Система радиосвязи с подвижными объектами

Иллюстрации

Показать все

Изобретение относится к радиосистемам обмена данными и может быть использовано для информационного обмена между подвижными объектами (ПО) и наземными комплексами (НК). Техническим результатом является повышение достоверности передаваемой информации в каналах «воздух-земля» МВ-ДМВ диапазонов при маневрах ПО и сокращение количества приемных и передающих антенн подвижного объекта. Для достижения упомянутого технического результата в ПО введены: блок определения положения ПО в пространстве, высокочастотный коммутатор, К входов/выходов которого подключены к входам/выходам К бортовых широкодиапазонных радиочастотных модулей, а n·К входов/выходов (n=1, 2, 3, …; n<К) - к входам/выходам n групп, состоящих из К соответствующих диплексоров, объединенные входы/выходы каждой группы из К диплексоров подключены к широкодиапазонной антенне, (К+1)-й диплексор с радиочастотными входами/выходами для радиоэлектронного оборудования также подключен к соответствующей широкодиапазонной антенне. 3 ил.

Реферат

Изобретение относится к системам обмена данными и может быть использовано для реализации информационного обмена между источниками (получателями) информации, расположенными на подвижных объектах (ПО), и получателями (источниками) информации, расположенными на земле, через наземные комплексы (НК).

В системе радиосвязи с подвижными объектами [1] во время движения подвижные объекты, находящиеся в пределах радиогоризонта, обмениваются данными с наземным комплексом связи. Принимаемые наземным комплексом связи из канала «воздух-земля» сообщения через аппаратуру передачи данных (АПД) поступают в вычислитель автоматизированного рабочего места (АРМ) оператора связи, где в соответствии с принятым в системе протоколом обмена производится идентификация принятого в сообщении адреса с адресами подвижных объектов, хранящимися в его памяти. При совпадении адреса подвижного объекта с хранящимся в списке адресом информация о местоположении, параметрах движения ПО и состоянии его датчиков выводится на экран монитора наземного АРМ. В вычислителе АРМ решается задача обеспечения непрерывной радиосвязи со всеми N ПО. При выходе за пределы радиогоризонта хотя бы одного из ПО или приближении к границе зоны устойчивой радиосвязи определяют программно один из ПО, который назначается ретранслятором сообщений. По результатам анализа местоположения и параметров движения остальных ПО определяют оптимальные пути доставки сообщений к удаленному от НК за радиогоризонт ПО. Сообщение от НК через последовательную цепочку, состоящую из (N-1) ПО, может быть доставлено N-му ПО. Для этого на НК в формирователе типа ретранслируемых сообщений в заранее определенные разряды (заголовок) передаваемой кодограммы закладывают номер ПО, назначенного ретранслятором, и адреса подвижных объектов, обеспечивающих заданный трафик сообщения. Принятые на ПО сообщения анализируют в блоке анализа типа сообщений. После анализа решают вопрос о направлении данных по двунаправленной шине в систему управления подвижного объекта или ретрансляции их на соседний ПО.

В обычном режиме, когда не требуется ретрансляция сигналов с НК, осуществляют адресный опрос ПО путем формирования сообщения для передачи в канал радиосвязи в соответствии с протоколом обмена. Набираемое оператором (диспетчером) сообщение отображают на мониторе АРМ. На ПО после прохождения через антенну, радиостанцию, аппаратуру передачи данных сигнал подают в бортовой вычислитель, где производят идентификацию принятого в сообщении адреса с собственным адресом подвижного объекта. Далее сообщение передают в блок анализа типа ретранслируемого сообщения, где производят дешифрацию полученного заголовка (служебной части) сообщения и определяют, в каком режиме должна работать аппаратура ПО. Информационную часть сообщения записывают в память бортового вычислителя и при необходимости выводят на экран блока регистрации данных.

Сообщения с выходов приемников сигналов глобальных навигационных спутниковых систем ГЛОНАСС/GPS записывают в память наземного и бортового вычислителей с привязкой к глобальному времени и используют для расчета навигационных характеристик и параметров движения каждого ПО. Принятые на НК навигационные сообщения от всех ПО обрабатывают в вычислителе и выводят на экран монитора АРМ.

Однако указанной выше системе присущи следующие недостатки:

- дальность связи резко уменьшается при маневрах ПО из-за затенения элементами его корпуса бортовых антенн в направлении на НК;

- радиус зоны связи, обеспечиваемый НК, ограничен радиусом прямой радиовидимости (200-300 км), когда на НК зарегистрирован только один ПО. С двумя зарегистрированными ПО зона связи может быть расширена в 2 раза за счет ретрансляции «воздух-воздух» только при условии, что первый ПО остается в поле прямой видимости НК, а второй ПО находится в поле видимости первого ПО;

- низкая аппаратурная надежность бортовых радиостанций, приемопередатчики которых, в основном, в полете выходят из строя, приводит к низкой надежности связи в канале «воздух-земля».

