Устройство измерения информациии о кровяном давлении

Иллюстрации

Показать все

Изобретение относится к медицинской технике. Устройство измерения кровяного давления в соответствии со способом компенсации объема содержит манжету, манометрический блок, первый блок определения объема, расположенный в предварительно заданном положении манжеты, для определения объема первой артерии в месте измерения, второй блок определения объема для определения объема второй артерии в месте с периферической стороны от места измерения, определительный процессор для выполнения процедуры определения целевой величины сервоуправления, блок сервоуправления для выполнения сервоуправления, блок определения кровяного давления для определения манжетного давления, блок обнаружения застоя для обнаружения застоя с периферической стороны на основании выходного сигнала из второго блока определения объема в течение периода сервоуправления. Сервоуправление осуществляют так, чтобы разность между объемом первой артерии и целевой величиной сервоуправления была меньше, чем или равна предварительно заданному значению. Кровяное давление определяют, когда амплитуда изменения объема первой артерии меньше, чем или равна предварительно заданному значению, в соответствии с сервоуправлением. Устройство также содержит узел процессора останова для выполнения процедуры прекращения измерения, когда обнаруживается застой блоком обнаружения застоя, и/или узел процессора извещения для выполнения процедуры сообщения информации о застое, когда обнаруживается застой блоком обнаружения застоя. Применение изобретения позволит повысить точность измерения кровяного давления. 9 з.п. ф-лы, 16 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к устройствам измерения информации о кровяном давлении и, в частности, к устройству измерения информации о кровяном давлении, способному измерять информацию о кровяном давлении с использованием способа компенсации объема.

УРОВЕНЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Кровяное давление является одним из показателей для анализа сердечно-сосудистого заболевания. Проведение анализа рисков сердечно-сосудистого заболевания на основании кровяного давления полезно для предотвращения таких сердечно-сосудистых заболеваний, как инсульт, остановка сердца, инфаркт миокарда и т.п. Среди упомянутых показателей, утренняя артериальная гипертензия, при которой кровяное давление повышается ранним утром, имеет отношение к заболеванию сердца, инсульту и т.п. Кроме того, известно, что симптом утренней артериальной гипертензии, называемый утренним всплеском, при котором кровяное давление внезапно поднимается в период от одного часа до полутора часов после пробуждения, имеет причинную связь с инсультом.

Поэтому при анализе риска сердечно-сосудистого заболевания полезно выявлять взаимосвязь между временем (образом жизни) и изменением кровяного давления. Следовательно, кровяное давление требуется измерять непрерывно в течение продолжительного периода времени.

При контроле за пациентом во время хирургической операции и после хирургической операции, или при проверке воздействия лекарственного препарата во время антигипертензивного лечения и т.п., очень важно измерять кровяное давление непрерывно в течение каждого сердечного сокращения и контролировать изменение кровяного давления. Форма сигнала кровяного давления в течение каждого сердечного сокращения содержит информацию, которая применима в очень широкой медицинской области, например, показывающую прогрессирование атеросклероза и диагностирующую сердечную функцию. Следовательно, важно также непрерывно записывать флуктуацию формы сигнала кровяного давления.

В находящейся на рассмотрении заявке на патент Японии № 54-50175 (патентом документе 1) описан сфигмоманометр, который использует способ компенсации объема в качестве метода измерения кровяного давления для измерения кровяного давления в течение каждого сердечного сокращения. Способ компенсации объема состоит в следующем. Артерию сжимают манжетой снаружи тела, и объем (объем на единицу длины) артерии, которая пульсирует синхронно с сердечным сокращением, стабильно выдерживается постоянным. Давление (манжетное давление), с которым сжимается место измерения, и внутреннее давление, то есть, кровяное давление в артерии или месте измерения, приводят в равновесие посредством поддерживания постоянной величины объема артерии. Манжетное давление, когда поддерживается упомянутое равновесное состояние, определяется для непрерывного получения значения кровяного давления.

