Получаемые в расплаве сложнополиэфирные композиции с улучшенной термоокислительной стабильностью, а также способ их получения и применения

Иллюстрации

Показать все

Настоящее изобретение относится к сложнополиэфирной композиции. Описана сложнополиэфирная композиция для литья под давлением, включающая в себя получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки 2,6-нафталиндикарбоновой кислоты в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, алюминий, присутствующий в количестве примерно от 3 частей на миллион (ч/млн) до 100 частей на миллион (ч/млн) атомов алюминия от общей массы сложнополиэфирной композиции, а также литий, присутствующий в количестве примерно от 4 частей на миллион (ч/млн) до 250 частей на миллион (ч/млн) атомов лития от общей массы сложнополиэфирной композиции. Также описано изделие, включающее в себя получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки 2,6-нафталиндикарбоновой кислоты в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, алюминий, присутствующий в количестве примерно от 3 частей на миллион (ч/млн) до 100 частей на миллион (ч/млн) атомов алюминия от общей массы изделия, а также литий, присутствующий в количестве примерно от 4 частей на миллион (ч/млн) до 250 частей на миллион (ч/млн) атомов лития от общей массы изделия. Технический результат - получение сложнополиэфирной композиции, обладающей высокой термоокислительной стабильностью. 2 н.п. ф-лы, 5 табл., 8 пр.

Реферат

ПЕРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

Данная заявка утверждает приоритет предварительной патентной заявки US 61/098,060, поданной 18 сентября 2008 г., раскрытие которой включено в данный документ во всей полноте посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Данное изобретение относится к сложнополиэфирным композициям, а более конкретно к сложнополиэфирным композициям, которые охватывают получаемый в расплаве полиэтилентерефталатный сложный полиэфир, в состав которого включены остатки мономера с двумя или более объединенными ароматическими кольцами.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Некоторые подходящие для формования сложнополиэфирные композиции являются полезными при производстве упаковочных материалов, таких как контейнеры для напитков. Например, некоторые полиэтилентерефталатные полимеры («РЕТ») являются пригодными для такой цели, и РЕТ становится популярным из-за своего незначительного веса, прозрачности и химической инертности.

Обычно РЕТ получают в ходе двухстадийного процесса, начинающегося со стадии, включающей в себя работу с расплавом, с последующим проведением стадии, включающей в себя работу с веществами в твердом состоянии. Стадия управления, как правило, представляет собой трехстадийный процесс. Сначала, на стадии этерификации, этиленгликоль взаимодействует с терефталевой кислотой в суспензии при повышенном давлении и температуре 250-280°С, образуя олигомерный РЕТ. Затем для получения форполимера этот олигомер нагревают до немного более высокой температуры, обычно до температуры 260-290°С, и повышенное давление заменяют неглубоким вакуумом, обычно 20-100 мм ртутного столба. Наконец, форполимер превращают в конечный полимер, продолжая понижать давление до 0,5-3 мм ртутного столба и иногда повышая температуру. По завершении трехстадийного процесса в расплаве, как правило, в конце стадии работы с полимером молекулярную массу полимера гранул увеличивают, проводя обработку в твердом состоянии. Обычно производственные стадии как в расплаве, так и в твердом состоянии осуществляют в присутствии содержащего сурьму катализатора.

В то же время применение сурьмы может создавать проблемы. При ее использовании в составе катализатора поликонденсации для получения сложного полиэфира и формовании сложного полиэфира, например в бутылку, бутылка, как правило, является мутноватой и часто обладает темноватым внешним видом, вызванным содержащим сурьму катализатором, который восстанавливается до металлической сурьмы.

Недостатки использования сурьмы, а также другие факторы привели к разработке протекающего исключительно в расплаве процесса без применения сурьмы. В то же время термоокислительная стабильность РЕТ, получаемого таким способом, может понижаться, что может обуславливать уменьшение молекулярной массы вследствие деструкции, когда РЕТ подвергают воздействию воздуха при температурах, находящихся вблизи 165°С или превышающих данное значение. Это создает сложности, поскольку РЕТ необходимо высушивать перед переработкой, а сушку РЕТ, как правило, проводят при температурах выше 165°С.