Наиболее близкой по назначению и большинству существенных признаков является система радиосвязи с подвижными объектами [2], которая принята за прототип. Она отличается от упомянутой выше системы тем, что в ней имеются наземные и бортовые антенны и радиостанции ДКМВ дальней связи. В результате размер зоны гарантированного управления (связи) НК не ограничивается радиусом прямой радиовидимости. Кроме того, К бортовых широкодиапазонных антенно-фидерных устройства (ШД АФУ) подключены двунаправленными радиочастотными кабелями к К бортовым широкодиапазонным радиочастотным модулям (ШД РМ), которые связаны аналоговыми высокочастотными кабелями с модулем физического уровня (МФУ), который имеет двухсторонний цифровой интерфейс с модулем канального уровня (МКУ). МКУ соединен двухсторонним цифровым интерфейсом через модуль маршрутизации (ММ) с модулем интерфейсов (МИ). Входы МИ подключены к бортовым датчикам, приемнику навигационной спутниковой системы, выход подключен к блоку регистрации данных, второй вход/выход подключен к бортовому анализатору типа принимаемых сообщений, третий вход/выход - к бортовому вычислителю, связанному с помощью двунаправленного интерфейса с бортовой системой управления ПО, четвертый вход/выход - к бортовому формирователю типа ретранслируемых сообщений. Наземные антенны MB и ДКМВ диапазонов связаны соответственно с радиостанциями MB и ДКМВ диапазонов, подключенными двухсторонними связями, через аппаратуру передачи данных к первому входу/выходу вычислителя автоматизированного рабочего места, второй вход/выход которого подключен к управляющему входу/выходу радиостанции ДКМВ диапазона, третий вход/выход - к входу/выходу наземной системы связи, четвертый вход/выход - к формирователю типа ретранслируемых сообщений, пятый вход/выход - к управляющему входу/выходу радиостанции MB диапазона, первый вход подключен к приемнику сигналов глобальных навигационных спутниковых систем (ГЛОНАСС/GPS), второй вход - к пульту управления АРМ, а выход - к монитору АРМ.

Система радиосвязи с подвижными объектами обеспечивает обмен пакетами данных между бортовыми пользователями упомянутой системы (системой управления ПО) и наземными конечными пользователями системы радиосвязи - диспетчерскими пунктами (ДП) управления воздушным движением (УВД) и службами оперативного авиационного контроля (OAK), а также центром управления (ЦУ) системой обмена данными. Передачу данных в MB диапазоне с НК обеспечивают по цепочке последовательно соединенных первого ПО, второго ПО и далее до N-го ПО, а передачу данных с N-го ПО на НК осуществляют в обратном порядке. Наземную сеть передачи данных подключают двухсторонними интерфейсами к каждому из М разнесенных территориально НК. Таким образом, наземной сетью передачи данных объединяют между собой все НК по информационному взаимодействию и обеспечивают соединение каждого НК с наземными пользователями системы радиосвязи и центром управления системой связи, основной задачей которого является частотная диспетчеризация - назначение разрешенных частот MB и ДКМВ связи для НК и ПО через наземную сеть связи.

Передачу данных «воздух-земля» в MB диапазоне между ПО и НК осуществляют на рабочей частоте, назначаемой ЦУ для каждого НК. Передачу данных «воздух-воздух» в MB диапазоне между ПО осуществляют на рабочей частоте «воздух-воздух», также назначаемой ЦУ. Список частотной поддержки MB связи, содержащий список М наземных комплексов с их адресами, координатами, назначенными им частотами, а также частотой связи «воздух-воздух», разрабатывают в ЦУ и доводят по наземной системе связи до каждого НК, а также во время предполетной подготовки до каждого ПО.

Передачу данных в ДКМВ диапазоне между ПО и НК осуществляют на рабочей частоте, назначаемой ЦУ для каждого НК по результатам долгосрочного прогноза на каждые 2 часа. В центре управления системой связи по долгосрочному прогнозу разрабатывают таблицу частотно-временного расписания ДКМВ связи для каждого НК на сутки и доводят до НК по наземной системе связи. В ЦУ также разрабатывают системную таблицу ДКМВ связи, содержащую список М наземных комплексов системы связи с их координатами, адресами и таблицами их частотно-временного расписания, и доводят до каждого ПО во время предполетной подготовки через наземную сеть передачи данных.