Патентный документ 1: находящаяся на рассмотрении заявка на патент Японии № 54-50175

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

ЦЕЛИ ИЗОБРЕТЕНИЯ

В соответствии со способом компенсации объема, объем артерии, когда манжетное давление и внутреннее давление в артерии находятся в равновесном состоянии, то есть, когда стенка артерии находится в ненагруженном состоянии, определяется как целевая величина сервоуправления (в дальнейшем, именуемая «контрольной целевой величиной»). Затем, манжетное давление регулируется так, чтобы объем артерии, который изменяется при пульсации каждого сердечного сокращения, соответствовал контрольной целевой величине (сервоуправление).

Место измерения постоянно сжимается под манжетным давлением выше чем или равным диастолическому кровяному давлению в течение периода сервоуправления. Таким образом, вена, в которой внутреннее давление кровеносного сосуда ниже, чем диастолическое кровяное давление, постоянно зажата давлением (сжата и сдавлена). Тем самым блокируется обратный ток к сердцу крови, пропущенной в периферическую сторону от места измерения. В результате, кровь задерживается с периферической стороны от места измерения, когда проходит время (состояние застоя).

Когда возникает застой, точное измерение кровяного давления невозможно. Если состояние застоя продолжается долгое время, то ткани с периферической стороны могут дегенерировать или подвергаться некрозу. Следовательно, с точки зрения точного измерения кровяного давления и обеспечения безопасности измеряемого лица, очень важно не допускать застоя.

Однако в традиционном сфигмоманометре (устройстве измерения информации о кровяном давлении) с использованием способа компенсации объема, застой отдельно не контролируется.

Настоящее изобретение создано для разрешения вышеописанных проблем, и его целью является создание устройства измерения информации о кровяном давлении, способного контролировать состояние застоя с периферической стороны от места измерения.

СРЕДСТВА ДОСТИЖЕНИЯ ЦЕЛИ

Устройство измерения информации о кровяном давлении в соответствии с одним аспектом настоящего изобретения является устройством измерения информации о кровяном давлении, предназначенным для измерения информации о кровяном давлении в соответствии со способом компенсации объема, при этом, устройство измерения информации о кровяном давлении содержит манжету, подлежащую оборачиванию вокруг предварительно заданного места; манометрический блок для определения манжетного давления, представляющего давление в манжете; первый блок определения объема, расположенный в предварительно заданном положении манжеты, для определения объема первой артерии в месте измерения; второй блок определения объема для определения объема второй артерии в периферическом месте, которое является местом с периферической стороны от места измерения; определительный процессор для выполнения процедуры определения целевой величины сервоуправления; блок сервоуправления для выполнения сервоуправления таким образом, чтобы разность между объемом первой артерии и целевой величиной сервоуправления была меньше, чем или равна предварительно заданному значению; блок определения кровяного давления для определения манжетного давления, когда амплитуда изменения объема первой артерии меньше, чем или равна предварительно заданному значению, в качестве кровяного давления, в соответствии с сервоуправлением; и блок обнаружения застоя для обнаружения застоя с периферической стороны на основании выходного сигнала из второго блока определения объема в течение периода сервоуправления.

В предпочтительном варианте, блок обнаружения застоя обнаруживает застой посредством обнаружения изменения во времени объема второй артерии с начала измерения.

В предпочтительном варианте, блок обнаружения застоя обнаруживает застой по отношению или разности текущей величины изменения объема второй артерии и величины изменения объема второй артерии в начале измерения.

В альтернативном варианте, блок обнаружения застоя предпочтительно обнаруживает застой по отношению или разности текущего значения объема второй артерии и значения объема второй артерии в начале измерения.

В предпочтительном варианте, начало измерения приходится на момент времени, в который амплитуда изменения объема первой артерии становится меньше, чем или равной предварительно заданному значению в первый раз с начала сервоуправления.

В альтернативном варианте, начало измерения, предпочтительно, приходится на момент времени, в который определяется целевая величина сервоуправления.

В альтернативном варианте, начало измерения может, предпочтительно, приходиться на момент времени перед началом процедуры определительного процессора.

В предпочтительном варианте дополнительно обеспечен узел процессора останова для выполнения процедуры прекращения измерения, когда обнаруживается застой блоком обнаружения застоя.