Таким образом, в данной области техники остается потребность в РЕТ, который можно получить в ходе процесса, протекающего исключительно в расплаве, и который обладает более высокой стабильностью по отношению к окислению. Повышение стабильности может позволить осуществлять сушку при более высоких температурах. Кроме того, это может избавить от необходимости получения РЕТ с более высокой молекулярной массой для компенсации последующего снижения молекулярной массы вследствие деструкции.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В одном из аспектов данное изобретение относится к сложнополиэфирным композициям, которые включают в себя получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки мономера с двумя или более объединенными ароматическими кольцами в количестве примерно от 0,1 мольного % до 10 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, и которые к тому же включают алюминий, а также, желательно, щелочной металл или щелочноземельный металл.

В другом аспекте данное изобретение относится к сложнополиэфирным композициям, которые включают в себя получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки 2,6-нафталиндикарбоновой кислоты в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплавленной фазе полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, алюминий присутствует в количестве примерно от 3 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия, а литий содержится в количестве примерно от 4 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития от общей массы сложнополиэфирной композиции.

В еще одном из аспектов данное изобретение относится к изделиям, которые включают получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки 2,6-нафталиндикарбоновой кислоты в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплавленной фазе полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, алюминий присутствует в количестве примерно от 3 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия, а литий содержится в количестве примерно от 4 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития от общей массы изделия.

В дополнительном аспекте данное изобретение относится к способам изготовления получаемых в расплаве полиэтилентерефталатных сложных полиэфиров, которые включают в себя стадии получения смеси, содержащей этиленгликоль, по меньшей мере, одну кислоту, выбираемую из числа терефталевой кислоты и производных терефталевой кислоты, а также мономер с двумя или более объединенными ароматическими кольцами, где мономер с двумя или более объединенными ароматическими кольцами находится в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты, которое составляет 100 мольных %, и для получения в расплаве полиэтилентерефталатного сложного полиэфира осуществления реакции в смеси в присутствии алюминия и, желательно, щелочного металла или щелочноземельного металла.

Дальнейшие аспекты данного изобретения представляют собой те, которые раскрыты и заявлены в данном документе.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение можно понять более легко, основываясь на приведенном ниже подробном описании данного изобретения и предоставленных примерах. Следует понимать, что данное изобретение не ограничено конкретными процессами и условиями, описанными в примерах, поскольку конкретные процессы и технологические условия для переработки изделий из пластмасс могут изменяться. Кроме того, следует понимать, что применяемая терминология предназначена исключительно для целей описания конкретных вариантов осуществления и не подразумевает, что она является ограничивающей.

В том виде, в котором их используют в данном патентном описании и формуле изобретения, артикли единственного числа «a», «an» и «the» охватывают обозначаемые формой множественного числа в случаях, когда содержание не предписывает ясным образом понимать иначе. Подразумевают, например, что ссылка на «преформу», «контейнер», или «бутылку», или «изделие» охватывает множество преформ, контейнеров, бутылок либо изделий.

Используя «включающий(ая/ее) в себя» или «содержащий(ая/ее)», мы имеем в виду, что, по меньшей мере, названное соединение, элемент, частица и т.д. должно(должен/должна) содержаться в композиции или изделии, однако не исключает присутствия других соединений, веществ, частиц и т.д., даже если другие подобные соединения, материалы, частицы и т.д. выполняют такую же функцию, как и названное(ый/ая).

Также следует понимать, что упоминание одной или нескольких технологической(их) стадии(ий) не препятствует присутствию перед, после или между такими стадиями дополнительных однозначно определенных технологических стадий в тех случаях, когда подобная технологическая стадия ясно не исключена пунктом формулы изобретения.

Представление диапазона включает все целые числа и их дробные части в пределах данного диапазона. Представление температуры или температурного диапазона для процесса или реакционной смеси, или расплава, или в применении к расплаву, или полимера, или в применении к полимеру означает во всех случаях, что условия реакции задают для конкретной температуры или любой температуры, постоянно или время от времени, в пределах данного диапазона, а также, что данная реакционная смесь, расплав или полимер подвергают воздействию конкретной температуры.