Недостатки прототипа, на устранение которых направлено изобретение, следующие:

- при выполнении подвижным объектом маневра с изменением крена или тангажа наблюдается затенение его конструкцией, например, крыльями или фюзеляжем направления прямой видимости с антенн ПО на наземный комплекс, что приводит к резкому снижению мощности принимаемых радиосигналов и соответственно к уменьшению достоверности передаваемой информации в каналах «воздух-земля» MB диапазонов;

- большое число радиотехнических средств на подвижном объекте, имеющих в своем составе приемные и передающие антенны, приводит к увеличению массы ПО и снижению его летно-технических характеристик.

Задачей, на решение которой направлено заявляемое изобретение, является повышение достоверности передаваемой информации в каналах «воздух-земля» MB диапазонов и сокращение количества приемных и передающих антенн подвижного объекта.

Поставленная задача решается за счет:

- специального размещения на ПО переключаемых приемных и передающих антенн подвижного объекта таким образом, чтобы независимо от выполняемого маневра между ПО и НК или между двумя ПО, у которых должен состояться сеанс связи, всегда была прямая видимость и передача/прием данных должна осуществляться с соответствующих антенн;

- объединения потоков радиосигналов разных частот с помощью полосовых фильтров, выполненных на диплексорах, что позволило сократить количество приемных и передающих антенн подвижного объекта.

Техническим результатом изобретения является:

- повышение надежности связи за счет автоматического выбора направления прямой видимости с ПО на НК или между двумя подвижными объектами, независимо от выполняемого подвижным объектом маневра;

- более обтекаемая форма конструкции ПО, что позволяет увеличить его скорость и уменьшить расход горючего.

Указанный технический результат достигается тем, что в известной системе радиосвязи с подвижными объектами, имеющей в своем составе М территориально разнесенных наземных комплексов связи и N подвижных объектов, связанных между собой каналами связи «воздух-воздух» MB диапазона, а также с помощью каналов радиосвязи «воздух-земля» MB и ДКМВ диапазонов - с М наземными комплексами, которые соединены между собой и с внешними абонентами через наземную сеть передачи данных, каждый подвижный объект содержит К бортовых широкодиапазонных радиочастотных модулей, подключенных двухсторонними связями к соответствующим К входам/выходам бортового модуля физического уровня (МФУ), соединенного двухсторонними связями с модулем канального уровня (МКУ) вычислительного модуля связи, состоящего из последовательно соединенных двунаправленными интерфейсами модуля канального уровня, модуля маршрутизатора и модуля интерфейса, входы модуля интерфейса подключены к бортовым датчикам, приемнику глобальной навигационной спутниковой системы, а выход - к блоку регистрации данных, второй вход/выход подключен к бортовому анализатору типа принимаемых сообщений, третий вход/выход - к бортовому формирователю типа ретранслируемых сообщений, четвертый вход/выход - к бортовому вычислителю, связанному с помощью двунаправленного интерфейса с бортовой системой управления подвижным объектом, а каждый наземный комплекс содержит наземные антенны MB и ДКМВ диапазонов, связанные соответственно с наземными радиостанциями MB и ДКМВ диапазонов, подключенными двухсторонними связями через наземную аппаратуру передачи данных к первому входу/выходу вычислителя автоматизированного рабочего места (АРМ), второй вход/выход которого подключен к входу/выходу НК для наземной сети передачи данных, третий вход/выход - к формирователю типа ретранслируемых сообщений, четвертый вход/выход - к управляющему входу/выходу наземной радиостанции ДКМВ диапазона, а пятый вход/выход - к управляющему входу/выходу наземной радиостанции MB диапазона, первый вход вычислителя АРМ подключен к приемнику сигналов глобальных навигационных спутниковых систем, второй вход - к пульту управления АРМ, а выход - к монитору АРМ, К - необходимое число широкодиапазонных радиочастотных модулей для получения заданных показателей достоверности передачи информации, в состав каждого ПО введены блок определения положения ПО в пространстве, подключенный двухсторонними связями к соответствующему входу/выходу бортового вычислителя и к управляющему входу/выходу высокочастотного коммутатора, К входов/выходов которого подключены к входам/выходам К бортовых широкодиапазонных радиочастотных модулей, а n·К входов/выходов (n=2, 3, …; n<К) - к входам/выходам n групп, состоящих из К соответствующих диплексоров, объединенные входы/выходы каждой группы из К диплексоров подключены к широкодиапазонной антенне, (К+1)-й диплексор каждой группы с радиочастотными входами/выходами для радиоэлектронного оборудования подвижного объекта также подключен к соответствующей широкодиапазонной антенне, управляющие входы/выходы бортовых широкодиапазонных радиочастотных модулей, МКУ и МФУ соединены с соответствующими входами/выходами бортового вычислителя, который имеет вход/выход для загрузки данных.

