Способ флексографической печати, включающий возможность печати по влажному слою

Иллюстрации

Показать все

Изобретение относится к способу флексографической печати, включающему возможность печати по влажному слою и основанному на контролируемом осаждении полимера или сегментов полимера, которое приводит к гелеобразованию соединений типографской краски благодаря контролю параметра растворимости системы типографской краски. Механизм получения требуемого захвата краски при печати по влажному слою заключается в образовании и/или присутствии геля в нанесенной пленке типографской краски благодаря контролируемому физико-химическому механизму осаждения смолы. Этого добиваются либо в результате контролируемого изменения параметра растворимости Хансена жидкости в типографской краске вследствие испарения некоторой или всей части нереакционноспособного и летучего растворителя, либо в альтернативном варианте в результате использования полимера, содержащего два различных и отдельных сегмента, один из которых является растворимым в смеси мономер/олигомер, а другой из которых - нет. Нерастворимые сегменты образуют обратимый гель, который разжижается с образованием жидкости под действием сдвига в процессе нанесения, что делает возможным нанесение жидкой типографской краски. При этом гель повторно образуется в нанесенной пленке типографской краски таким образом и с такой прочностью, чтобы сделать возможной печать поверх по способу флексографической печати по влажному слою. 4 н. и 23 з.п. ф-лы, 12 ил., 12 табл., 3 прим.

Реферат

Область техники, к которой относится изобретение

Данное изобретение относится к способу флексографической печати, включающему возможность печати по влажному слою, который делает возможным контролируемое гелеобразование, основанное на осаждении полимера или его сегментов в рецептурах типографских красок, вызывая образование геля, характеризующегося механической прочностью, подходящей для обеспечения требуемого захвата краски в способе флексографической печати по влажному слою. Данное контролируемое осаждение осуществляют в результате непрерывного контроля параметра растворимости Хансена системы типографской краски. Способ печати по влажному слою возможен с использованием или без использования промежуточного высушивания на воздухе при значительно уменьшенном или нулевом выделении ЛЕТУЧИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ (ЛОС), значительно уменьшенном использовании энергии и наличии одной стадии конечного отверждения под действием излучения УФ или ЭП. Изобретение также относится к типографской краске и печатающему аппарату для реализации способа. Способ также является подходящим для типографской печати.

Уровень техники

Флексографическая печать стала основным способом печати при получении гибких упаковок для пищевых и непищевых продуктов, в особенности в Северной и Южной Америке, и приблизительно составляют половину производства глубокой печати в Европе.

В Азии и на Среднем Востоке доля флексографической печати все более возрастает, поскольку качество ее продолжает улучшаться, и в настоящее время легко достигают возможности печати символов азиатских языков.

С момента изобретения флексографической печати в нее было внесено множество усовершенствований, подобных анилоксовым валикам, которые увеличивают воспроизводимости накатывания краски, и введению закрытой камеры для накатывания краски, которая уменьшает воздействие летучих растворителей, присутствующих в типографской краске, и сохраняет стабильную вязкость типографской краски в течение продолжительных периодов времени. Само собой разумеется, что за последние 10 лет фотополимеры внесли один из наибольших вкладов в качество, а за ними последовало прямое лазерное гравирование. Это стимулировало разработку лучших типографских красок, и одно из наиболее важных свойств данных лучших типографских красок составляет насыщенность их цвета.

Между качеством печати и разрешением растрирования, растрированием анилоксового валика и объемом типографской краски, в частности, насыщенностью цвета типографской краски, наблюдается взаимосвязь. Для улучшения качества печати обязательным является также и увеличение используемого растрирования. При глубокой и офсетной печати используют от 150 до 200 строк на один дюйм (от 59,1 до 78,7 строки на один сантиметр), в то время как при растрировании традиционной флексографической печати требуются диапазоны от 100 до 140 строк на один дюйм (от 39,4 до 55,1 строки на один сантиметр). Возможность избегать проникновения наименьших растровых точек на форме в ячейки анилоксового валика определяет взаимосвязь между растрированием форм и растрированием анилоксового валика, поскольку для анилоксового валика данное соотношение является приблизительно в 6-8 раз большим, чем для форм.