В предпочтительном варианте дополнительно обеспечен узел процессора извещения для выполнения процедуры сообщения информации о застое, когда обнаруживается застой блоком обнаружения застоя.

В предпочтительном варианте, узел процессора извещения сообщает об обнаружении застоя в качестве информации о застое.

В альтернативном варианте, блок обнаружения застоя, предпочтительно, дополнительно определяет степень застоя; и узел процессора извещения сообщает о степени застоя в качестве информации о застое.

В альтернативном варианте, предпочтительно, дополнительно обеспечены блок памяти для сохранения информации о кровяном давлении, соответствующей результату определения блоком определения кровяного давления; и узел процессора записи для выполнения процедуры записи обнаружения присутствия застоя блоком обнаружения застоя в блоке памяти в связи с информацией о кровяном давлении.

ТЕХНИЧЕСКИЙ РЕЗУЛЬТАТ ИЗОБРЕТЕНИЯ

В соответствии с настоящим изобретением, в течение периода сервоуправления можно обнаруживать присутствие застоя в периферическом месте. Кроме того, на основании результата обнаружения застоя выполняется одна из процедур прекращения измерения и процедур выдачи информации о застое, и, следовательно, врачу или подобному лицу представляется информация о кровяном давлении только высокой степени надежности.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 - перспективное изображение внешнего вида устройства измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.2 - изображение взаимного расположения места измерения и периферического места.

Фиг.3 - блок-схема, представляющая аппаратную конфигурацию устройства измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.4 - функциональная блок-схема, представляющая функциональную конфигурацию устройства измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.5 - блок-схема последовательности операций способа измерения кровяного давления в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.6 - блок-схема последовательности операций процедуры определения контрольной целевой величины в первом варианте осуществления настоящего изобретения.

Фиг.7(A)-7(C) - изображения, поясняющие процедуру определения контрольной целевой величины в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.8 - блок-схема последовательности операций способа управления измерением в первом варианте осуществления настоящего изобретения.

Фиг.9(A)-9(C) - изображения, поясняющие управление измерением в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.10(A) - изображение структуры данных для данных каждого измерения в устройстве измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения, и Фиг.10(B) представляет изображение структуры данных поля информации о кровяном давлении, содержащегося в данных измерения.

Фиг.11 - блок-схема последовательности операций способа управления измерением в модификации первого варианта осуществления настоящего изобретения.

Фиг.12(A)-12(D) - изображения, поясняющие управление измерением в модификации первого варианта осуществления настоящего изобретения.

Фиг.13 - блок-схема последовательности операций способа управления измерением в соответствии со вторым вариантом осуществления настоящего изобретения.

Фиг.14 - пример отображения застоя.

Фиг.15 - изображение структуры данных поля информации о кровяном давлении, содержащегося в данных измерения в соответствии со вторым вариантом осуществления настоящего изобретения.

Фиг.16(A) и 16(B) - примеры отображения степени застоя.

НАИЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Варианты осуществления настоящего изобретения подробно описаны ниже со ссылкой на чертежи. Одинаковые позиции обозначают одинаковые или соответствующие участки на фигурах, и их описание не будет повторяться.

Первый вариант осуществления

Устройство измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения измеряет информацию о кровяном давлении на основании способа компенсации объема. В настоящем варианте осуществления, «информация о кровяном давлении» является информацией, указывающей характеристики системы кровообращения, и содержит, по меньшей мере, пульсовую волну (сигнал пульсовой волны), а также содержит показатель, который можно вычислить по пульсовой волне в дополнение к пульсовой волне, например, непрерывное значение кровяного давления (непрерывную форму сигнала кровяного давления), систолическое кровяное давление, диастолическое кровяное давление, среднее кровяное давление, частоту пульса и значение AI (индекса приращения).

Пульсовая волна, которая представляет собой один тип информации о кровяном давлении, содержит пульсовую волну давления и пульсовую волну объема вследствие различия цели сбора данных. Пульсовая волна давления представляет пульсовую волну в виде флуктуации манжетного давления, имеющей место при изменении объема манжеты, посредством преобразования флуктуации объема в кровеносном сосуде, имеющей место во время сердечной пульсации, в изменение объема манжеты и может быть получена на основании выходного сигнала из датчика давления. Пульсовая волна объема представляет пульсовую волну в виде флуктуации объема в кровеносном сосуде, имеющей место во время сердечной пульсации, и может быть получена на основании выходного сигнала из датчика объема артерии. Флуктуацию объема в кровеносном сосуде можно получить как флуктуацию количества крови в кровеносном сосуде.