Структурная схема заявляемой системы радиосвязи с подвижными объектами представлена на фиг.1, где введены обозначения:

1 - наземный комплекс связи;

2 - вход/выход НК 1 для наземной сети передачи данных;

3 - подвижный объект, структурная схема которого приведена на фиг.2;

4 - вход/выход наземной сети передачи данных, которая условно показана на фиг.1 в виде линии.

Система радиосвязи с ПО содержит М территориально разнесенных наземных комплексов связи 1, структурная схема которых приведена на фиг.3, и N подвижных воздушных объектов 3, оснащенных бортовыми комплексами связи, связанных между собой каналами 29 связи «воздух-воздух» MB диапазона, а с помощью каналов 30 радиосвязи «воздух-земля» MB и 31 ДКМВ диапазонов - с М наземными комплексами 1, которые объединены между собой и наземными пользователями (ДП УВД и OAK и другими, не указанными на фиг.1) с помощью входов/выходов 2 и входов/выходов 4 наземной сети передачи данных.

Структурная схема оборудования подвижного объекта 3 заявляемой системы радиосвязи приведена на фиг.2, где введены обозначения:

5 - бортовой вычислитель;

6 - бортовые датчики;

7 - бортовой приемник сигналов глобальной навигационной спутниковой системы, например, ГЛОНАСС/GPS, с антенной;

8 - блок регистрации данных;

9 - бортовой анализатор типа принимаемых сообщений;

10 - бортовой формирователь типа ретранслируемых сообщений;

11 - вычислительный модуль связи (ВМС);

12 - модуль интерфейсов с оборудованием ПО 3 (МИ);

13 - модуль маршрутизации (ММ);

14 - модуль канального уровня (МКУ);

15 - модуль физического уровня (МФУ);

16 - бортовой широкодиапазонный радиочастотный модуль (ШД РМ);

17 - высокочастотный коммутатор;

18 - двунаправленная шина системы управления подвижным объектом;

32 - диплексор;

33 - бортовая широкодиапазонная антенна (ШДА);

34 - вход/выход для загрузки данных;

35 - радиочастотные входы/выходы для радиоэлектронного оборудования ПОЗ;

36 - блок определения положения ПО в пространстве.

На фиг.2 приведены для примера 3 из К модулей 16, связанных с высокочастотным коммутатором 17, и две из n групп, состоящих из К соответствующих диплексоров 32 и одной ШДА 33. К бортовых широкодиапазонных радиочастотных модулей 16 подключены двунаправленными связями к модулю 15 физического уровня, который имеет двухсторонний цифровой интерфейс с модулем 14 канального уровня, связанным двухсторонним цифровым интерфейсом с модулем 13 маршрутизации, подключенным в свою очередь двухсторонним цифровым интерфейсом к модулю 12 интерфейсов, входы которого подключены к бортовым датчикам 6, приемнику 7 глобальной навигационной спутниковой системы, выход подключен к блоку 8 регистрации данных, второй вход/выход подключен к бортовому анализатору 9 типа принимаемых сообщений, третий вход/выход - к бортовому формирователю 10 типа ретранслируемых сообщений, четвертый вход/выход - к бортовому вычислителю 5, связанному с помощью двунаправленного интерфейса 18 с бортовой системой управления ПО 3, а также с управляющими входами/выходами бортовых широкодиапазонных радиочастотных модулей, МКУ и МФУ. (К+1)-й диплексор с радиочастотными входами/выходами для радиоэлектронного оборудования также подключен к соответствующей широкодиапазонной антенне. Бортовой вычислитель имеет вход/выход для загрузки данных.

Структурная схема наземного комплекса связи 1 заявляемой системы радиосвязи с подвижными объектами представлена на фиг.3, где обозначено:

19 - наземная антенна MB диапазона;

20 - наземная радиостанция MB диапазона;

21 - наземная антенна ДКМВ диапазона;

22 - наземная радиостанция ДКМВ диапазона;

23 - наземная аппаратура передачи данных (АПД);

24 - вычислитель автоматизированного рабочего места (АРМ);

25 - наземный приемник сигналов глобальных навигационных спутниковых систем с антенной;

26 - формирователь типа ретранслируемых сообщений;

27 - монитор АРМ;

28 - пульт управления АРМ.

В НК 1 наземные антенны 19 MB и 21 ДКМВ диапазонов связаны соответственно с радиостанциями 20 MB и 22 ДКМВ диапазонов, подключенными двухсторонними связями через аппаратуру передачи данных 23 к первому входу/выходу вычислителя 24 автоматизированного рабочего места, второй вход/выход которого подключен к входу/выходу 2 НК 1 для наземной сети передачи данных, третий вход/выход - к формирователю 26 типа ретранслируемых сообщений, четвертый вход/выход - к радиостанции 22 ДКМВ диапазона, пятый вход/выход - к радиостанции 20 MB диапазона, первый вход подключен к приемнику 25 сигналов глобальных навигационных спутниковых систем, например, ГЛОНАСС/GPS, второй вход - к пульту 28 управления АРМ, а выход - к монитору 27 АРМ.

