)акрилатов, фумаратов, малеатов и/или соответствующих кислот с длинноцепочечными алифатическими спиртами, в результате которого в общем случае образуется смесь эфиров, например, таких как (мет)акрилаты с различными длинноцепными спиртовыми остатками. К пригодным алифатическим спиртам, в частности, относятся Охо Alcohol® 7911, Охо Alcohol® 7900, Oxo Alcohol® 1100, Alfol® 610, Alfol® 810, Lial® 125 и продукты типа Nafol® (фирма Sasol); Alphanol® 79 (фирма ICI); Epal® 610 и Epal® 810 (фирма Afton); Linevol® 79, Linevol® 911 и Neodol® 25E (фирма Shell); Dehydad® и продукты типа Hydrenol® или Lorol® (фирма Cognis); Acropol® 35 и Exxal® 10 (фирма Exxon Chemicals); Kalcol® 2465 (фирма Kao Chemicals).

К особенно предпочтительным этиленненасыщенным сложным эфирам в отличие от малеатов и фумаратов относятся (мет)акрилаты, то есть в особенно предпочтительных вариантах заместители R2, R3, R5, R6, R8 и R9 в формулах (I), (II) и (III) означают водород.

Массовое соотношение между сложноэфирными мономерами формулы (II) и сложноэфирными мономерами формулы (III) можно варьировать в широких пределах. Массовое отношение сложных эфиров формулы (II) с 7-15 атомами углерода в спиртовом остатке к сложными эфирам формулы (III) с 16-40 атомами углерода в спиртовом остатке предпочтительно находится в интервале от 50:1 до 1:30, особенно предпочтительно от 10:1 до 1:3, прежде всего предпочтительно от 5:1 до 1:1.

Кроме того, используемая для получения неполярных сегментов P мономерная смесь может содержать этиленненасыщенные мономеры, способные сополимеризоваться с этиленненасыщенными сложными эфирами формул (I), (II) и/или (III).

Согласно настоящему изобретению особенно пригодные для подобной сополимеризации мономеры обладают формулой:

,

в которой R1* и R2* соответственно независимо друг от друга выбраны из группы, включающей водород, галогены, -CN, неразветвленные или разветвленные алкильные группы с 1-20, предпочтительно с 1-6, особенно предпочтительно с 1-4 атомами углерода, которые могут содержать в качестве заместителей от 1 до (2n+1) атомов галогена (например, могут быть остатками -CF3), причем n означает число атомов углерода в алкильной группе, α,β-ненасыщенные неразветвленные или разветвленные алкенильные или алкинильные группы с 2-10, предпочтительно с 2-6, особенно предпочтительно с 2-4 атомами углерода, которые могут содержать в качестве заместителей от 1 до (2n-1) атомов галогена, предпочтительно хлора (например, могут быть остатками CH2=CCl-), причем n означает число атомов углерода в алкенильной или алкинильной группе, циклоалкильные группы с 3-8 атомами углерода, которые могут содержать в качестве заместителей от 1 до (2n-1) атомов галогена, предпочтительно хлора, причем n означает число атомов углерода в циклоалкильной группе; C(=Y*)R5*, C(=Y*)NR6*R7*, Y*C(=Y*)R5*, SOR5*, SO2R5*, OSO2R5*, NR8*SO2R5*, , , , , остаток , который может быть кватернизован дополнительной группой R8*, арильной или гетероциклильной группой, причем Y* означает NR8*, серу или кислород, предпочтительно кислород, R5* означает алкильную группу с 1-20 атомами углерода, алкилтио с 1-20 атомами углерода, OR15 (R15 означает водород или щелочной металл), алкокси с 1-20 атомами углерода, арилокси или гетероциклилокси, R6* и R7* соответственно независимо друг от друга означают водород или алкильную группу с 1-20 атомами углерода, или остатки R6* и R7* совместно могут образовать алкиленовую группу с 2-7, предпочтительно с 2-5 атомами углерода, причем они образуют кольцо, состоящее из 3-8, предпочтительно из 3-6 членов, и R8* означает водород или неразветвленную или разветвленную алкильную или арильную группу с 1-20 атомами углерода;