Под «атомами», которые используют в связи с металлом, мы подразумеваем атом металла с любой степенью окисления, любым морфологическим состоянием, любым структурным состоянием и любым химическим состоянием независимо от того, вводили ли его в полимер или композицию, о которой идет речь, или он находился в них.

Подразумевают, что термины «получаемый в расплаве», «получаемый в расплаве продукт» и «получаемый в расплаве полиэтилентерефталатный сложный полиэфир» и т.д. относятся к протекающим в расплавленной фазе реакциям и к продуктам подобных реакций. Получаемые в расплавленной фазе продукты можно выделять в виде гранул или тонких кусочков либо их можно загружать в экструдеры в виде расплава непосредственно из устройств для конечной обработки в расплаве и направлять в литьевые формы для изготовления формованных изделий, таких как бутылочные преформы (например, «расплав в пресс-форму» или «расплав в преформу»). Если не указано иначе, получаемый в расплаве продукт может принимать любую форму или вид, в том числе аморфные гранулы, закристаллизованные гранулы, твердотельные гранулы, преформы, листы, бутылки, лотки, кувшины и тому подобные. В одном из аспектов получаемые в расплаве полиэтилентерефталатные сложные полиэфиры, пригодные по данному изобретению, могут быть ограничены теми, молекулярная масса полимеров которых в твердом состоянии не увеличивается, то есть теми, все увеличение молекулярной массы которых фактически произошло в расплаве. Для оценки увеличения молекулярной массы квалифицированные в данной области техники специалисты используют величину характеристической вязкости с тем, чтобы величина характеристической вязкости при применении тех сложных полиэфиров, которые полностью получены в расплаве и при отсутствии последующего фиксирования в твердом состоянии, практически не превышала бы величину характеристической вязкости, достигаемой в ходе полимеризации в расплаве. Такие сложные полиэфиры также можно описать или рассматривать как «получаемые только в расплаве» сложные полиэфиры.

Термин «расплав» в контексте получаемого в расплаве продукта представляет собой широкий, обобщающий термин, относящийся к потоку продукта, образующегося в ходе реакции при получении сложнополиэфирного полимера в любой точке расплава, и включает в себя поток продукта на стадии этерификации, хотя вязкость данного потока, как правило, не имеет смысла, а также включает поток продукта на стадии поликонденсации, в том числе на стадии образования форполимера и на конечной стадии, стадию между ними, и поток продукта к точке отверждения расплава. Подразумевают, что термин «расплав» относится к сложнополиэфирному продукту, молекулярная масса которого не увеличивается в твердом состоянии, хотя молекулярную массу получаемого на стадии расплава продукта, конечно, можно при желании повышать в твердом состоянии, как следует, например, из увеличения характеристической вязкости, после чего его нельзя больше рассматривать как «расплав».

Термин «щелочной металл» относится к любому металлу из группы IA периодической таблицы и, в частности, относится к литию, натрию и калию. Термин «щелочноземельный металл» относится к любому металлу из группы IIA периодической таблицы и, в частности, относится к Mg, Ca или Sr. Алюминий и щелочной металл или щелочноземельный металл можно предоставлять в различных формах, которые могут включать, например, комбинацию гидроксида лития и изопропоксида алюминия, а также комбинацию гидроксида натрия и ацетата алюминия.

Характеристическая вязкость представляет собой предельное значение удельной вязкости полимера при бесконечном разбавлении. Ее определяют с помощью приведенного ниже уравнения:

ηint=limC→0sp/C)=limC→0 ln(ηr/C),

где ηint = характеристическая вязкость; ηr = относительная вязкость = ts/t0; ηsp = удельная вязкость = ηr-1.

Калибровка инструмента включает в себя воспроизведение испытаний для стандартного контрольного вещества, а затем использования подходящих математических уравнений для получения «признанных» I.V. значений

скорректированная величина Ih.V. = (рассчитанное значение Ih.V.) × (калибровочный коэффициент)

Характеристическую вязкость (It.V. или ηint) можно рассчитать с помощью уравнения Биллмейера (Billmeyer), которое приведено ниже:

ηint=0,5[e0,5×скорректированная величина Ih.V. - 1]+(0,75×скорректированная величина Ih.V.)