Система радиосвязи с подвижными объектами работает следующим образом. Передачу данных в MB диапазоне с НК 1, если обслуживаемый подвижный объект от него находится за пределами прямой (оптической) видимости, осуществляют по цепочке последовательно соединенных первого ПО 3, второго ПО 3 и далее до М-го ПО 3, а передачу данных с М-го ПО 3 на НК 1 осуществляют в обратном порядке. Передачу данных в ДКМВ диапазоне с ПО 3 осуществляют на НК 1, качество сигнала маркера которого является наилучшим или приемлемым для ПО 3. Наземную сеть передачи данных подключают двухсторонними интерфейсами 2 к каждому из М разнесенных территориально НК 1. Таким образом, наземной сетью передачи данных по информационному взаимодействию объединяют между собой все НК 1 и обеспечивают соединение каждого НК 1 с наземными пользователями системы радиосвязи.

Алгоритм обмена данными в заявляемой системе радиосвязи с ПО заключается в том, что в ней для повышения достоверности передачи информации проводят следующие операции:

- разрабатывают список частотной поддержки MB связи, в котором указывают список М наземных комплексов связи 1 с их адресами, координатами, поддерживаемыми ими режимами работы, наборами разрешенных для каждого НК 1 частот MB связи, доводят список частотной поддержки до каждого ПО 3 через систему наземной связи и в процессе предполетной подготовки по входу/выходу 34;

- производят излучение сигналов маркеров на каждом НК 1 на каждой разрешенной MB частоте, которые являются сигналами связи/управления/синхронизации, например, с периодом 2 минуты. Сигналы маркеров разносят во времени, чтобы на ПО 3 можно было оценить качество сигналов разных НК 1 и выбрать НК 1 для связи;

- выбирают лучшую частоту связи на каждом ПО 3 по результатам оценки качества принятых сигналов маркеров разных НК 1 для каждого диапазона волн (ДКМВ и MB) и регистрируют ПО 3 на выбранных частотах MB и ДКМВ каналов;

- выбирают для передачи и приема данных в MB диапазоне ШДА 33, с которой при текущем положении ПО в пространстве и тенденции его движения обеспечивается прямая (оптическая) видимость обслуживающего НК 1 или выбранного для связи соседнего подвижного объекта, и переключают на нее с помощью высокочастотного коммутатора 17 и соответствующего диплексора 32 вход/выход одного из широкодиапазонных радиочастотных модулей 16 и вход/выход (К+1)-го диплексора 32 или одновременно вход/выход (К+1)-го диплексора 32 и входы/выходы нескольких ШД РМ 16 через соответствующее количество диплексоров 32;

- инициируют в MB диапазоне с помощью бортового вычислителя 5 и модулей 14, 15, 16 на каждом подвижном объекте процедуру поиска частоты при включении оборудования или после разъединения линии, если ПО 3 не может больше обнаружить пакеты данных от наземного комплекса 1 или от вызываемого подвижного объекта на текущей частоте, или, если подуровень управления протоколом доступа к каналу индицирует, что текущая частота перегружена. При этом настраивают ШД РМ на альтернативную частоту с помощью бортового вычислителя 5, используя данные из списка частотной поддержки, и, если качество сигналов маркеров на новой частоте удовлетворительное, регистрируют ПО 3 на новой частоте;

- осуществляют через выбранную ШДА 33 в MB диапазоне обмен пакетными данными «воздух-земля» на активном MB канале, например, в режиме множественного доступа к каналу с прослушиванием несущей (CSMA) или на активном канале «воздух-воздух» и «воздух-земля» в режиме множественного доступа к каналу с временным разделением и с самоорганизацией (STDMA);

- реализуют в наземной аппаратуре передачи данных 23 протоколы обмена данными в ДКМВ и MB каналах физического уровня (модемов-кодеков), канального и сетевого уровня, например, в соответствии с ARINC 618, 631, 635, 750, DO-224, ED-108 в режимах HFDL, VDL-1 (ACARS), VDL-2, VDL-4;

- реализуют в ПО 3 и НК 1 следующие процедуры управления связностью линии передачи данных MB диапазона:

- идентификацию НК 1;

- начальную установку линии;

- модификацию параметров линии;

- «хэндофф», инициируемый ПО 3;

- «хэндофф», инициируемый НК 1 по запросу ПО 3;

- «хэндофф», инициируемый НК 1;

- «хэндофф», инициируемый ПО 3 по запросу НК 1;

- широковещательный «хэндофф» по запросу НК 1;

