Способ задания скорости кодирования и устройство радиосвязи

Иллюстрации

Показать все

Изобретение относится к радиосвязи. Раскрыты способ задания скорости кодирования и устройство радиосвязи, которые позволяют не допускать кодирования управляющей информации на скорости кодирования, ниже требуемой, и подавлять снижение эффективности передачи управляющей информации. В устройстве модуль (122) задания скорости кодирования задает скорость R'control кодирования управляющей информации, которая мультиплексируется по времени с пользовательскими данными, согласно скорости кодирования Rdata пользовательских данных, ΔPUSCHoffset в качестве PUSCH-смещения каждой управляющей информации и ΔRANKoffset в качестве смещения ранга на основе значения ранга канала передачи данных с использованием выражения (1).

... (1)

где является целым числом, не превышающим x, и max(x, y) является большим из X и Y. 6 н. и 18 з.п. ф-лы, 9 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу задания скорости кодирования и устройству радиосвязи, используемым для системы радиосвязи с использованием адаптивной модуляции и технологии со многими входами и многими выходами (MIMO).

Уровень техники

Для канала восходящей линии связи стандарта долгосрочного развития сети радиодоступа согласно партнерскому проекту третьего поколения (3GPP RAN LTE, в дальнейшем называемого "LTE") передача с одной несущей выполнена с возможностью достигать низкого отношения пиковой мощности к средней мощности (PAPR).

Дополнительно, чтобы канал восходящей линии связи LTE достигал высокой пропускной способности, адаптивная модуляция (AMC: адаптивная модуляция и кодирование) используется так, чтобы выбирать шаблон схемы модуляции и кодирования (MCS) для каждого пользователя в зависимости от индикатора качества канала (CQI) каждого пользователя.

Дополнительно, введение MIMO-системы рассматривается, чтобы достигать более высокой скорости передачи и дополнительно повышать эффективность использования частоты. Также рассматривается введение технологии ранговой передачи, к примеру адаптации ранга, с помощью которой индикатор ранга (номер ранга) адаптивно переключается в зависимости от состояния пространственного тракта распространения, чтобы дополнительно повышать скорость передачи.

При этих обстоятельствах осуществляется согласование для того, чтобы мультиплексировать по времени управляющую информацию и пользовательские данные с использованием физического совместно используемого канала восходящей линии связи (PUSCH) идентичного субкадра так, чтобы поддерживать низкий PAPR, даже когда как управляющая информация, так и пользовательские данные передаются одновременно в канале восходящей линии связи LTE (см. непатентный документ 1).

Число кодированных символов Q' управляющей информации, которое должно быть мультиплексировано с пользовательскими данными, задается на основе уравнения 1

(уравнение 1)

- где является целым числом, не превышающим x, и min(x, y) является значением меньшего из x и y.

В уравнении 1 Msc является числом поднесущих в расчете на PUSCH-субкадр, и ΔPUSCHoffset является PUSCH-смещением, которое варьируется в расчете на управляющую информацию, к примеру, ACK/NACK, индикатор ранга (RI) или CQI. ΔPUSCHoffset сообщается из верхнего уровня (см. непатентный документ 1).

O является числом битов управляющей информации, и Rdata представляется посредством уравнения 2

(уравнение 2)

В уравнении 2 Kr является числом битов в r-том блоке, C является числом блоков в расчете на PUSCH-субкадр, и Nsymb является числом символов в расчете на PUSCH-поднесущую. Фактическая скорость кодирования пользовательских данных получается посредством деления Rdata в уравнении 2 на число битов в расчете на символ и находится в соотношении к Rdata в уравнении 2. Соответственно, Rdata в уравнении 2 далее называется "скоростью кодирования пользовательских данных".

В уравнении 1 Q1 является числом кодированных символов управляющей информации, которое задается на основе числа O битов управляющей информации, скорости Rdata кодирования пользовательских данных и PUSCH-смещения ΔPUSCHoffset, в расчете на управляющую информацию. Q2 является верхним предельным значением числа кодированных символов управляющей информации. Как показано в уравнении 1, число кодированных символов управляющей информации, Q', задается посредством меньшего из числа Q1 символов и верхнего предельного значения Q2.