Для печати при 200 строках на один дюйм (78,7 строки на один сантиметр) необходимо иметь анилоксовый валик при 1200-1600 строках на один дюйм (472,4-629,9 строки на один сантиметр), а по мере увеличения строк анилоксового валика объем транспортируемых типографских красок быстро уменьшается даже и при использовании новой технологии лазерного гравирования ИАГ для доставки большего объема на анилоксовые валики, при этом все еще сохраняются потребности в более насыщенных типографских красках для достижения указанных интенсивностей цвета при печати.

Приведенная ниже таблица 1 демонстрирует таблицу для стандартного анилоксового валика, доступную в настоящее время для флексографической печати.

Таблица 1
Растрирование анилоксового валика в зависимости от объема
L/inch 150 205 250 305 355 410 460 510 560 610 660 710 760 815 865 915 965 1020 1120 1220 1320 1400 1500
ММин.1 99.0 77.0 55..5 44.5 33.8 33.2 22.9 22.7 22.4 22.2 11.7 11.6 11.5 11.5 11.4 11.4 11.4 11.3 11.2 11.2 11.2 11.0 11.0
ММакс1 118.0 114.0 111.5 99.5 77.2 66.2 55.3 550 44.2 33.8 33.2 44.4 44.2 44.0 44.0 33.5 33.0 22.9 22.6 22.4 22.0 11.8 11.6
1 - Объем в МКМ (миллиардах кубических микронов на один квадратный дюйм (кубических сантиметрах на один квадратный метр))

Уменьшенный объем при высоком растрировании анилоксового валика, как это продемонстрировано выше, представляет собой одно из больших ограничений для типографских красок традиционной флексографической печати, композиция которых содержит от 50% до 70% растворителя, что ухудшает возможность увеличения загрузки пигмента в типографскую краску и, следовательно, насыщенности цвета типографской краски.

При увеличении достижения высоких интенсивностей цветов, требуемых в способе флексографической печати, необходимо отметить трудность транспонирования на подложку всей типографской краски, имеющейся на анилоксовом валике, поскольку слой типографской краски частично остается на анилоксовом валике и на поверхностях печатной формы.

Высокий уровень содержания летучих органических соединений (ЛОС) и насыщенность цвета низкой интенсивности представляют собой две основные проблемы при флексографической печати, составляя задачу, требующую решения: получение типографской краски лучшего качества, а также разработка экологически безопасной типографской краски для способа флексографической печати.

Патент США 5690028 относится к вязкой радиационно-сшиваемой типографской краске и уменьшению вязкости типографской краски в результате ее нагревания перед нанесением. После нанесения слой типографской краски охлаждается, и вязкость увеличивается еще раз до величины, достаточной для создания опоры при проведении печати поверх другим цветом и обеспечения достаточного захвата краски. Основной недостаток патента США 5690028, заключается в трудности контроля температуры типографской краски и обеспечения отсутствия каких-либо значительных вариаций в ходе реализации способа печати.

Решать данные проблемы многими различными способами пытались другие изобретения. В патенте США 6772683, включенном в настоящий документ посредством ссылки, предлагается использовать маловязкие типографские краски для флексографической печати, которые содержат разбавители, регулирующие вязкость, при проведении печати «по сырому» наносимыми впоследствии слоями типографской краски, контролируя время между нанесением слоев типографской краски. Однако, время, необходимое для испарения растворителя, является чрезмерно продолжительным.

Патент США 7479511 описывает рецептуру на водной основе, используя в основном те же самые концепции, что и вышеупомянутый документ US 6772683, для слоев типографской краски поверх которых может быть проведена печать, а также фокусируется на подвижности реакционноспособных материалов внутри конечной нанесенной пленки, поскольку отсутствие подвижности молекул может привести к низкой степени превращения по завершении процесса отверждения.