Приведенную вязкость (I.V.) рассчитывают по данным измерений вязкости раствора. Нижеследующие уравнения поясняют такие измерения вязкости раствора:

IV=ηinh=[ln(ts/t0)]/C,

где ηinh = приведенная вязкость при температуре 25°С для концентрации полимера от 0,50 г/100 мл 60% фенола и 40% 1,1,2,2-тетрахлорэтана, ln = натуральный логарифм, ts = время истечения образца через капилляр, t0 = время истечения чистого растворителя через капилляр, С = концентрация полимера в граммах на 100 мл растворителя (0,50%).

В данном документе определения приведенной вязкости (IV) осуществляли при описанных выше условиях (при температуре 25°С для концентрации полимера от 0,50 г/100 мл 60% фенола и 40% 1,1,2,2-тетрахлорэтана).

Координаты цвета L*, a* и b* определяют согласно приведенной ниже методике с помощью прозрачных дисков, полученных литьем под давлением. Для формования кругового диска, диаметр которого составляет 40 мм, а толщина составляет 2,5 мм, использовали аппарат Mini-Jector модели 55-1. Перед формованием гранулы сушат в течение, по меньшей мере, 120 минут, однако не дольше 150 минут в печи с принудительной механической конвекцией воздуха, температуру в которой устанавливают равной 170°С. Установки параметров аппарата Mini-Jector являются следующими: задняя зона нагрева (rear heater zone) = 275°С, две передних зоны нагрева (front two heater zones) = 285°С, продолжительность цикла (cycle time) = 32 секунды, а регулятор времени инжекции (inject timer) = 30 секунд. Цвет прозрачного, полученного литьем под давлением диска измеряют с помощью спектрофотометра HunterLab UltraScan XE®. Спектрофотометр HunterLab UltraScan XE® работает с помощью источника света D65 при угле наблюдения 10° и геометрии фотометрической сферы. Спектрофотометр HunterLab UltraScan XE® является обнуленным, стандартизированным, калиброванным в УФ-диапазоне и прошедшим контроль. Определение цвета осуществляли в режиме полного пропускания (TTRAN). Величина L* указывает на прозрачность/непрозрачность образца. Величина «a*» указывает на интенсивность красного цвета (+) / интенсивность зеленого цвета (-) образца. Величина «b*» указывает на интенсивность желтого цвета (+) / интенсивность синего цвета (-) образца.

Альтернативно, значения цвета определяют на гранулах из закристаллизованного сложного полиэфира или закристаллизованного полимера, измельченного до порошка, проходящего через сетчатый фильтр, размер отверстий которого составляет 3 мм. Гранулы из сложного полиэфира или полимерные образцы, которые измельчают до порошка, обладают минимальной степенью кристалличности 15%. Спектрофотометр HunterLab UltraScan XE® работает с помощью источника света D65 при угле наблюдения 10° и геометрии фотометрической сферы. Спектрофотометр HunterLab UltraScan XE® является обнуленным, стандартизированным, калиброванным в УФ-диапазоне и прошедшим контроль. Определения цвета осуществляли в режиме отражения (RSIN). Результаты представляли в CIE 1976 L*, a*, b* (CIELAB) шкале цветности. Величина L* указывает на интенсивность светлого цвета/интенсивность темного цвета образца. Величина «a*» указывает на интенсивность красного цвета (+)/интенсивность зеленого цвета (-) образца. Величина «b*» указывает на интенсивность желтого цвета (+)/интенсивность синего цвета (-) образца.

В одном из аспектов данное изобретение относится к сложнополиэфирным композициям, которые включают получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки мономера с двумя или более объединенными ароматическими кольцами в количестве примерно от 0,1 мольного % до 10 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %. Альтернативно, содержание остатков мономера с двумя или более объединенными ароматическими кольцами может составлять примерно от 0,1 мольного % примерно до 3 мольных % или примерно от 0,5 мольного % до 2,5 мольных % в каждом случае от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %.