R3* и R4* соответственно независимо друг от друга выбраны из группы, включающей водород, галоген (предпочтительно фтор или хлор), алкильные группы с 1-6 атомами углерода и остаток -COOR9*, в котором R9* означает водород, щелочной металл или алкильную группу с 1-40 атомами углерода, или R1* и R3* совместно могут образовать группу формулы (CH2)n′, которая может содержать в качестве заместителей от 1 до 2n′ атомов галогена или алкильных групп с 1-4 атомами углерода, или образовать группу формулы C(=O)-Y*-C(=O), причем n′ означает число от 2 до 6, предпочтительно 3 или 4, и остаток Y* такой, как указано выше; и причем по меньшей мере два из остатков R1*, R2*, R3* и R4* означают водород или галоген.

К предпочтительным сомономерам, в частности, относятся:

винилгалогениды, например, такие как винилхлорид, винилфторид, винилиденхлорид и винилиденфторид,

стирол, замещенные стиролы с алкильным заместителем в боковой цепи, например, такие как α-метилстирол и α-этилстирол, замещенные стиролы с алкильным заместителем в кольце, такие как винилтолуол или п-метил-стирол, галогенированные стиролы, например, такие как монохлор-стиролы, дихлорстиролы, трибромстиролы и тетрабромстиролы,

виниловые или изопрениловые простые эфиры,

малеиновая кислота и производные малеиновой кислоты, отличающиеся от соединений формул (I), (II) и (III), например, такие как малеиновый ангидрид, метилмалеиновый ангидрид, малеимид или метилмалеимид,

фумаровая кислота и производные фумаровой кислоты, отличающиеся от соединений формул (I), (II) и (III).

Кроме того, используемые для получения неполярных сегментов мономерные смеси могут содержать диспергирующие мономеры.

Содержание сомономеров в используемых для получения неполярного сегмента P мономерных смесях предпочтительно составляет от 0 до 50% масс., особенно предпочтительно от 0,1 до 40% масс. и еще более предпочтительно от 0,5 до 20% масс. в пересчете на массу мономерной смеси.

Наряду с неполярными сегментами P используемый согласно изобретению полимер содержит по меньшей мере один полярный сегмент D, повторяющиеся единицы которого являются производными диспергирующих мономеров.

Диспергирующие мономеры давно используют для функционализации полимерных присадок к смазочным маслам, в связи с чем они хорошо известны специалистам (смотри, например, R.M. Mortier, S.T. Orszulik (издатели), “Chemistry and Technology of Lubricants”, издательство Blackie Academic & Professional, Лондон, 2-е издание, 1997). В целесообразном варианте в качестве диспергирующих мономеров прежде всего можно использовать гетероциклические виниловые соединения и/или этилен-ненасыщенные полярные сложные эфиры формулы (IV):

,

в которой R означает водород или метил, X означает кислород, серу или аминогруппу формулы -NH- или -NRa-, в которой Ra означает алкильный остаток с 1-40, предпочтительно с 1-4 атомами углерода, R10 означает остаток с 2-1000, прежде всего с 2-100, предпочтительно с 2-20 атомами углерода, содержащий по меньшей мере один гетероатом, предпочтительно по меньшей мере два гетероатома, R11 и R12 соответственно независимо друг от друга означают водород или группу формулы -COX′R10′, в которой X′ означает кислород или аминогруппу формулы -NH- или -NRa′-, в которой Ra′ означает алкильный остаток с 1-40, предпочтительно с 1-4 атомами углерода, и R10′ означает остаток с 1-100, предпочтительно с 1-30, особенно предпочтительное с 1-15 атомами углерода.