В контексте настоящего описания, термин «устройство измерения информации о кровяном давлении» относится, в общем, к устройству, обладающему, по меньшей мере, функцией получения пульсовой волны, и, в частности, относится к устройству определения флуктуации количества крови оптическим способом с целью получения пульсовой волны объема для выполнения способа компенсации объема. При этом, устройство не ограничено устройством для выдачи полученной пульсовой волны объема в качестве результата измерения и может быть устройством для выдачи только конкретного показателя, вычисленного или измеренного на основании полученной пульсовой волны объема, в качестве результата измерения, или устройством для выдачи как пульсовой волны объема, так и конкретного показателя в качестве результата измерения.

Нижеописанное устройство измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения получает форму сигнала кровяного давления посредством непрерывного измерения кровяного давления с использованием способа компенсации объема.

<Внешний вид и конфигурация>

(Внешний вид)

На Фиг.1 представлено перспективное изображение внешнего вида устройства 1 измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения. Внешний вид устройства 1 измерения информации о кровяном давлении аналогичен обычному сфигмоманометру.

Как показано на Фиг.1, устройство 1 измерения информации о кровяном давлении содержит основной блок 10, манжету 20, которую можно оборачивать вокруг предварительно заданного места измерения, например, кисти, и периферический блок 26 для закрепления на теле в месте (в дальнейшем, именуемом «периферическим местом») с периферической стороны от места измерения. Периферический блок 26 электрическии соединен с основным блоком 10 кабелем 28.

Основной блок 10 закреплен на манжете 20. Дисплейный блок 40, выполненный с использованием жидкокристаллической технологии и т.п., и блок 41 управления для приема команд от пользователя (обычно, лица, подлежащего измерению) расположены на поверхности основного блока 10. Блок 41 управления содержит множество переключателей.

В настоящем варианте осуществления, дальнейшее описание приведено в предположении, что местом измерения является кисть. Однако место измерения не ограничено кистью и может быть плечом.

На Фиг.2 показано взаимное расположение места измерения и периферического места.

Как показано на Фиг.2, место (периферическое место), на котором закреплен периферический блок 26, когда местом измерения, на котором закреплена манжета 20, является кисть 302, является участком основания пальца (основание пальца) 304. Данное место не ограничено, при условии, что оно находится с периферической стороны от места измерения, и может быть кончиком 306 пальца.

Устройство 1 измерения информации о кровяном давлении в соответствии с настоящим изобретением описано далее с использованием формы, в которой основной блок 10 закреплен на манжете 20, как, например, показано на Фиг.1. Однако возможно применение формы, в которой основной блок 10 и манжета 20, которые являются раздельными, соединены воздушной трубкой (воздушной трубкой 31 на Фиг.2), как принято в устройстве измерения информации о кровяном давлении плечевого типа.

(Аппаратная конфигурация)

На Фиг.3 приведена блок-схема, представляющая аппаратную конфигурацию устройства 1 измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения.

Как показано на Фиг.3, манжета 20 устройства 1 измерения информации о кровяном давлении содержит пневматическую камеру 21 и датчик 70A объема артерии для определения объема артерии в месте измерения (кисти 302). Датчик 70A объема артерии содержит светоизлучающий элемент 71A и светоприемный элемент 72A. Светоизлучающий элемент 71A излучает свет в артерию, и светоприемный элемент 72A принимает свет (проходящий свет), то есть, свет, испускаемый светоизлучающим элементом 71A и проходящий сквозь артерию, или свет (отраженный свет), отраженный артерией. Светоизлучающий элемент 71A и светоприемный элемент 72A расположены с предварительно заданным расстоянием между ними на внутренней стороне пневматической камеры 21.