В дополнение к этому, для гарантии необходимой подвижности системы в целях достижения требуемой степени превращения в патенте США 7479511 используют определенное удерживание воды. Надлежащее количество воды представляет собой компромисс между минимальным уровнем удерживания и способностью выдерживать процесс печати поверх при флексографической печати.

В документе PCT/US2005/012603 предлагается слоистый материал, имеющий два и более слоя, которые могут быть отверждаемыми под действием высокоускоренных частиц, таких как электронный пучок. Слоистый материал включает подложку, рецептуру типографской краски по меньшей мере на части подложки. Рецептура типографской краски включает типографскую краску и мономер, отверждаемый в результате проведения свободно-радикальной или катионной полимеризации, и лак, содержащий по меньшей мере один мономер, отверждаемый в результате проведения свободно-радикальной или катионной полимеризации.

В обсуждавшихся выше решениях требуется внесение больших капиталовложений для добавления установок ультрафиолетового излучения (УФ) и излучения электронного пучка (ЭП), и даже стоимость типографских красок высока в сопоставлении со стоимостью традиционных типографских красок, содержащих растворитель. Данные патенты базируются в точности на том же самом принципе, который действует и в традиционной системе на основе растворителя, поскольку промежуточное высушивание в флексографических машинах с центральным раскатным цилиндром не является достаточно интенсивным для получения в результате полностью высушенного слоя типографской краски.

Свидетельство того, что высушивание между секциями в способе флексографической печати не способно обеспечить полное высушивание типографской краски, получено в непрерывно осуществляемом исследовании низкоклейких смол для содержащих растворитель типографских красок для флексографической печати, поскольку клейкость неполностью высушенной типографской краски создает проблемы в способе печати, в том числе, помимо прочего, в связи с захватом краски и припудриванием формы.

С другой стороны, повышенная вязкость обсуждавшихся выше типографских красок в результате приводит к трудности достижения полного превращения всех реакционноспособных материалов вследствие низкой подвижности, создаваемой высокой вязкостью, - проблемы, которую документ US 7479511 пытается разрешить в результате сохранения определенного количества воды вплоть до момента прохождения типографской краски через систему отверждения (ЭП или УФ) и в результате реализации сложного баланса присутствия воды.

Одна цель данного изобретения заключается в создании системы и способа флексографической печати совместно с осуществляемым поверх способом цветной печати в отсутствие растворителя или при пониженном количестве растворителей и в создании типографских красок, которые характеризуются повышенной насыщенностью цвета и демонстрируют хорошую адгезию к основным подложкам, в настоящее время имеющимся на рынке.

Еще одна цель данного изобретения заключается в создании композиций типографских красок, которые возможно использовать при печати по влажному слою и которые отверждаются только по окончании процесса, то есть при выходе из печатной машины, под действием ультрафиолетового излучения (УФ) или излучения электронного пучка (ЭП).

Сущность изобретения

Цель изобретения достигается созданием способа флексографической печати, включающего гелеобразование типографской краски сразу после нанесения на подложку, при этом упомянутый способ характеризуется двумя важными принципами: гелеобразование или образование геля типографской краски на подложке и использование параметра растворимости Хансена для достижения данного гелеобразования. Данный способ является способом цветной печати, наносимой поверх, который использует пониженный уровень содержания ЛЕТУЧИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ (ЛОС), что означает «пониженное количество растворителей». Кроме того, предложены типографские краски, которые характеризуются повышенной насыщенностью цвета и демонстрируют хорошую адгезию к основным подложкам, в настоящее время имеющимся на рынке.

В данном способе изменений параметра Хансена типографской краски добиваются при использовании печатной машины, которая способна изменять рецептуру типографской краски и ее растворимость при использовании устройств, которые контролируют физико-химические характеристики типографской краски, например, в каждом слое типографской краски перед нанесением на подложку и при использовании только конечного отверждения многослойной пленки типографской краски под действием надлежащего излучения (УФ/ЭП). Устройства, отвечающие за контроль физико-химических характеристик типографской краски, известны в современном уровне техники и обычно встречаются у специалистов флексографической печати.