Под остатком с 2-1000 атомами углерода подразумевают остаток органического соединения с 2-1000 атомами углерода. Остатки органического соединения подразумевают и в случае иного числа атомов углерода. К подобным остаткам относятся ароматические или гетероароматические группы, алкильные, циклоалкильные, алкоксильные, циклоалкоксильные, алкенильные, алканоильные или алкоксикарбонильные группы, а также гетероалифатические группы. Указанные группы могут быть разветвленными или неразветвленными. Кроме того, указанные группы могут содержать обычные заместители. При этом заместители могут являться, например, неразветвленными и разветвленными алкильными группами с 1-6 атомами углерода, например, такими как метил, этил, пропил, бутил, пентил, 2-метилбутил или гексил, циклоалкильными группами, например, такими как циклопентил или циклогексил, ароматическими группами, такими как фенил или нафтил, аминогруппами, гидроксильными группами, группами простых эфиров, сложноэфирными группами, а также галогенидами.

Согласно изобретению ароматические группы являются остатками одноядерных или многоядерных ароматических соединений предпочтительно с 6-20, прежде всего с 6-12 атомами углерода. Гетероароматические группы являются арильными остатками, в которых по меньшей мере одна CH-группа заменена атомом азота и/или по меньшей мере две соседние CH-группы заменены атомом серы, NH-группой или атомом кислорода, причем подобные гетероароматические группы содержат от 3 до 19 атомов углерода.

Согласно изобретению предпочтительными ароматическими или гетеро-ароматическими группами являются остатки бензола, нафталина, дифенила, дифенилового эфира, дифенилметана, дифенилдиметилметана, бисфенона, дифенилсульфона, тиофена, фурана, пиррола, тиазола, оксазола, имидазола, изотиазола, изоксазола, пиразола, 1,3,4-оксадиазола, 2,5-дифенил-1,3,4-оксадиазола, 1,3,4-тиадиазола, 1,3,4-триазола, 2,5-дифенил-1,3,4-триазола, 1,2,5-трифенил-1,3,4-триазола, 1,2,4-оксадиазола, 1,2,4-тиадиазола, 1,2,4-триазола, 1,2,3-триазола, 1,2,3,4-тетразола, бензо[b]тиофена, бензо[b]фурана, индола, бензо[c]-тиофена, бензо[c]фурана, изоиндола, бензоксазола, бензотиазола, бензимидазола, бензизоксазола, бензизотиазола, бензопиразола, бензотиадиазола, бензотриазола, дибензофурана, дибензотиофена, карбазола, пиридина, дипиридина, пиразина, пиразола, пиримидина, пиридазина, 1,3,5-триазина, 1,2,4-триазина, 1,2,3-триазина, тетразина, хинолина, изо-хинолина, хиноксалина, хиназолина, циннолина, 1,8-нафтиридина, 1,5-нафтиридина, 1,6-нафтиридина, 1,7-нафтиридина, фталазина, пиридопиримидина, пурина, птеридина, хинолизина, 4H-хинолизина, дифенилового эфира, антрацена, бензопиррола, бензоксатиадиазола, бензоксадиазола, бензопиридина, бензопиразина, бензопиразидина, бензопиримидина, бензотриазина, индолизина, пиридопиридина, имидазопиримидина, пиразинопиримидина, карбазола, акридина, феназина, бензохинолина, феноксазина, фенотиазина, акридизина, бензоптеридина, фенантролина или фенантрена, которые при необходимости могут быть замещенными.

К предпочтительными алкильным группам относятся метил, этил, пропил, изопропил, 1-бутил, 2-бутил, 2-метилпропил, трет-бутил, пентил, 2-метилбутил, 1,1-диметилпропил, гексил, гептил, октил, 1,1,3,3-тетраметилбутил, нонил, 1-децил, 2-децил, ундецил, додецил, пентадецил и эйкозил.

К предпочтительным циклоалкильным группам относятся циклопропил, циклобутил, циклопентил, циклогексил, циклогептил и циклооктил, которые при необходимости могут быть замещены разветвленными или неразветвленными алкильными группами.

К предпочтительным алканоильным группам относятся формил, ацетил, пропионил, 2-метилпропионил, бутирил, валероил, пивалоил