В других аспектах содержание остатков мономера с двумя или более объединенными ароматическими кольцами может составлять, по меньшей мере, 0,05 мольного % или, по меньшей мере, 0,1 мольного %, или, по меньшей мере, 0,25 мольного %. Кроме того, содержание остатков мономера с двумя или более объединенными ароматическими кольцами может составлять вплоть до 3 мольных % или вплоть до 5 мольных %, или вплоть до 10 мольных % в каждом случае от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %.

Согласно данному изобретению получаемый в расплаве полиэтилентерефталатный сложный полиэфир может содержать, например, остатки терефталевой кислоты, присутствующие в количестве, по меньшей мере, 90 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, и остатки этиленгликоля, присутствующие в количестве, по меньшей мере, 90 мольных % от общего содержания остатков диола в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %. В иных вариантах осуществления остатки терефталевой кислоты могут содержаться в количестве, по меньшей мере, 92 мольных % или, по меньшей мере, 95 мольных % в каждом случае от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, а остатки этиленгликоля могут содержаться в количестве, по меньшей мере, 92 мольных % или, по меньшей мере, 95 мольных % в каждом случае от общего содержания остатков диола в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 %.

Получаемые в расплаве полиэтилентерефталатные сложные полиэфиры, используемые по данному изобретению, содержат один или несколько мономеров с двумя или более объединенными ароматическими кольцами, например, 2,6-нафталиндикарбоновую кислоту, диметил-2,6-нафталиндикарбоксилат, 9-антраценкарбоновую кислоту, 2,6-антрацендикарбоновую кислоту, диметил-2,6-антрацендикарбоксилат, 1,5-антрацендикарбоновую кислоту, диметил-1,5-антрацендикарбоксилат, 1,8-антрацендикарбоновую кислоту или диметил-1,8-антрацендикарбоксилат. Таким образом, в одном из аспектов данное изобретение относится к сложнополиэфирным композициям, в которых мономер с двумя или более объединенными ароматическими кольцами представляет собой 2,6-нафталиндикарбоновую кислоту, содержащуюся в количестве, например, примерно от 0,1 мольного % до 3 мольных %. Альтернативно, 2,6-нафталиндикарбоновая кислота может содержаться, например, в количестве примерно от 0,5 мольного % до 2,5 мольных % или, как раскрыто в других частях данного документа, по отношению к одному или нескольким мономерам с двумя или более объединенными ароматическими кольцами.

Сложнополиэфирные композиции по данному изобретению, кроме того, содержат алюминий, а также, желательно, щелочной металл или щелочноземельный металл, например литий.

Сложнополиэфирные композиции по данному изобретению могут дополнительно содержать остатки фосфорной кислоты.

В некоторых аспектах данного изобретения сложнополиэфирные композиции могут не содержать других металлов, обладающих каталитическим эффектом, и могут, например, не содержать сурьму, или германий, или титан. Подобные композиции и сложные полиэфиры в них можно, в силу вышесказанного, получать при отсутствии сурьмы, или германия, или титана, или смесей этих металлов.

Алюминий в сложнополиэфирных композициях может находиться в различных формах, как описано в других частях данного документа, и может содержаться в различных количествах, например, в количестве примерно от 1 частей на миллион (ч./млн) до 150 частей на миллион (ч./млн) атомов алюминия или примерно от 3 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия, или от 5 частей на миллион (ч./млн) до 60 частей на миллион (ч./млн) атомов алюминия в каждом случае от общей массы сложнополиэфирной композиции.

Аналогично, желательный щелочной металл или щелочноземельный металл может находиться в различных формах, как описано в других частях данного документа, и может, например, представлять собой литий, присутствующий в количестве примерно от 4 частей на миллион (ч./млн) до 400 частей на миллион (ч./млн) атомов лития или от 30 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития в каждом случае от общей массы сложнополиэфирной композиции.

В другом аспекте алюминий может содержаться в количестве примерно от 5 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия от общей массы сложнополиэфирной композиции, а щелочной металл или щелочноземельный металл может представлять собой литий, присутствующий в количестве примерно от 4 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития от общей массы сложнополиэфирной композиции.