Настоящее изобретение также описывает типографскую краску флексографической печати, отверждаемую под действием излучения УФ/ЭП, которая представляет собой гель, образованный из полимера и комбинации жидкостей, в основном состоящих из радиационно-отверждаемых мономеров и/или олигомеров, разбавителей, красителей, добавок и/или фотоинициаторов и необязательно небольших количеств нереакционноспособного растворителя. Данные соединения объединяют для создания системы, обладающей способностью подвергаться гелеобразованию во время так называемой фазы высушивания способа флексографической печати. Контролируемый гель представляет собой результат образования сетки из полимерных цепей или осаждения сегментов полимера с образованием такой сетки вследствие недостаточной растворяющей способности у жидких сред. Это возможно осуществить при использовании параметра растворимости Хансена, как это обсуждается в последующем изложении.

Краткое описание чертежей

Фиг.1 и фиг.2 демонстрируют схематическое представление для разъяснения теоретической концепции изменения и/или контроля параметра растворимости Хансена, которая обосновывает настоящее изобретение.

Фиг.3 демонстрирует схематическое представление традиционной флексографической печатной машины.

Фиг.4 демонстрирует флексографическую печатную машину, включающую возможность использования ЭП.

Фиг.5 демонстрирует флексографическую печатную машину, включающую возможность использования УФ.

Фиг.6 демонстрирует микрофотографию сетки геля, образованной поливиниловым спиртом в воде, при наличии характеристических каркасов полимера и большого объема свободного пространства, заполненного жидкостью. Фиг.6 также демонстрирует наноразмерную структуру полимерной сетки гидрогеля. Масштабная метка (внизу справа) представляет 0,2 микрометра. L.Pakstis and Pochan; From Science News, Volume 161, No. 21, May 25, 2002, p.323.

Фиг.7 схематически демонстрирует диаграмму параметров растворимости Хансена, включающую позиции некоторых предпочтительных мономеров, таких как ГДДА (1,6-гександиолдиакрилат), ТМПТА (триметилолпропантриакрилат), ТРПГДА (трипропиленгликольдиакрилат), и некоторых из наиболее подходящих растворителей, таких как гликолевые простые и сложные эфиры.

Фиг.8 представляет собой диаграмму оценки уровня содержания ЛЕТУЧИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ во время прогона печати и демонстрирует низкий уровень содержания ЛЕТУЧИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ настоящего изобретения при пиковом значении для ЛЕТУЧИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ, меньшем, чем 25 мг С/нм3 (миллиграммы углерода на один нормальный кубический метр воздуха).

Фиг. от 9 до 11 демонстрируют различные возможности по конструкции системы накатывания краски при флексографической печати, способной использовать подвергшиеся гелеобразованию типографские краски флексографической печати.

Фигура 12 демонстрирует график зависимости твердости геля от концентрации гелеобразующего вещества для поливинилбутираля (Butvar В76).

Подробное описание изобретения

В данном описании изобретения будут использованы следующие далее определения.

Вязкость определяют как сопротивление текучей среды (жидкости или газа) изменению формы или перемещению соседних частей друг по отношению к другу. Вязкость обозначает понятие, противоположное течению. Величина, обратная вязкости, представляет собой текучесть - меру легкости течения. Мелассы, например, имеют вязкость, большую, чем у воды. Вследствие перемещения части текучей среды, которую заставляют двигаться вдоль соседних частей, вязкость может восприниматься как внутреннее трение между молекулами; такое трение противостоит развитию различий скоростей в текучей среде.