Периферический блок 26 содержит датчик 70B объема артерии для определения объема артерии в периферическом месте (на участке 304 основания пальца). Датчик 70B объема артерии может иметь конфигурацию, аналогичную датчику 70A объема артерии, и содержит светоизлучающий элемент 71В и светоприемный элемент 72B. Функции светоизлучающего элемента 71В и светоприемного элемента 72B аналогичны функциям светоизлучающего элемента 71A и светоприемного элемента 72A.

В настоящем варианте осуществления, датчик 70B объема артерии заранее размещают на обертывающем элементе для оборачивания вокруг периферического места, однако, настоящее изобретение не ограничено данным вариантом осуществления.

Оба датчика 70A, 70B объема артерий должны быть просто в состоянии определять объем артерии и могут определять объем артерии посредством импедансного датчика (методом импедансной плетизмографии). В последнем случае, вместо светоизлучающих элементов 71A, 71В и светоприемных элементов 72A, 72B установлено множество электродов (электродная пара для подачи тока и электродная пара для определения напряжения) для определения импеданса места, содержащего артерию.

Пневматическая камера 21 соединена с пневматической системой 30 посредством воздушной трубки 31.

Кроме дисплейного блока 40 и блока 41 управления, основной блок 10 содержит пневматическую систему 30, CPU (центральный процессор) 100 для централизованного управления каждым блоком и для выполнения различных вычислительных процедур, память 42 для хранения программ, предписывающих центральному процессору (CPU) 100 выполнение предварительно заданных операций, и различных блоков данных, энергонезависимую память (например, флэш-память) 43 для хранения измеренной информации о кровяном давлении, источник 44 питания для подачи питания в центральный процессор (CPU) 100, блок 45 отсчета времени для выполнения операции отсчета времени, и интерфейсный блок 46 для считывания со съемного носителя 132 записи и для записи на него программы и данных.

Блок 41 управления содержит переключатель 41A питания для получения ввода команды на включение или выключение питания, переключатель 41B измерения для получения команды на начало измерения, выключатель 41С останова для получения команды на прекращение измерения и переключатель 41D памяти для получения команды на считывание информации, например, о кровяном давлении, записанной во флэш-памяти 43.

Пневматическая система 30 содержит датчик 32 давления для регистрации давления (манжетного давления) в пневматической камере 21, насос 51 для подачи воздуха в пневматическую камеру 21 с целью нагнетания манжетного давления и клапан 52, который открывается и закрывается, чтобы выпускать или запирать воздух из/в пневматической камере 21.

Основной блок 10 содержит блок 76A определения объема артерии, соединенный с датчиком 70A объема артерии, блок 76B определения объема артерии, соединенный с датчиком 70B объема артерии, а также схему 33 генерации, схему 53 управления приводом насоса и схему 54 управления приводом клапана, относящиеся к вышеописанной пневматической системе 30.

Блок 76A определения объема артерии сконфигурирован из схемы 73A возбуждения светоизлучающего элемента и схемы 74A определения объема артерии. Блок 76B определения объема артерии сконфигурирован из схемы 73B возбуждения светоизлучающего элемента и схемы 74B определения объема артерии.

Каждая из схем 73A, 73B возбуждения светоизлучающего элемента вынуждает светоизлучающий элемент 71A, 71В излучать свет по предварительно заданной временной диаграмме в соответствии с сигналом управления из центрального процессора (CPU) 100. Схема 74A, 74B определения объема артерии определяет объем артерии в месте измерения и периферическом месте посредством преобразования выходного сигнала светоприемного элемента 72A, 72B в значение напряжения.

В настоящем варианте осуществления, сигнал объема артерии в месте измерения, получаемый из схемы 74A определения объема артерии, обозначается как «MPGdc». Сигнал изменения объема артерии в месте измерения, определяемый на основании сигнала MPGdc, обозначается как «MPGac». Аналогично, сигнал объема артерии в периферическом месте, получаемый из схемы 74B определения объема артерии, обозначается как «PPGdc». Сигнал изменения объема артерии в периферическом месте, определяемый на основании сигнала PPGdc, обозначается как «PPGac».