В еще одном аспекте сложнополиэфирная композиция по данному изобретению может, кроме того, содержать фосфор, присутствующий в количестве примерно от 10 частей на миллион (ч./млн) до 300 частей на миллион (ч./млн) атомов фосфора или от 12 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн), или от 15 частей на миллион (ч./млн) до 200 частей на миллион (ч./млн) в каждом случае от общей массы сложнополиэфирной композиции. Альтернативно, содержание присутствующего фосфора можно определить как молярное отношение количества фосфора к объединенному общему количеству алюминия и желательного щелочного металла или щелочноземельного металла, и, таким образом, оно может находиться в диапазоне, например, примерно от 0,25 моля фосфора на моль алюминия и желательного щелочного металла или щелочноземельного металла до 3 молей фосфора на моль алюминия и желательного щелочного металла или щелочноземельного металла.

Фосфор может содержаться в виде соединения фосфора, содержащего один или несколько атомов фосфора, а в особенности сложных триэфиров фосфорной кислоты, кислотных фосфорных соединений или их сложноэфирных производных, а также солей кислотных фосфорсодержащих соединений и аминов.

Конкретные примеры фосфорсодержащих соединений охватывают фосфорную кислоту, пирофосфорную кислоту, фосфористую кислоту, полифосфорную кислоту, карбоксифосфоновые кислоты, алкилфосфоновые кислоты, производные фосфоновых кислот и любых их кислых солей и кислых сложных эфиров, а также производных, в том числе, кислые сложные эфиры фосфорной кислоты, такие как сложные моно- и диэфиры фосфорной кислоты, а также не являющиеся кислыми сложные эфиры фосфорной кислоты (например, сложные триэфиры фосфорной кислоты), такие как триметилфосфат, триэтилфосфат, трибутилфосфат, трибутоксиэтилфосфат, трис(2-этилгексил)фосфат, олигомерные сложные триэфиры фосфорной кислоты, триоктилфосфат, трифенилфосфат, тритолилфосфат, (трис)этиленгликольфосфат, триэтилфосфоноацетат, диметилметилфосфонат, тетраизопропилметилендифосфонат, сложные моно-, ди- и триэфиры фосфорной кислоты с этиленгликолем, диэтиленгликолем или 2-этилгексанолом либо смеси каждого из них.

В дополнительном аспекте получаемые в расплаве полиэтилентерефталатные сложные полиэфиры по данному изобретению могут обладать величиной I.V., достигаемой в ходе проведения реакции полимеризации в расплаве, составляющей, по меньшей мере, 0,72 дл/г или, по меньшей мере, 0,75 дл/г, или, по меньшей мере, 0,78 дл/г, или, по меньшей мере, 0,80 дл/г, или, как описано в других частях данного документа. Молекулярная масса данных сложных полиэфиров может затем увеличиваться в твердом состоянии, как следует из увеличения приведенной вязкости, или, альтернативно, практически все увеличение молекулярной массы происходит в расплаве. Таким образом, получаемые в расплаве полиэтилентерефталатные сложные полиэфиры по данному изобретению могут обладать величиной I.V., достигаемой в ходе проводимой в расплаве полимеризации, по меньшей мере, 0,72 дл/г или, по меньшей мере, 0,75 дл/г, или, по меньшей мере, 0,78 дл/г, или, по меньшей мере, 0,80 дл/г, или, как описано в других частях данного документа. Приведенная вязкость может впоследствии уменьшаться из-за последующей переработки, в особенности, при повышенных температурах, так что желательной может оказаться более высокая вязкость для учета такого происходящего впоследствии уменьшения молекулярной массы.

В еще одном аспекте предоставляют сложнополиэфирные композиции, которые включают получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки 2,6-нафталиндикарбоновой кислоты, в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, алюминий, содержащийся в количестве примерно от 3 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия от общей массы сложнополиэфирной композиции, и литий, содержащийся в количестве примерно от 4 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития от общей массы сложнополиэфирной композиции.

В другом аспекте представляют изделия, которые включают получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки 2,6-нафталиндикарбоновой кислоты, в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, алюминий, содержащийся в количестве примерно от 3 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия от общей массы изделия, и литий, содержащийся в количестве примерно от 4 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития от общей массы изделия. Эти изделия могут обладать формой, например, бутылки, преформы, кувшина или поддона.