Здесь уравнение 1 модифицируется, чтобы предоставлять уравнение 3. Как в случае с Rdata в уравнении 2, фактическая скорость кодирования управляющей информации получается посредством деления Rcontrol в уравнении 3 на число битов в расчете на символ и находится в соотношении к Rcontrol в уравнении 3. Соответственно, Rcontrol в уравнении 3 далее называется "скоростью кодирования управляющей информации (скоростью кодирования управляющей информации)".

(уравнение 3)

- где является целым числом, не превышающим x, и max(x, y) является значением большего из x и y. В уравнении 3 R1 является скоростью кодирования, которая задается на основе скорости Rdata кодирования пользовательских данных и PUSCH-смещения, ΔPUSCHoffset, в расчете на управляющую информацию. R2 является нижним предельным значением скорости Rcontrol кодирования управляющей информации. Как показано в уравнении 3, скорость Rcontrol кодирования управляющей информации задается равной большему из значения скорости R1 кодирования и нижнего предельного значения R2. Ниже описывается случай, когда скорость R1 кодирования превышает нижнее предельное значение R2, и скорость Rcontrol кодирования управляющей информации задается как скорость R1 кодирования.

В этом случае в уравнении 3, когда PUSCH-смещение ΔPUSCHoffset больше 0, скорость Rcontrol кодирования управляющей информации задается ниже скорости Rdata кодирования пользовательских данных. В общем, в отличие от пользовательских данных управляющая информация не передается повторно. Следовательно, посредством задания PUSCH-смещения ΔPUSCHoffset больше 0 и с использованием уравнения 3 можно снижать скорость Rcontrol кодирования управляющей информации до значения ниже скорости Rdata кодирования пользовательских данных, чтобы улучшать характеристику коррекции ошибок управляющей информации.

Список библиографических ссылок

Непатентный документ NPL1.3GPP TS 36.212 v8.4.0, "Uplink transport channels and control information"

Сущность изобретения

Техническая задача

Тем не менее, когда скорость Rcontrol кодирования управляющей информации задается просто посредством использования только скорости Rdata кодирования пользовательских данных и PUSCH-смещения ΔPUSCHoffset, в расчете на управляющую информацию, существует возможность, что адаптивная модуляция применяется в зависимости от индикатора качества канала пользователя, и эффективность передачи управляющей информации снижается, когда передается индикатор ранга канала передачи данных (в дальнейшем называемого "каналом передачи данных"), в котором передаются пользовательские данные.

Например, когда ранг 2 применяется к каналу передачи данных, и качество приема ухудшается вследствие помех между потоками (межпотоковых помех) при адаптивной модуляции, MCS пользовательских данных снижается, и скорость Rdata кодирования пользовательских данных задается ниже, чтобы предотвращать снижение эффективности передачи вследствие ухудшенного качества приема.

В таком случае, когда MCS пользовательских данных снижается посредством адаптивной модуляции, если скорость Rcontrol кодирования управляющей информации задается на основе уравнения 3, скорость Rcontrol кодирования управляющей информации может задаваться слишком низкой. Как результат этого, например, даже когда индикатор ранга канала управления (в дальнейшем называемого "каналом управления"), по которому передается управляющая информация, не передается, и канал управления не подвергается влиянию помех между потоками, управляющая информация кодируется на более низкой скорости кодирования, чтобы иметь слишком высокое качество, следовательно, снижая эффективность передачи управляющей информации.

С учетом вышеизложенного, следовательно, цель настоящего изобретения заключается в том, чтобы предоставлять способ задания скорости кодирования и устройство радиосвязи, которые позволяют не допускать кодирования управляющей информации на слишком низкой скорости кодирования и позволяют подавлять снижение эффективности передачи управляющей информации.

Решение задачи

Способ задания скорости кодирования согласно настоящему изобретению задает скорость кодирования пользовательских данных, которая должна адаптивно задаваться согласно индикатору качества канала пользователя в виде опорного значения, корректирует опорное значение на основе типа управляющей информации, которая должна мультиплексироваться по времени с пользовательскими данными, и индикатора ранга канала передачи данных, по которому пользовательские данные передаются, и задает скорректированное опорное значение в качестве скорости кодирования управляющей информации.