В настоящем варианте осуществления, нижеприведенное описание дано в предположении, что центральный процессор (CPU) 100 определяет (вычисляет) сигналы MPGac и PPGac изменения объема артерии, однако, сигналы MPGac и PPGac изменения объема артерии могут определяться в схеме 74A определения объема артерии и схеме 74B определения объема артерии.

Датчик 32 давления является емкостным датчиком давления, значение емкости которого изменяется в зависимости от манжетного давления. Схема 33 генерации выдает сигнал с частотой генерации, соответствующей значению емкости датчика 32 давления, в центральный процессор (CPU) 100. Центральный процессор (CPU) 100 преобразует сигнал, полученный из схемы 33 генерации, в давление и определяет давление. Схема 53 управления приводом насоса управляет приводом насоса 51 по управляющему сигналу, представляемому из центрального процессора (CPU) 100. Схема 54 управления приводом клапана выполняет управление открыванием/закрытием клапана 52 по управляющему сигналу, представляемому из центрального процессора (CPU) 100.

Насос 51, клапан 52, схема 53 управления приводом насоса и схема 54 управления приводом клапана устанавливают конфигурацию регулировочного блока 50 для регулировки давления в манжете 20 посредством компрессии и декомпрессии. Устройства, устанавливающие конфигурацию регулировочного блока 50, не ограничены вышеперечисленными устройствами. Например, регулировочный блок 50 может содержать пневматический цилиндр и приводной элемент для привода пневматического цилиндра, в дополнение к вышеперечисленным устройствам.

Пневматическая камера 21 расположена в манжете 20, однако, текучая среда, подлежащая подаче в манжету 20, не ограничена воздухом и может быть жидкостью или гелем. В альтернативном варианте, текучая среда не ограничена вышеупомянутыми текучими средами и может представлять собой однородные тонкодисперсные частицы, например, микрошарики.

(Функциональная конфигурация)

На Фиг.4 приведена функциональная блок-схема, представляющая функциональную конфигурацию устройства 1 измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения.

Как показано на Фиг.4, центральный процессор (CPU) 100 содержит блок 102 получения манжетного давления, определительный процессор 104, блок 106 управления измерением, блок 108 сервоуправления, блок 110 определения кровяного давления, блок 112 обнаружения застоя и специализированный процессор 114. На Фиг.4, для упрощения описания, показаны только периферические аппаратные средства, которые непосредственно обмениваются сигналами и данными с упомянутыми функциональными блоками.

Блок 102 получения манжетного давления получает манжетное давление на основании сигнала из схемы 33 генерации. В частности, получение манжетного давления осуществляется преобразованием сигнала частоты генерации, определяемой схемой 33 генерации, в давление. Полученное манжетное давление выдается в определительный процессор 104, блок 108 сервоуправления и блок 110 определения кровяного давления.

Определительный процессор 104 выполняет процедуру определения контрольной целевой величины V0 и начального манжетного давления PC0. Конкретная процедура, выполняемая определительным процессором 104, может быть реализована известным способом (например, находящаяся на рассмотрении заявка на патент Японии № 1-31370, находящаяся на рассмотрении заявка на патент Японии 2008-36004).

Блок 106 управления измерением выполняет управление для измерения информации о кровяном давлении, когда определение контрольной целевой величины (и начального манжетного давления) закончено. Блок 106 управления измерением управляет работой блока 108 сервоуправления, блока 110 определения кровяного давления и блока 112 обнаружения застоя.

Блок 108 сервоуправления соединен с регулировочным блоком 50 и блоком 76A определения объема артерии и выполняет сервоуправление под управлением блока 106 управления измерением таким образом, чтобы объем артерии в месте измерения (значение сигнала MPGdc объема артерии) соответствовал контрольной целевой величине V0. То есть, давление в манжете 20 регулируется с обратной связью таким образом, чтобы значение сигнала MPGac изменения объема артерии, представляющее переменную (AC) компоненту сигнала объема артерии, становилось равным «0».