В еще одном аспекте данное изобретение относится к способам изготовления получаемого в расплаве полиэтилентерефталатного сложного полиэфира, которые включают в себя стадии приготовления смеси, содержащей этиленгликоль, по меньшей мере, одну кислоту, выбираемую из числа терефталевой кислоты и производных терефталевой кислоты, а также мономера с двумя или более объединенными ароматическими кольцами, в которой мономер с двумя или более объединенными ароматическими кольцами присутствует в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в смеси, которое составляет 100 мольных %, и осуществления взаимодействия в данной смеси в присутствии алюминия и щелочного металла или щелочноземельного металла для синтеза получаемого в расплаве полиэтилентерефталатного сложного полиэфира. Альтернативно, мономер с двумя или более объединенными ароматическими кольцами может содержаться в количестве примерно от 0,5 мольного % до 2,5 мольных %.

В дополнительном аспекте данная смесь может содержать терефталевую кислоту, присутствующую в количестве, по меньшей мере, 90 мольных % от общего содержания остатков дикарбоновой кислоты в смеси, которое составляет 100 %, а этиленгликоль может присутствовать в смеси в количестве, по меньшей мере, 90 мольных % от общего содержания диолов в смеси, которое составляет 100 %.

В еще одном аспекте мономер с двумя или более объединенными ароматическими кольцами, вводимый в смесь, может состоять из одного или нескольких соединений из числа 2,6-нафталиндикарбоновой кислоты, диметил-2,6-нафталиндикарбоксилата, 9-антраценкарбоновой кислоты, 2,6-антрацендикарбоновой кислоты, диметил-2,6-антрацендикарбоксилата, 1,5-антрацендикарбоновой кислоты, диметил-1,5-антрацендикарбоксилата, 1,8-антрацендикарбоновой кислоты или диметил-1,8-антрацендикарбоксилата, а в особенности, могут представлять собой, например, 2,6-нафталиндикарбоновую кислоту, присутствующего(их) в смеси в количестве, например, примерно от 0,5 мольного % до 2,5 мольных %.

В дополнительном аспекте щелочной металл или щелочноземельный металл может представлять собой литий, например, и может не являться сурьмой или германием. В еще одном аспекте алюминий может присутствовать в реакционной смеси в количестве примерно от 1 части на миллион (ч./млн) до 200 частей на миллион (ч./млн) атомов алюминия или от 3 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия в каждом случае от общей массы синтезированного получаемого в расплаве полиэтилентерефталатного сложного полиэфира.

В другом аспекте щелочной металл или щелочноземельный металл, вводимый в смесь, может представлять собой литий, например, в количестве от 6 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития от общей массы синтезированного получаемого в расплаве полиэтилентерефталатного сложного полиэфира.

В другом аспекте алюминий может содержаться в смеси в количестве примерно от 3 частей на миллион (ч./млн) до 100 частей на миллион (ч./млн) атомов алюминия от общей массы синтезированного получаемого в расплаве полиэтилентерефталатного сложного полиэфира, а щелочной металл или щелочноземельный металл может представлять собой литий, содержащийся в количестве примерно от 4 частей на миллион (ч./млн) до 250 частей на миллион (ч./млн) атомов лития общей массы синтезированного получаемого в расплаве полиэтилентерефталатного сложного полиэфира.

В еще одном аспекте способы по данному изобретению включают в себя дополнительную стадию введения фосфора в синтезированный получаемый в расплаве полиэтилентерефталатный сложный полиэфир в количестве примерно от 10 частей на миллион (ч./млн) до 300 частей на миллион (ч./млн) фосфора от общей массы синтезированного получаемого в расплаве полиэтилентерефталатного сложного полиэфира или, как описано в других частях данного документа.

В дополнительном аспекте синтезированный получаемый в расплаве полиэтилентерефталатный сложный полиэфир может обладать значением I.V., по меньшей мере, 0,72 дл/г или, по меньшей мере, 0,78 дл/г или, как далее описано в данном документе. В еще одном аспекте способы по данному изобретению могут исключать стадию полимеризации в твердом состоянии и, таким образом, могут, при желании, исключать композиции, молекулярная масса полимеров в которых значительно увеличивалась в твердом состоянии. В этом аспекте данных значений I.V. можно достичь полностью в расплаве.