Устройство радиосвязи согласно настоящему изобретению содержит модуль получения скорости кодирования, который задает скорость кодирования пользовательских данных, которая должна адаптивно задаваться согласно индикатору качества канала пользователя в качестве опорного значения, получает опорное значение, скорректированное на основе типа управляющей информации, которая должна мультиплексироваться по времени с пользовательскими данными, и индикатора ранга канала передачи данных, по которому пользовательские данные передаются, в качестве скорости кодирования управляющей информации, и модуль кодирования, который кодирует управляющую информацию на основе скорости кодирования управляющей информации.

Преимущества изобретения

Согласно настоящему изобретению можно не допускать кодирования управляющей информации на слишком низкой скорости кодирования и подавлять снижение эффективности передачи управляющей информации.

Краткое описание чертежей

Фиг.1 является блок-схемой, показывающей основную конфигурацию терминала согласно варианту 1 осуществления настоящего изобретения;

фиг.2 является блок-схемой, показывающей основную конфигурацию модуля задания скорости кодирования согласно варианту 1 осуществления настоящего изобретения;

фиг.3 показывает пример таблицы смещений для информации ранга согласно варианту 1 осуществления настоящего изобретения;

фиг.4 показывает другой пример таблицы смещений для информации ранга согласно варианту 1 осуществления настоящего изобретения;

фиг.5 является блок-схемой, показывающей основную конфигурацию терминала согласно варианту 2 осуществления настоящего изобретения;

фиг.6 является блок-схемой, показывающей основную конфигурацию модуля задания скорости кодирования согласно варианту 2 осуществления настоящего изобретения;

фиг.7 показывает пример таблицы смещений для информации ранга согласно варианту 2 осуществления настоящего изобретения;

фиг.8 показывает другой пример таблицы смещений для информации ранга согласно варианту 2 осуществления настоящего изобретения; и

фиг.9 показывает еще один другой пример таблицы смещений для информации ранга согласно варианту 2 осуществления настоящего изобретения.

Описание вариантов осуществления

Далее подробно описаны варианты осуществления настоящего изобретения со ссылкой на прилагаемые чертежи.

Первый вариант осуществления

В настоящем варианте осуществления описывается случай, когда скорость кодирования управляющей информации задается посредством смещения, соответствующего индикатору ранга канала передачи данных, по которому передаются пользовательские данные, когда адаптивная модуляция применяется согласно индикатору качества канала пользователя. Управляющая информация может включать в себя ACK/NACK, RI и CQI, например, и мультиплексируется по времени с пользовательскими данными, которые должны быть переданы от устройства терминала (в дальнейшем называемого "терминалом") в устройство базовой станции (в дальнейшем называемое "базовой станцией").

Скорость кодирования управляющей информации может задаваться либо в базовой станции, либо в терминале. Ниже описывается случай, когда скорость кодирования управляющей информации задается в терминале.

Фиг.1 является блок-схемой, показывающей основную конфигурацию терминала согласно настоящему варианту осуществления. На фиг.1 приемный модуль 110 терминала 100 содержит радиоприемный модуль 111, модуль 112 удаления циклического префикса (CP), модуль 113 быстрого преобразования Фурье (FFT), модуль 114 оценки тракта распространения, модуль 115 демодуляции и модуль 116 декодирования. Дополнительно, на фиг.1 передающий модуль 120 терминала 100 содержит модуль 121 задания скорости кодирования, модуль 122 задания скорости кодирования, модуль 123 кодирования и модуляции, модуль 124 кодирования и модуляции, модуль 125 мультиплексирования каналов, модуль 126 OFDM с кодированием с расширением спектра и дискретным преобразованием Фурье (DFT-s-OFDM), модуль 127 добавления CP и радиопередающий модуль 128.

Радиоприемный модуль 111 преобразует принимаемый сигнал, принимаемый через антенну, в сигнал в полосе модулирующих частот и выводит сигнал в полосе модулирующих частот в модуль 112 удаления CP.

Модуль 112 удаления CP удаляет циклический префикс (CP) из сигнала в полосе модулирующих частот, выводимого из радиоприемного модуля 111, и выводит, в качестве сигнала временной области, сигнал в полосе модулирующих частот без CP в FFT-модуль 113.

