Способ диагностирования топливного элемента
Иллюстрации
Показать всеИзобретение относится к энергетике, в частности к системе диагностики топливного элемента и других химических источников электроэнергии, и может использоваться в автономных, резервных, авиационных энергоустановках. Техническим результатом, достигаемым предлагаемым способом, является качественный и непрерывный контроль, позволяющий отслеживать состояние топливного элемента и предсказывать его работоспособность и длительность работы. В предложенном способе измеряют напряжение эталонного электрода, установленного на одном из рабочих электродов топливного элемента, и вычисляют степень его износа и сравнивают со значением критического износа источника тока, после чего делают вывод о пригодности или непригодности дальнейшей эксплуатации источника тока. 1 ил.
Реферат
Изобретение относится к энергетике, в частности к системе диагностики топливного элемента и других химических источников электроэнергии и может использоваться в автономных, резервных, авиационных энергоустановках.
Известны способы контроля топливного элемента [патент RU 2408477 C1, МПК B60L 11/18, 08.06.09; патент RU 2008106258 A, МПК H01M 8/04, 10.09.2009], основанные на сборе данных с помощью датчиков, информация от которых передается контроллерам с последующим хранением их в запоминающем устройстве и сравнении с контрольными данными, находящимися в базе данных компьютера.
Недостатком такого способа является отсутствие объективной оценки работоспособности топливного элемента вследствие износа электродов. Компьютер фиксирует характеристики и выдает информацию о работоспособности топливного элемента без выяснения причин их снижения.
Техническим результатом, достигаемым предлагаемым способом, является качественный и непрерывный контроль, позволяющий отслеживать состояние электродов топливного элемента и предсказывать его работоспособность, прогнозировать ресурс работы по причине изнашивания электродов.
Указанный технический результат достигается тем, что способ диагностирования топливного элемента основан на сборе данных с помощью датчиков и передаче информации от них к контроллерам с последующим хранением их в запоминающем устройстве и сравнении их с контрольными данными.
Сущность заявляемого способа заключается в сравнении в блоке контроля текущего значения напряжения топливного элемента с контрольным, формируемым эталонным электродом, по результатам которого можно судить о степени износа рабочего электрода топливного элемента.
Известно, что на электрические характеристики топливного элемента оказывают влияние внешние факторы, такие как давление и температура, приводящее к изменению текущего значения напряжения при одной и той же нагрузке [см., например, Лидоренко Н.С., Мучник Г.Ф. Электрохимические генераторы. М.: Энергоиздат, 1982. С.316-319]. Таким образом, разница между текущим значением напряжения и контрольным значением, заложенным в базе данных компьютера, будет меняться от внешних условий, и поэтому по ней трудно оценить работоспособность топливного элемента. С другой стороны, на снижение значения напряжения оказывает влияние состояние электродов, которые в процессе работы подвержены коррозии, изменению структуры, дезактивации и износу катализаторов и др. Причем износ электродов зависит от величины тока нагрузки так, что при его большем значении процесс износа происходит интенсивнее. Если сравнить характеристики электрода, работающего под нагрузкой, с электродом, работающим под малым током, то по разности значений напряжения между ними можно судить о степени износа рабочего электрода и работоспособности топливного элемента. Эталонный электрод электрически не соединен с нагрузкой, поэтому через него протекает меньший ток, что приводит к меньшей степени изнашивания, чем на рабочем электроде. Таким образом, он показывает эталонное значение, сравнивая которое со значением рабочих электродов в блоке контроля можно судить о состоянии рабочего электрода топливного элемента. К тому же, эталонный электрод является частью мембранно-электродного блока, поэтому он реагирует на изменение внешних факторов также как и рабочие электроды. Таким образом, осуществляется «настройка» системы под новые условия работы, а разность между текущим и контрольным значениями зависит только от состояния электродов. По этой разности можно судить о степени износа электродов по следующей формуле:
G = U к о н т − U т е к U к о н т ⋅ 100 %
Контрольным показателем исчерпания срока службы топливного элемента является снижение его энергозапаса и в частности значения напряжения до уровня, установленного в нормативно-технической документации для данного типа источника, который для химических источников тока может изменяться в пределах 20%-50% [см. Варыпаев В.Н., Дасоян М.А., Никольский В.А. Химические источники тока. М.: «Высшая школа», 1990].
Способ может быть реализован, например, с помощью устройства, схема которого изображена на фигуре, где обозначено: 1 - первый электрод; 2 - второй электрод; 3 - эталонный электрод; 4 - блок контроля; 5 - ионообменная мембрана.
Эталонный электрод представляет собой поверхность любого электрода, меньшую по площади рабочего электрода. Он электрически подсоединен к устройству сравнения в блоке контроля, отдельно от основного электрода, что позволяет протекать через него меньшему току.
Блок контроля представляет собой устройство (компьютер), позволяющее сравнивать текущее и контрольное значения и в зависимости от результата сравнения по заданному алгоритму выводить информацию о состоянии топливного элемента.
Устройство работает следующим образом: при подключении нагрузки к топливному элементу в нем проходит электрохимическая реакция, в результате которой вырабатывается электрический ток. В процессе работы происходит изнашивание электродов, что приводит к ухудшению работы топливного элемента и снижению его характеристик. С помощью датчиков измеряют значения напряжения эталонного и рабочего электродов, вычисляют разность между ними, определяют по вышеприведенной формуле степень износа рабочего электрода, сравнивают его с критическим значением и определяют работоспособность источника. При изменении внешних факторов при той же нагрузке происходит смещение значения напряжения как эталонного, так и рабочего электрода на одинаковую величину, поэтому в процессе работы разность между ними определяется только состоянием электродов.
Таким образом, предлагаемый способ позволяет объективно оценить состояние электродов топливного элемента, заранее спрогнозировать ресурс работы и предупредить выход его из строя по причине изнашивания электродов.
Способ диагностирования топливного элемента, основанный на сборе данных с помощью датчиков и передаче информации от них к контроллерам с последующим хранением их в запоминающем устройстве и сравнении их с контрольными данными, отличающийся тем, что дополнительно измеряют напряжение эталонного электрода, установленного на одном из рабочих электродов топливного элемента, вычисляют степень износа электрода по формуле: , где G - степень износа электрода; Uтек - значение напряжения рабочего электрода; Uконт - значение напряжения эталонного электрода, сравнивают полученный результат с критическим значением износа Gкр и, если G>Gкр, то источник тока считают непригодным к дальнейшей эксплуатации.