Для множества текучих сред тангенциальное или сдвиговое напряжение, которое вызывает течение, прямо пропорционально скорости сдвиговой деформации или скорости деформации, которая получается в результате. Другими словами, сдвиговое напряжение, поделенное на скорость сдвиговой деформации, для заданной текучей среды при фиксированной температуре представляет собой константу. Данная константа называется динамической или абсолютной вязкостью, а зачастую просто вязкостью. В публикации (Encyclopedia Britannica) L.Z.Rogovina in Polymer Science Series С ISSN 1811-2382 (Print) 1555-614X (Online) DOI 10.1134/S1811238208010050 of 2008 предлагается следующее далее определение геля: «гель представляет собой твердое вещество, образованное по меньшей мере из двух компонентов, один из которых (полимер) образует трехмерную сетку благодаря формированию ковалентных или нековалентных связей (химические и физические гели, соответственно) в среде другого компонента (жидкости), где для обеспечения наличия эластичных свойств геля достаточным является минимальное количество жидкости, хотя оно может превышать количество полимера от десятков до сотен раз. Необходимо отметить то, что при высокой плотности сетки или при высокой жесткости полимерных цепей возможно образование хрупких гелей. Общий признак физических гелей заключается в существовании предела текучести».

Тот же самый автор в 1974 году опубликовал также следующее далее определение геля: «Гелем считается система полимер-растворитель, в которой полимер, присутствующий с очень низкой концентрацией, образует вполне стабильную трехмерную сетку в растворителе. Рассмотрению подвергаются свойства гелей, у которых сетка образуется как химическими, так и физическими связями; внимание в основном уделяется второй группе гелей, у которых вариация температуры приводит к обратимому переходу между гелем и раствором». (L. Z. Rogovina et al 191A Russ. Chem. Rev. 43 503-523 DOI: 10.1070/RC1974v043n06ABEH001821).

Определение параметра растворимости Хансена, встречающееся в Википедии, является простым, но полным и точным.

Параметры растворимости Хансена, также называемые принципом обратной растворяющей способности, разработал Чарльз Хансен в качестве способа предсказания растворимости одного материала в другом и образования раствора. Они базируются на идее о том, что подобное растворяется в подобном, где одну молекулу определяют как «подобную» другой, если она образует связь сама с собой подобным образом.

Говоря конкретно, каждой молекуле приписываются три параметра Хансена, каждый из которых в общем случае измеряют в МПа0,5:

- δd - энергия дисперсионных связей между молекулами;

- δр - энергия полярных связей между молекулами;

- δh - энергия водородных связей между молекулами.

Данные три параметра могут рассматриваться в качестве координат для точки в трех размерностях, также известных под наименованием пространства Хансена. Чем ближе будут две молекулы в данном трехмерном пространстве, тем более вероятным будет их растворение друг в друге. Для определения попадания параметров двух молекул (обычно растворителя и полимера) в пределы досягаемости друг друга растворяемому веществу придается величина, называемая радиусом взаимодействия (R0). Данная величина определяет радиус сферы в пространстве Хансена, а ее центр представляет собой три параметра Хансена. Для вычисления расстояния (Ra) между параметрами Хансена в пространстве Хансена используется следующая далее формула:

( R a ) 2 = 4 ( δ d 2 − δ d 1 ) 2 + ( δ p 2 − δ p 1 ) 2 + ( δ h 2 − δ h 1 ) 2

Объединение данной величины с радиусом взаимодействия дает относительную разницу энергии (ОРЭ) системы:

ОРЭ=Ra/R0.

При ОРЭ<1 молекулы являются подобными и будут растворяться. При ОРЭ=1 система будет растворяться частично, при ОРЭ>1 система растворяться не будет.

Обобщая различия между данными концепциями, необходимо определить то, что гель представляет собой двухфазную систему, образованную твердой фазой сетки, набухшей в жидкой фазе, а не одну фазу вязкой гомогенной жидкости. Собственно говоря, основным различием между двумя явлениями является образование двух фаз благодаря переходу второго порядка в момент гелеобразования вместо перехода первого порядка при увеличении вязкости.

Также одно очень важное различие между гелем и вязкими жидкостями заключается в том, что гель не характеризуется какой-либо определенной вязкостью, поскольку гель не обнаруживает значения предела текучести вплоть до разрушения геля и после того без какого-либо изменения рецептуры или температуры, а только при изменении приложенной скорости сдвига, гель характеризуется бесконечными вязкостями, что делает невозможным определение точной вязкости.