FFT-модуль 113 получает сигнал частотной области посредством выполнения быстрого преобразования Фурье для сигнала временной области, выводимого из модуля 112 удаления CP, и выводит полученный сигнал частотной области в модуль 114 оценки тракта распространения и модуль 115 демодуляции.

Модуль 114 оценки тракта распространения оценивает окружение тракта распространения принимаемого сигнала посредством использования пилотного сигнала, содержащегося в сигнале частотной области, выводимом из FFT-модуля 113, и выводит результат оценки, которым является оцененное окружение тракта распространения принимаемого сигнала, в модуль 115 демодуляции.

Модуль 115 демодуляции применяет компенсацию в тракте распространения относительно сигнала частотной области, который выводится из FFT-модуля 113 и из которого пилотный сигнал удален, на основе результата оценки, выводимого из модуля 114 оценки тракта распространения. Дополнительно, модуль 115 демодуляции демодулирует сигнал частотной области после компенсации в тракте распространения на основе MCS, идентичной MCS, используемой в базовой станции, т.е. идентичной схемы модуляции и скорости кодирования и т.д., чтобы получать демодулированный сигнал, и выводит полученный демодулированный сигнал в модуль 116 декодирования.

Модуль 116 декодирования корректирует ошибки относительно демодулированного сигнала, выводимого из модуля 115 демодуляции, чтобы получать декодированный сигнал. Затем модуль 116 декодирования извлекает из полученного декодированного сигнала информацию, к примеру последовательность информационных данных, число Kr битов в расчете на блок, число Msc поднесущих в расчете на субкадр, число Nsymb символов в расчете на поднесущую, PUSCH-смещение и индикатор ранга канала передачи данных (номер ранга для канала передачи данных).

Информация по Msc и Nsymb задается равной предпочтительным значениям в базовой станции посредством адаптивной модуляции согласно CQI, передаваемому от терминала 100. Модуль 116 декодирования выводит извлеченную информацию по Kr, Msc и Nsymb в модуль 121 задания скорости кодирования и выводит извлеченную информацию по PUSCH-смещению и индикатору ранга канала передачи данных в модуль 122 задания скорости кодирования.

Модуль 121 задания скорости кодирования задает скорость Rdata кодирования пользовательских данных на основе информации по Kr, Msc и Nsymb, вводимой из модуля 116 декодирования, на основе уравнения 2. Модуль 121 задания скорости кодирования выводит заданную скорость Rdata кодирования пользовательских данных в модуль 122 задания скорости кодирования и модуль 123 кодирования и модуляции.

Модуль 122 задания скорости кодирования задает скорость R'control кодирования управляющей информации на основе информации по скорости Rdata кодирования пользовательских данных, PUSCH-смещения и индикатора ранга канала передачи данных. Внутренняя конфигурация модуля 122 задания скорости кодирования и способ задания скорости R'control кодирования управляющей информации описываются ниже. Модуль 122 задания скорости кодирования выводит заданную скорость R'control кодирования управляющей информации в модуль 124 кодирования и модуляции.

Модуль 123 кодирования и модуляции формирует кодированные данные посредством кодирования входных пользовательских данных на основе информации по скорости Rdata кодирования пользовательских данных, выводимой из модуля 121 задания скорости кодирования, и формирует передаваемые данные канала передачи данных посредством модуляции сформированных кодированных данных. Модуль 123 кодирования и модуляции выводит сформированные передаваемые данные канала передачи данных в модуль 125 мультиплексирования каналов.

Модуль 124 кодирования и модуляции формирует кодированные данные посредством кодирования управляющей информации на основе скорости R'control кодирования, выводимой из модуля 122 задания скорости кодирования, и формирует передаваемые данные канала управления посредством модуляции сформированных кодированных данных. Модуль 124 кодирования и модуляции выводит сформированные передаваемые данные канала управления в модуль 125 мультиплексирования каналов.

Модуль 125 мультиплексирования каналов мультиплексирует по времени передаваемые данные канала передачи данных, выводимые из модуля 123 кодирования и модуляции, и передаваемые данные канала управления, выводимые из модуля 124 кодирования и модуляции, чтобы формировать мультиплексированные передаваемые данные. Модуль 125 мультиплексирования каналов выводит мультиплексированные передаваемые данные в DFT-s-OFDM-модуль 126.