- автонастройку;

- назначают свой набор разрешенных частот ДКМВ связи на сутки и более в зоне ответственности каждого НК 1;

- назначают активную ДКМВ частоту из набора разрешенных частот для каждого НК 1 на временной интервал длительностью 1-2 часа, оптимальную по условиям распространения радиоволн и электромагнитной совместимости для данного временного интервала, отличающуюся от активных частот всех других НК 1 системы связи, и доводят номер активной частоты вместе с интервалом времени ее активизации до каждого НК 1 через наземную сеть передачи данных, реализуя, таким образом, протокол множественного доступа с частотным разделением (FDMA). Первый слот кадра используют для излучения каждым НК 1 сигналов связи/управления/синхронизации, называемых маркерами;

- назначают каждой разрешенной ДКМВ частоте свой временной сдвиг первого кадра протокола множественного доступа к каналу с временным разделением (TDMA) относительно ведущего кадра, привязанного к 00 час 00 мин 00 сек универсального координированного времени UTC для того, чтобы сигналы маркеров на разных частотах излучались НК 1 в разнесенных временных слотах для сокращения времени анализа качества принятых каждым подвижным объектом 3 маркеров;

- разрабатывают системную таблицу ДКМВ связи, в которой указывают список М наземных комплексов связи 1 с их адресами, координатами, поддерживаемыми ими режимами работы и набором разрешенных частот с указанными сдвигами первого кадра каждой частоты;

- доводят системную таблицу ДКМВ связи до всех НК 1 и всех ПО 3 по наземной сети передачи данных и в процессе предполетной подготовки;

- осуществляют обмен пакетными данными на каждом НК 1 через наземную сеть передачи данных с пользователями системы связи, а также с другими (М-1) НК 1;

- разбивают на временные кадры, например, длительностью 32 с, время использования каждого ДКМВ частотного канала, а каждый кадр разбивают на 13 временных слотов, длительностью 2,461538 с для реализации протокола множественного доступа к каналу с временным разделением (TDMA). В первом слоте каждого кадра излучают сигнал маркера, содержащий квитанции на все сообщения, принятые НК 1 от разных ПО 3 в предыдущих двух кадрах, активные частоты двух соседних НК 1, версию базы данных (системной таблицы), назначения использования слотов с 4-го по 13-й текущего кадра и слотов 2-го и 3-го следующего кадра, а также флаг занятости канала. В конце каждого кадра для каждого слота следующего кадра производят назначение его использования для передачи с НК 1 или для передачи с конкретного ПО 3 по его предварительному запросу слота доступа, или для передачи с любого ПО 3 в режиме случайного доступа;

- осуществляют обмен пакетными данными «воздух-земля» на каждом активном ДКМВ канале в режиме с множественным доступом;

- инициируют в ДКМВ диапазоне на каждом подвижном объекте процедуру поиска частоты при включении оборудования или после разъединения линии, если ПО 3 не может больше обнаружить маркеры от наземного комплекса 1 на текущей частоте. После автовыбора частоты и регистрации на новом канале производят обмен пакетными данными в режиме TDMA с НК 1, на котором ПО 3 зарегистрирован, до тех пор, пока качество ДКМВ радиоканала «воздух-земля» превышает допустимый уровень. При ухудшении качества ДКМВ радиоканала ниже допустимого уровня выбирают новый ДКМВ радиоканал и соответствующий ему НК 1, независимо от местоположения НК 1, и регистрируют ПО 3 на новом ДКМВ радиоканале;

- формируют в конечных системах ПО 3 (5, шина 18) сообщения в ДКМВ диапазоне к наземным потребителям, содержащие адрес получателя и адрес отправителя (адрес борта ПО 3), и передают через модуль 12 интерфейса в бортовой модуль 13 маршрутизатора, где его упаковывают, например, в виде пакета ISO 8208 и в модуле 14 канального уровня преобразуют в пакет канального уровня сети передачи данных, содержащий проверочные последовательности, вычисленные с помощью избыточного циклического кода (CRC). Полученные сообщения передают в модуль 15 физического уровня, где осуществляют операции:

- сверточное кодирование данных для прямой коррекции ошибок;

- перемежение данных для борьбы с пакетированием ошибок из-за замираний и импульсных помех;

- преобразование последовательности из трех или двух, или одного бита в зависимости от скорости передачи данных и вида модуляции 2-ФМн, 4-ФМн или 8-ФМн соответственно, например, в значения фазы сигнала поднесущей 1440 Гц;

- скремблирование данных для выравнивания спектра передаваемого сигнала;

- формирование ключевой синхронизирующей последовательности и преамбулы, содержащей известную последовательность для обучения адаптивного демодулятора, и информацию о скорости передачи данных и глубине перемежителя;

- формирование коротких обучающих последовательностей, которые вставляют в поток передаваемых данных пользователя, для реализации адаптивных методов приема сообщения;

- формирование заданной формы огибающей каждого символа для обеспечения заданной спектральной маски излучаемого сигнала;

- формирование ДКМВ сигнала, например, с верхней боковой полосой с подавленной несущей с классом излучения 2K80J2DEN.