Блок 110 определения кровяного давления непрерывно определяет (измеряет) кровяное давление в течение периода сервоуправления под управлением блока 106 управления измерением. В частности, сигнал MPGdc объема артерии и сигнал манжетного давления из блока 102 получения манжетного давления получаются в виде временной последовательности. Манжетное давление в момент времени, когда величина изменения (значение сигнала MPGac изменения объема артерии) объема артерии в месте измерения становится меньше чем или равной предварительно заданному значению, то есть, манжетное давление, когда стенка артерии находится в ненагруженном состоянии, определяется как кровяное давление. Приведенное определение аналогично тому, что манжетное давление в момент времени, когда разность между значением объема артерии в месте измерения и контрольной целевой величиной V0 становится меньше, чем или равно предварительно заданной пороговой величине, определяют как кровяное давление.

Блок 112 обнаружения застоя соединен с блоком 76B определения объема артерии и обнаруживает застой в периферическом месте в период сервоуправления (после того, как стенка артерии оказывается в ненагруженном состоянии, по меньшей мере, в первый раз) под управлением блока 106 управления измерением. В настоящем варианте осуществления, блок 112 обнаружения застоя обнаруживает присутствие застоя с использованием сигнала PPGac изменения объема артерии в периферическом месте.

Ниже приведено описание принципа обнаружения присутствия застоя в настоящем варианте осуществления.

Когда в периферическом месте образуется застой, кровь не протекает обратно, даже когда внутреннее давление в артерии приближается к диастолическому кровяному давлению. Таким образом, когда в периферическом месте образуется застой, возникает состояние, в котором количество крови больше, чем в состоянии, когда застой не образуется, то есть возникает состояние, в котором объем артерии оказывается большим. Поэтому величина изменения объема артерии, то есть, значение сигнала PPGac изменения объема артерии, которое появляется с изменением внутреннего давления в артерии от диастолического кровяного давления на систолическое кровяное давление, становится меньше, чем в состоянии, когда застой не образуется. В настоящем варианте осуществления, «значение сигнала PPGac изменения объема артерии» является значением, указывающим амплитуду сигнала PPGac изменения объема артерии. «Значение сигнала MPGac изменения объема артерии» также означает амплитуду.

Образование застоя может быть обнаружено посредством определения и контроля величины изменения объема артерии в периферическом месте с помощью датчика 70B объема артерии в периферическом месте. В частности, значения сигнала PPGac изменения объема артерии определяются в начале измерения и в текущий момент времени, и определение, что застой возник, делается, если отношение определенных значений меньше, чем предварительно заданное значение (например, 1/2).

Определение, что застой возник, может быть сделано, когда разность значений сигнала PPGac изменения объема артерии в начале измерения и в текущий момент времени становится больше, чем или равно предварительно заданному значению. В альтернативном варианте, степень застоя можно систематизировать по уровню отношения или разности значений сигнала PPGac изменения объема артерии.

Специализированный процессор 114 исполняет конкретную процедуру на основании результата определения, полученного блоком 112 обнаружения застоя. В настоящем варианте осуществления, специализированный процессор 114 выполняет только функцию узла 114A процессора останова. Узел 114A процессора останова выполняет процедуру прекращения измерения в качестве специальной процедуры, когда блоком 112 обнаружения застоя обнаруживается застой.

На Фиг.4 в составе специализированного процессора 114 для удобства показаны также такие функциональные блоки, как узел 114B процессора извещения и узел 114C процессора записи, описанные в дальнейшем в составе второго варианта осуществления, но не содержащиеся в настоящем варианте осуществления.

Центральный процессор (CPU) 100 задает светоизлучающим элементам 71A, 71В излучать свет с постоянным интервалом посредством передачи сигнала управления в схемы 73A, 73B возбуждения светоизлучающего элемента в течение цикла измерительного периода (включая период определения контрольной целевой величины). Однако в настоящем варианте осуществления, излучение света светоизлучающим элементом 71В может выполняться только в течение периода сервоуправления.

Работу каждого вышеописанного функционального блока можно реализовать посредством исполнения программного обеспечения, хранящегося в памяти 42, или, по меньшей мере, один из функциональных блоков может быть реализован аппаратно.

<Функционирование>

Ниже приведено подробное описание порядка работы устройства 1 измерения информации о кровяном давлении в соответствии с первым вариантом осуществления настоящего изобретения.