DFT-s-OFDM-модуль 126 получает сигнал частотной области посредством выполнения дискретного преобразования Фурье (DFT) для мультиплексированных передаваемых данных, выводимых из модуля 125 мультиплексирования каналов. DFT-s-OFDM-модуль 126 преобразует сигнал частотной области на поднесущей передаче, выполняет обратное быстрое преобразование Фурье (IFFT) для преобразованного сигнала частотной области, чтобы получать последовательность передаваемых данных, и выводит полученную последовательность передаваемых данных в модуль 127 добавления CP.

Модуль 127 добавления CP добавляет CP к последовательности передаваемых данных, выводимой из DFT-s-OFDM-модуля 126, посредством дублирования данных в конце кадра и вставки дублированных данных в заголовок кадра в каждом кадре последовательности передаваемых данных, и выводит последовательность передаваемых данных с CP в качестве сигнала в полосе модулирующих частот в радиопередающий модуль 128.

Радиопередающий модуль 128 преобразует частоту относительно сигнала в полосе модулирующих частот, выводимого из модуля 127 добавления CP, в радиочастотную полосу пропускания, чтобы получать передаваемый сигнал, и передает полученный передаваемый сигнал через антенну.

Фиг.2 является блок-схемой, показывающей внутреннюю конфигурацию модуля 122 задания скорости кодирования согласно настоящему варианту осуществления.

Модуль 1221 получения смещений для информации ранга сохраняет таблицу 1222 смещений для информации ранга и получает смещение ΔRANKoffset ранга из таблицы 1222 для информации ранга, соответствующее индикатору ранга канала передачи данных. Таблица 1222 смещений для информации ранга поясняется далее. Модуль 1221 получения смещений для информации ранга выводит полученное смещение ΔRANKoffset ранга в модуль 1223 вычисления скорости кодирования.

Модуль 1223 вычисления скорости кодирования задает скорость R'control кодирования управляющей информации на основе скорости Rdata кодирования пользовательских данных, PUSCH-смещения ΔPUSCHoffset и смещения ΔRANKoffset ранга, соответствующего индикатору ранга канала передачи данных, на основе уравнения 4

(уравнение 4)

- где является целым числом, не превышающим x, и max(x, y) является значением большего из x и y.

В уравнении 4 R'1 является скоростью кодирования, которая задается на основе скорости Rdata кодирования пользовательских данных, PUSCH-смещения в расчете на управляющую информацию, которое задано как ΔPUSCHoffset, и смещения ранга, соответствующего индикатору ранга канала передачи данных, которое задано как ΔRANKoffset. R2' является нижним предельным значением скорости R'control кодирования управляющей информации. Ниже описывается случай, когда скорость R'1 кодирования превышает нижнее предельное значение R'2 , и скорость Rcontrol кодирования управляющей информации задается как скорость R'1 кодирования.

Дополнительно, в уравнении 4 O является числом битов управляющей информации, и Q' является числом кодированных символов управляющей информации. Число Q' кодированных символов управляющей информации представляется посредством уравнения 5

(уравнение 5)

- где является целым числом, не превышающим x, и min(x, y) является значением меньшего из x и y. Как очевидно в уравнении 4, согласно настоящему варианту осуществления посредством коррекции скорости Rdata кодирования пользовательских данных с использованием PUSCH-смещения ΔPUSCHoffset, соответствующего типу управляющей информации, и смещения ΔRANKoffset ранга, соответствующего индикатору ранга канала передачи данных, можно задавать скорректированную скорость кодирования пользовательских данных в качестве скорости R'control кодирования управляющей информации. Другими словами, посредством задания скорости Rdata кодирования пользовательских данных, которая должна адаптивно задаваться согласно CQI пользователя, в качестве опорного значения и посредством коррекции опорного значения на основе PUSCH-смещения ΔPUSCHoffset, соответствующего типу управляющей информации, и смещения ΔRANKoffset ранга, соответствующего индикатору ранга канала передачи данных, можно задавать скорректированное опорное значение в качестве скорости R'control кодирования управляющей информации.