Нами неожиданно обнаружено, что в случае происходящих в расплаве процессов изготовления полиэтилентерефталатных сложных полиэфиров, независимо от того, являются ли они гомополимерами или сополимерами, и, в особенности, тех, которые проводят в отсутствии сурьмы, например, включающих использование алюминия и щелочного металла или щелочноземельного металла в качестве катализаторов, или титана, как описано и заявлено в находящейся одновременно на рассмотрении с данным документом патентной заявкой, введение сомономера, содержащего два или более объединенных ароматических кольца, такого как 2,6-нафталиндикарбоновая кислота, значительно улучшает термоокислительную стабильность подобных РЕТ смол. Конкретно, наблюдают меньшее снижение молекулярной массы в ходе сушки на воздухе.

Нами обнаружено, что композиции, изготовляемые при использовании не содержащей сурьмы каталитической системы, являются нестабильными по отношению к термоокислению в потребительских сушильных печах при обычно применяемых температурах. Эта нестабильность приводит к уменьшению молекулярной массы полимеров и появлению окраски при сушке при температурах, которые необходимы для обеспечения надежного технологического процесса и изготовления бездефектных преформ. Как показано в примерах, введение сомономеров с двумя или более объединенными ароматическими кольцами существенно уменьшает степень снижения молекулярной массы в ходе моделируемой сушки.

Нами обнаружено, что введение, по меньшей мере, одного источника алюминия и, желательно, по меньшей мере, одного источника щелочного металла или щелочноземельного металла, а также сомономера с двумя или более объединенными ароматическими кольцами в основе сомономера в происходящий в расплаве процесс изготовления полиэтилентерефталатных сложных полиэфиров приводит к получению сложнополиэфирного продукта с улучшенной термоокислительной стабильностью. Примеры приемлемых сомономеров охватывают 2,6-нафталиндикарбоновую кислоту, диметил-2,6-нафталиндикарбоксилат, 9-антраценкарбоновую кислоту, 2,6-антрацендикарбоновую кислоту, диметил-2,6-антрацендикарбоксилат, 1,5-антрацендикарбоновую кислоту, диметил-1,5-антрацендикарбоксилат, 1,8-антрацендикарбоновую кислоту, диметил-1,8-антрацендикарбоксилат и аналогичные производные антрацена, нафталина, фенантрена и пирена.

Сложнополиэфирные композиции по данному изобретению позволяют осуществлять сушку при стандартных температурах сушки при сохранении удовлетворительной молекулярной массы.

Получаемые в расплаве полиэтилентерефталатные сложные полиэфиры по данному изобретению охватывают, по меньшей мере, один получаемый в расплаве полиэтилентерефталатный сложный полиэфир. В одном из вариантов осуществления получаемый в расплаве полиэтилентерефталатный сложный полиэфир является сырым (например, не используемый повторно) полиэтилентерефталатным сложным полиэфиром. В одном из вариантов осуществления получаемый в расплаве полиэтилентерефталатный сложный полиэфир не представляет собой какой-либо постпотребительский, не используемый повторно полиэтилентерефталат. В одном из вариантов осуществления, по меньшей мере, один полиэтилентерефталатный сложный полиэфир не представляет собой какой-либо пре-потребительский, повторно используемый полиэтилентерефталат.

В одном из аспектов получаемый в расплаве полиэтилентерефталатный сложный полиэфир содержит:

(а) остатки, по меньшей мере, одного представляющего собой карбоновую кислоту компонента, где, по меньшей мере, 90 мольных % остатков представляют собой остатки терефталевой кислоты от 100 мольных % остатков, по меньшей мере, одного представляющего собой карбоновую кислоту компонента, и

(б) остатки, по меньшей мере, одного содержащего гидроксильные группы компонента, где, по меньшей мере, 90 мольных % остатков представляют собой остатки этиленгликоля от 100 мольных % остатков, по меньшей мере, одного содержащего гидроксильные группы компонента. В одном из вариантов осуществления получаемый в расплаве полиэтилентерефталатный сложный полиэфир дополнительно содержит вплоть до 10 мольных % остатков, выбираемых из числа остатков изофталевой кислоты, оста