Сформированный для передачи однотоновый ДКМВ сигнал многопозиционной фазовой манипуляции (M-PSK, М=2, 4 или 8) с выхода модуля 15 физического уровня подают на вход широкодиапазонного радиочастотного модуля 16, где его усиливают до требуемого уровня мощности, подают через соответствующие узлы 17 и 32 на ШДА 33 и по ДКМВ радиоканалу 31 передают на наземный комплекс 1, на котором зарегистрирован ПО 3.

На НК 1 радиосигнал ДКМВ диапазона от ДКМВ антенны 21 подают на (одну или несколько в зависимости от заданного количества одновременно обслуживаемых ПО 3) наземную радиостанцию 22 ДКМВ диапазона, работающую в симплексном режиме, например, в соответствии с протоколом TDMA. С выхода радиостанции 22 сообщение подают на вход аппаратуры 23 передачи данных, где его демодулируют, дескремблируют, деперемежают, декодируют с прямой коррекцией ошибок, проверяют на наличие не исправленных декодером ошибок. В случае отсутствия ошибок сообщение упаковывают, например, в пакет ISO 8208 и выдают на вход вычислителя АРМ 24, где его вновь упаковывают в пакет, предназначенный для передачи, например, по протоколу Х.25, по наземной сети передачи данных потребителям информации.

При передаче пакета по протоколу Х.25 по наземной сети передачи данных в обратном направлении от потребителей информации через НК 1 к ПО 3 вначале его обрабатывают в вычислителе АРМ 24 наземного комплекса 1, где из него формируют, например, пакет ISO 8208, необходимый для линии передачи данных «воздух-земля». С выхода вычислителя АРМ 24 сообщение передают в аппаратуру 23 передачи данных, где его упаковывают в пакет канального уровня, содержащий проверочные последовательности, вычисленные с помощью избыточного циклического кода (CRC), и осуществляют процедуры, аналогичные рассмотренным ранее в модуле 15 физического уровня.

Сформированный в АПД 23 однотоновый сигнал многопозиционной фазовой манипуляции (M-PSK, М=2, 4 или 8) в полосе звукового канала ОБП шириной 3 кГц подают на вход радиостанции 22 ДКМВ диапазона, где его используют для формирования ДКМВ радиосигнала, например, с верхней боковой полосой и подавленной несущей с классом излучения 2K80J2DEN, усиливают до требуемого уровня мощности, затем через антенну 21 ДКМВ диапазона передают по ДКМВ радиоканалу 31 на ПО 3.

На ПО 3 радиосигнал ДКМВ диапазона через выбранную ШДА 33, соответствующий диплексор 32, высокочастотный коммутатор 17 поступает на ШД РМ 16. Затем сообщение подают на вход МФУ 15, где его демодулируют, дескремблируют, деперемежают, декодируют с прямой коррекцией ошибок и выдают в МКУ 14, где его проверяют на наличие не исправленных декодером ошибок и в случае отсутствия ошибок упаковывают, например, в пакет ISO 8208 и выдают на вход ММ 13 для преобразования в пакет, предназначенный для передачи через МИ 12 к бортовым пользователям (блокам 5, 8, 9 или на шину 18).

В процессе обмена пакетными данными в MB диапазоне при передаче пакета от ПО 3 к наземным пользователям на каждом ПО 3 пакетное сообщение формируют в бортовой конечной системе (шина 18, бортовой вычислитель 5). Сообщение, содержащее адрес получателя и адрес отправителя (адрес ПО 3), передают от бортового вычислителя 5 через модуль 12 интерфейса в модуль 13 маршрутизатора, где его упаковывают, например, в пакет ISO 8208 сетевого (пакетного) уровня. Затем сообщение передают через модуль 14 канального уровня, где его упаковывают, например, в пакет канального уровня, содержащий проверочные последовательности, вычисленные с помощью избыточного циклического кода (CRC), в модуль 15 физического уровня, где осуществляют:

- кодирование данных, например, кодом Рида-Соломона для прямой коррекции ошибок;

- перемежение данных для борьбы с пакетированием ошибок из-за замираний и импульсных помех;

- преобразование последовательности, например, трех бит данных в значение фазы символа сигнала, относительное кодирование фазы соседних символов для реализации относительной 8-ми позиционной фазовой манипуляции (D8PSK);

- скремблирование данных для выравнивания спектра передаваемого сигнала;

- формирование ключевой синхронизирующей последовательности и преамбулы, содержащей известную последовательность для обучения адаптивного демодулятора;

- формирование заданной формы огибающей каждого символа, например, типа приподнятого косинуса с α=0,6 для обеспечения заданной спектральной маски излучаемого сигнала;

- формирование MB сигнала с классом излучения, например, 14K0G1DE - с полосой, занимаемой сигналом 14 кГц, фазовой модуляцией (G) несущей одного цифрового канала без поднесущей, передачей данных (D) и многоусловным кодированием (Е).