В качестве PUSCH-смещения ΔPUSCHoffset, соответствующего типу управляющей информации, например, ΔHARQ-ACK используется, когда управляющей информацией является HARQ-ACK, ΔRI используется, когда управляющей информацией является RI, и ΔCQI используется, когда управляющей информацией является CQI. Смещение, соответствующее типу управляющей информации, к примеру ΔHARQ-ACK, ΔRI и ΔCQI, сообщается из базовой станции через верхний уровень (см. непатентный документ 1).

Фиг.3 показывает пример таблицы 1222 смещений для информации ранга, сохраненной в модуле 1221 получения смещений для информации ранга. Согласно настоящему варианту осуществления таблица 1222 смещений для информации ранга сохраняет смещение ранга, ΔRANKoffset, с большим значением для индикатора ранга канала передачи данных с большим значением. Например, в таблице 1222 смещений для информации ранга на фиг.3 смещения ΔRANKoffset ранга задаются равными от a до z в порядке возрастания индикаторов ранга канала передачи данных, и значения ΔRANKoffset от a до z задаются так, чтобы удовлетворять z>…>b>a.

Как описано выше, посредством задания смещения ΔRANKoffset ранга с большим значением для индикатора ранга канала передачи данных с большим значением можно корректировать скорость R'control кодирования управляющей информации, которая должна получаться на основе уравнения 4 так, чтобы становиться выше, когда индикатор ранга канала передачи данных больше.

В общем, влияние помех между потоками становится больше, когда индикатор ранга больше. Следовательно, когда индикатор ранга канала передачи данных является большим при адаптивной модуляции, MCS пользовательских данных снижается, чтобы обеспечивать качество приема. Таким образом, при адаптивной модуляции скорость Rdata кодирования пользовательских данных задается ниже, когда индикатор ранга канала передачи данных больше, и влияние помех между потоками больше.

Следовательно, в случае если скорость Rdata кодирования пользовательских данных задается ниже при адаптивной модуляции, когда скорость кодирования управляющей информации задается с использованием только PUSCH-смещения, ΔPUSCHoffset, в расчете на управляющую информацию на основе уравнения 3, например скорость кодирования управляющей информации задается дополнительно ниже скорости Rdata кодирования пользовательских данных. Соответственно, существует возможность того, что управляющая информация кодируется на слишком низкой скорости кодирования.

Напротив, согласно настоящему варианту осуществления скорость кодирования управляющей информации задается посредством уравнения 4 с использованием смещения ранга, ΔRANKoffset, с большим значением для индикатора ранга канала передачи данных с большим значением, в дополнение к смещению в расчете на управляющую информацию. Посредством этого скорость кодирования управляющей информации корректируется выше, когда индикатор ранга канала передачи данных больше, и можно не допускать задания слишком низкой скорости кодирования управляющей информации. Таким образом, согласно настоящему варианту осуществления можно получать скорость кодирования управляющей информации посредством коррекции скорости кодирования пользовательских данных на основе разности влияния помех между потоками, которые испытывает канал передачи данных, и влияния помех между потоками, которые испытывает канал управления.

Как описано выше, согласно настоящему варианту осуществления модуль 122 задания скорости кодирования корректирует значение скорости кодирования пользовательских данных, которая должна адаптивно задаваться согласно индикатору качества канала пользователя, на основе типа управляющей информации, которая должна мультиплексироваться по времени с пользовательскими данными, и индикатора ранга канала передачи данных, по которому пользовательские данные передаются, и задает скорректированное значение скорости кодирования в качестве скорости кодирования управляющей информации. Таким образом, модуль 122 задания скорости кодирования задает скорость кодирования пользовательских данных, которая должна адаптивно задаваться согласно индикатору качества канала пользователя, в качестве опорного значения, корректирует опорное значение на основе типа управляющей информации, которая должна мультиплексироваться по времени с пользовательскими данными, и индикатора ранга канала передачи данных, по которому пользовательские данные передаются, и задает скорректированное опорное значение в качестве скорости кодирования управляющей информации. Например, модуль 122 задания скорости кодирования задает скорость R'control кодирования управляющей информации, которая должна мультиплексироваться по времени с пользовательскими данными, на основе скорости Rdata кодирования пользовательских данных, PUSCH-смещения ΔPUSCHoffset в расчете на управляющую информацию и смещения ΔRANKoffset ранга, соответствующего индикатору ранга канала передачи данных, на основе уравнения 4.