На Фиг.5 приведена блок-схема последовательности операций способа измерения кровяного давления в соответствии с первым вариантом осуществления настоящего изобретения. Процедуры, показанные на блок-схеме последовательности операций, приведенной на Фиг.5, заранее записаны в памяти 42 в виде программы, и функция способа измерения кровяного давления реализуется, когда центральный процессор (CPU) 100 считывает и исполняет программу.

Как показано на Фиг.5, центральный процессор (CPU) 100 определяет, нажат ли или нет переключатель 41A питания (этап S2). Когда установлено, что переключатель 41A питания нажат (ДА на этапе S2), способ переходит на этап S4.

На этапе S4, центральный процессор (CPU) 100 выполняет процедуру инициализации. В частности, инициализируется предварительно заданная область памяти 42, выпускается воздух из пневматической камеры 21, и выполняется коррекция датчика 32 давления путем установки на 0 мм рт.ст.

После того, как инициализация заканчивается, центральный процессор (CPU) 100 определяет, нажат ли или нет переключатель 41В измерения (этап S6), и ожидает, пока не нажмут переключатель 41В измерения. Процедура переходит на этап S8, когда выполняется определение, что переключатель 41В измерения нажат (ДА на этапе S6).

На этапе S8, определительный процессор 104 выполняет процедуру определения контрольной целевой величины. Иначе говоря, выполняется определение контрольной целевой величины V0 и начального манжетного давления PC0. Процедура определения контрольной целевой величины описана в дальнейшем со ссылкой на Фиг.6 и Фиг.7(A)-7(C).

На Фиг.6 приведена блок-схема последовательности операций процедуры определения контрольной целевой величины в первом варианте осуществления настоящего изобретения. На Фиг.7(A)-7(C) приведены изображения, поясняющие процедуру определения контрольной целевой величины в соответствии с первым вариантом осуществления настоящего изобретения. На Фиг.7(A) показано манжетное давление PC вдоль оси времени. На Фиг.7(B) показан сигнал MPGdc объема артерии в месте измерения вдоль той же оси времени, что и на Фиг.7(A). На Фиг.7(C) показан сигнал MPGac изменения объема артерии в месте измерения вдоль той же оси времени, что и на Фиг.7(A).

Как показано на Фиг.6, определительный процессор 104 инициализирует максимальное значение амплитуды сигнала MPGac изменения объема артерии и значение манжетного давления, хранящееся в предварительной заданной области памяти 42 (этап S102). Максимальное значение амплитуды сигнала MPGac изменения объема артерии корректируется, при необходимости, в ходе последующей процедуры, и значение, пока, в конечном итоге, не подтверждается как максимальное значение, именуется «временным максимальным значением объема».

Затем схема 53 управления приводом насоса приводится в действие для нагнетания манжетного давления (этап S104).

Определительный процессор 104 определяет сигнал (сигнал MPGdc объема артерии из схемы 74A определения объема артерии на стадии нагнетания манжетного давления (этап S106). Определительный процессор 104 определяет сигнал MPGac изменения объема артерии, получаемый из сигнала MPGdc объема артерии.

Определительный процессор 104 определяет, является ли или нет значение (значение амплитуды) сигнала MPGac изменения объема артерии выше, чем или равным временному максимальному значению объема, хранящемуся в памяти 42 (этап S108). При определении, что сигнал MPGac изменения объема артерии выше, чем или равен временному максимальному значению объема (ДА на этапе S108), процедура переходит на этап S110. При определении, что сигнал MPGac изменения объема артерии меньше, чем временное максимальное значение объема (НЕТ на этапе S108), процедура переходит на этап S112.

На этапе S110, определительный процессор 104 корректирует временное максимальное значение объема и перезаписывает его и записывает манжетное давление в соответствующий момент времени. После того, как вышеописанная процедура завершается, процедура переходит к этапу S112.

На этапе S112, определительный процессор 104 определяет, является ли или нет манжетное давление выше, чем или равным предварительно заданному значению (например, 200 мм рт.ст.). При определении, что манжетное давление не достигло предварительно заданного значения (НЕТ на этапе S112), процедура возвращается на этап S104. При определении, что манжетное давление больше, ч