Сформированный для передачи, например, однотоновый сигнал 8-ми позиционной относительной фазовой манипуляции с выхода модуля 15 подают на вход широкодиапазонного радиочастотного модуля 16, где его усиливают до требуемого уровня мощности и через соответствующие узлы 17, 32, выбранную ШДА 33 и MB радиоканал 30 передают на наземный комплекс 1, на котором зарегистрирован ПО 3, или на выделенный для обмена данными подвижный объект 3.

На каждом НК 1 радиосигнал от MB антенны 19 подают через (одну или несколько в зависимости от заданного числа одновременно обслуживаемых ПО 3) наземную радиостанцию 20 MB диапазона на вход аппаратуры 23 передачи данных, где демодулируют, дескремблируют, деперемежают, декодируют с прямой коррекцией ошибок, проверяют на наличие не исправленных декодером ошибок. В случае отсутствия ошибок из него формируют, например, пакет ISO 8208 и выдают на вход вычислителя 24 АРМ, где его вновь упаковывают в пакет, предназначенный для трансляции, например, по протоколу Х.25, по наземной сети передачи данных потребителям.

При передаче пакета в обратном направлении (от потребителей к ПО 3) сообщение по входу/выходу 2 НК 1 передают в вычислитель 24 АРМ НК 1, где формируют пакет, например, в соответствии с ISO 8208, который передают в аппаратуру 23 передачи данных, где его упаковывают в пакет канального уровня, содержащий проверочные последовательности, вычисленные с помощью избыточного циклического кода (CRC), и осуществляют процедуры, аналогичные рассмотренным ранее в модуле 15 физического уровня при формировании сигнала MB диапазона.

На ПО 3 радиосигнал через выбранную ШДА 33, узлы 32, 17 подают на ШД РМ 16, с выхода которого сообщение поступает на вход МФУ 15, где его демодулируют, дескремблируют, деперемежают, декодируют с прямой коррекцией ошибок, и затем выдают в МКУ 14, где его проверяют на наличие не исправленных декодером ошибок. В случае отсутствия ошибок сообщение упаковывают в пакет, например, в соответствии с ISO 8208 и выдают на вход ММ 13, где его формируют для передачи через МИ 12 бортовым пользователям (блокам 5, 8, 9 или на шину 18).

В системе разрабатывают системную таблицу связи, содержащую координаты НК 1, их адреса, разрешенные частоты связи, режимы передачи данных, которые они поддерживают в MB и ДКМВ диапазонах, временное расписание излучения сигналов маркеров на каждой частоте ДКМВ диапазона, геометрические размеры соответствующего ПО 3, места установки на нем ШДА 33, электронную карту местности по возможным маршрутам движения ПО 3 и доводят до каждого НК 1 по наземной сети передачи данных через вход/выход 2 и до всех ПО 3, обслуживаемых системой во время предполетной подготовки по входу/выходу 34.

На ПО 3 начинают анализировать сигналы маркеров MB и ДКМВ диапазонов, например, для воздушного судна, находясь на стоянке в зоне аэропорта после включения питания и проведения автоматического встроенного контроля технической исправности. Независимо от функционирования канала связи MB диапазона ПО 3 постоянно поддерживает канал связи ДКМВ диапазона с тем НК 1, качество канала с которым является наилучшим или приемлемым.

Во время движения на каждом ПО 3 обеспечивают автоматический выбор рабочей частоты из списка разрешенных частот, регистрацию на НК 1 на выбранном канале, случайный или резервированный доступ к каналу связи в режиме множественного доступа с временным разделением, обмен данными с территориально разнесенными наземными комплексами 1, объединенными с помощью наземной сети передачи данных в единую систему.

В системе радиосвязи ведут обмен навигационными и другими данными по радиолинии связи MB диапазона между наземным комплексом 1 и подвижными объектами 3, находящимися в пределах радиогоризонта НК 1. Принимаемые наземной радиостанцией 22 из канала «воздух-земля» сообщения через аппаратуру 23 передачи данных подают в наземный вычислитель 24 АРМ, который может быть выполнен на базе серийной ПЭВМ. В нем в соответствии с принятым в системе протоколом обмена проводят идентификацию (