Таким образом, согласно настоящему варианту осуществления значение скорости кодирования пользовательских данных корректируется на основе типа управляющей информации и индикатора ранга канала передачи данных, и скорректированное значение скорости кодирования задается как скорость кодирования управляющей информации. Посредством этого, даже когда индикатор ранга канала передачи данных, по которому передаются пользовательские данные, больше, и скорость кодирования пользовательских данных задается ниже при адаптивной модуляции, можно не допускать задания слишком низкой скорости кодирования управляющей информации и подавлять снижение эффективности передачи управляющей информации.

Дополнительно посредством коррекции скорости кодирования управляющей информации так, чтобы становиться выше, когда индикатор ранга канала передачи данных больше, можно корректировать значение скорости кодирования пользовательских данных на основе разности влияния помех между потоками, которые испытывает канал передачи данных, и влияния помех между потоками, которые испытывает канал управления, так чтобы задавать скорость кодирования пользовательских данных в качестве скорости кодирования управляющей информации. Как результат этого, даже когда скорость кодирования пользовательских данных является слишком низкой, можно не допускать задания слишком низкой скорости кодирования управляющей информации и подавлять снижение эффективности передачи управляющей информации.

В вышеприведенном варианте осуществления в качестве примера описан случай, в котором модуль 1221 получения смещений для информации ранга сохраняет таблицу 1222 смещений для информации ранга, в которой смещение ранга задается отдельно для каждого индикатора ранга, например от a до z. Модуль 1221 получения смещений для информации ранга тем не менее может не сохранять таблицу 1222 смещений для информации ранга и может вычислять смещение ΔRANKoffset ранга на основе уравнения, показанного как уравнение 6

ΔRANKoffset=(индикатор ранга 1)×a (a является константой) (уравнение 6).

Дополнительно необязательно задавать смещение ранга с различным значением для каждого индикатора ранга и можно задавать идентичное смещение ранга для множества индикаторов ранга. Например, можно разделять индикаторы ранга канала передачи данных на множество групп посредством сравнения индикаторов ранга канала передачи данных с предварительно определенным пороговым значением и задавать смещение ранга так, что скорость кодирования управляющей информации задается выше, когда индикатор ранга канала передачи данных в каждой группе больше. Как показано на фиг.4, например, можно задавать все смещения ранга равными a (a>0) для индикатора ранга, равного 2 или более.

Второй вариант осуществления

В варианте 1 осуществления описан случай, в котором когда индикатор ранга канала передачи данных передается, скорость кодирования управляющей информации задается на основе смещения ранга, соответствующего индикатору ранга канала передачи данных. В настоящем варианте осуществления описывается случай, когда индикатор ранга канала передачи данных и индикатор ранга канала управления (номер ранга для канала управления) передаются, скорость кодирования управляющей информации задается на основе смещения ранга на основе комбинации индикатора ранга канала передачи данных и индикатора ранга канала управления.

Фиг.5 является блок-схемой, показывающей основную конфигурацию терминала согласно настоящему варианту осуществления. В терминале согласно настоящему варианту осуществления на фиг.5 частям, которые являются идентичными частям на фиг.1, назначаются идентичные ссылки с номерами, как показано на фиг.1, и перекрывающиеся пояснения опускаются. На фиг.5 терминал 100a содержит модуль 116a декодирования и модуль 122a задания скорости кодирования вместо модуля 116 декодирования и модуля 122 задания скорости кодирования в терминале 100 на фиг.1.

Как в случае с вариантом 1 осуществления, скорость кодирования управляющей информации может задаваться либо в базовой станции, либо в терминале. Ниже описывается случай, когда скорость кодирования управляющей информации задается в терминале.

Модуль 116a декодирования получает декодированный сигнал посредством коррекции ошибок относительно демодулированного сигнала, выводимого из модуля 115 демодуляции. Затем модуль 116a декодирования извлекает из полученного декодированного сигнала информацию, включающую в себя последовательность информационных данных, число Kr битов в расчете на блок, число Msc поднесущих в расчете на субкадр, число Nsymb символов в расчете на поднесущую, PUSCH-смещение, индикатор ранга канала передачи данных и индикатор ранга канала управления.

Модуль 116a декодирования выводит извлеченную информацию по Kr, Msc и Nsymb в модуль 121 задания скорости кодирования и выводит информацию по PUSCH-смещению, индикатору ранга канала передачи данных и индикатору ранга канала управления в модуль 122a задания скорости кодирования.

Модуль 122a задания скорости кодирования задает скорость R'control кодирования управляющей информации на основе информации по скорости Rdata кодирования пользовательских данных, PUSCH-смещения и индикатора ранга канала передачи данных и индикатора ранга канала управления. Внутренняя конфигурация модуля 122 задания скорости кодирования и способ задания скорости R'control кодирования управляющей информации поясняются далее. Модуль 122a задания скорости кодирования выводит заданную скорость R'control кодирования управляющей информации в модуль 124 кодирования и модуляции.

Фиг.6 является блок-схемой, показывающей внутреннюю конфигурацию модуля 122a задания скорости кодирования согласно настоящему варианту осуществления.

Модуль 1221a получения смещений для информации ранга сохраняет таблицу 1222a смещений для информации ранга и получает смещение ΔRANKoffset ранга, соответствующее комбинации индикатора ранга канала передачи данных и индикатора ранга канала управления, из таблицы 1222a для информации ранга. Таблица 1222a смещений для информации ранга поясняется далее. Модуль 1221a получения смещений для информации ранга выводит полученное смещение ΔRANKoffset ранга в модуль 1223a вычисления скорости кодирования.

Модуль 1223a вычисления скорости кодирования задает скорость R'control кодирования управляющей информации на основе скорости Rdata кодирования пользовательских данных, PUSCH-смещения ΔPUSCHoffset и смещения ΔRANKoffset ранга, соответствующего комбинации индикатора ранга канала передачи данных и индикатора ранга канала управления, на основе уравнения 4.

Фиг.7 показывает пример таблицы 1222a смещений для информации ранга, сохраненной в модуле 1221a получения смещений для информации ранга. Фиг.7 показывает случай, когда максимальный индикатор ранга равен 2. Согласно настоящему варианту осуществления таблица 1222a смещений для информации ранга сохраняет смещения ΔRANKoffset ранга, соответствующие комбинациям индикатора ранга канала передачи данных и индикатора ранга канала управления. Взаимосвязь между смещениями ΔRANKoffset ранга и комбинациями индикатора ранга канала передачи данных и индикатора ранга канала управления описывается ниже.

Как показано в случае #1 на фиг.7, когда как индикатор ранга канала передачи данных, так и индикатор ранга канала управления равны 1, как канал передачи данных, так и канал управления не испытывают помех между потоками. Следовательно, при получении скорости кодирования управляющей информации посредством коррекции скорости кодирования пользовательских данных необязательно рассматривать разность влияния помех между потоками, которые испытывает канал передачи данных, и влияния помех между потоками, которые испытывает канал управления. Соответственно, как показано в случае #1, когда как индикатор ранга канала передачи данных, так и индикатор ранга канала управления равны 1, смещение ΔRANKoffset ранга задается равным 0. Когда смещение ΔRANKoffset ранга равно 0, скорость кодирования управляющей информации совпадает со скоростью кодирования, которая задается на основе уравнения 3.

Как показано в случае #2 на фиг.7, когда индикатор ранга канала передачи данных равен 1, а индикатор ранга канала управления равен 2, только управляющая информация испытывает ухудшение качества приема вследствие помех между потоками. В этом случае смещение ΔRANKoffset ранга задается равным a (a<0). Посредством задания ΔRANKoffset меньшим 0 можно задавать скорость кодирования управляющей информации, полученную на основе уравнения 4, ниже скорости кодирования управляющей информации, полученной на основе уравнения 3. Посредством этого можно улучшать характеристику коррекции ошибок управляющей информации.

Как показано в случае #3 на фиг.7, когда индикатор ранга канала передачи данных равен 2, а индикатор ранга канала управления равен 1, только пользовательские данные испытывают ухудшение качества приема вследствие помех между потоками. В этом случае смещение ΔRANKoffset ра