Печать «по сырому» или печать типографскими красками по влажному слою представляют собой способ печати, при котором первый слой типографской краски, осажденный в первой секции накатывания краски, не является сухим при нанесении поверх первого слоя второго слоя типографской краски во второй секции накатывания краски. Печать «по сырому» описывается, например, в публикации US 2003/0154871.

Первая цель изобретения предлагает способ флексографической печати, который включает следующие далее стадии:

a) печать на подложке первого слоя радиационно-отверждаемой типографской краски, подходящей для флексографической печати по влажному слою, при этом упомянутая типографская краска содержит комбинацию из одного или нескольких нереакционноспособных полимеров и необязательно одного или нескольких нереакционноспособных растворителей совместно по меньшей мере с одним реакционноспособным мономером и/или олигомером, пигментами и добавками, при этом упомянутый полимер (полимеры) является только частично растворимым в упомянутых мономере (мономерах) и/или олигомере (олигомерах) или растворимым после добавления нереакционноспособных растворителей;

b) переведение упомянутого напечатанного первого слоя типографской краски в гелеобразное состояние, при этом упомянутый слой гелеобразной типографской краски характеризуется прочностью, достаточной для выдерживания проведения последующих стадий печати;

c) последующую печать второго слоя типографской краски в жидком состоянии поверх по меньшей мере части упомянутого подвергшегося гелеобразованию первого слоя типографской краски, при этом упомянутый второй слой типографской краски при печати превращается в слой геля;

d) печать всех последовательных слоев типографских красок после стадий от а) до с) вплоть до того момента, когда на подложку будут нанесены все краски;

e) одновременное отверждение всех слоев типографских красок по окончании процесса при использовании излучения ЭП или УФ.

Осуществления требуемой нанесенной поверх многослойной печати в данном способе достигают благодаря гелеобразованию в каждом нанесенном слое перед нанесением последующего слоя при конечном отверждении многослойной пленки типографской краски под действием надлежащего излучения (УФ/ЭП). Данный механизм полностью отличается от обычного увеличения вязкости у жидкости, что имеет место во всех способах традиционной флексографической печати, а также используется в предшествующем уровне техники, описанном в обсуждавшихся выше патентах.

Контроль процесса гелеобразования лучше всего может быть проведен в случае регулирования и/или изменения параметра растворимости Хансена среды таким образом, чтобы система типографской краски стала неспособной сохранять выбранный полимер, или сегменты в выбранном полимере, в истинно растворенном состоянии, то есть, скажем, в растворе. Конечный результат данной контролируемой нерастворимости представляет собой осаждение полимера или сегмента полимера, ведущее к образованию набухшего геля, имеющего точки контакта, где полимеры или сегменты полимеров встречают друг друга. Данные полимерные структуры «соединяются» друг с другом, теряя способность оставаться в жидкости, где имеет место контролируемая нерастворимость. Другими словами, нерастворимые полимерные структуры ищут друг друга, характеризуясь подобными/идентичными параметрами растворимости Хансена. Они неспособны оставаться в жидкости, где параметры растворимости Хансена слишком сильно отличаются друг от друга для обеспечения наличия раствора, как это более, подробно обсуждается в последующем изложении.

Способ контролируемого гелеобразования создает сетку полимерных цепей, которая напоминает систему, подобную твердому веществу, по отношению к усилиям, которые действуют в способе флексографической печати поверх слоя. Данная относительная прочность представляет собой причину успешности способа печати поверх влажного слоя. Каждый подвергшийся гелеобразованию слой обладает самонесущей способностью, а также способностью без проблем воспринимать последующие слои краски.

Реализацию способа осаждения или гелеобразования можно контролировать, например, даже в случае испарения только небольшой части присутствующего нереакционноспособного растворителя. Некоторые полимеры образованы из отдельных блоков или сегментов, которые связаны в одну большую молекулу. В случае нерастворимости некоторых из сегментов полимера в мономерах и олигомерах, которые образуют по меньшей мере часть среды «растворителя» типографской краски, в то время как другие сегменты полимера будут действительно растворимыми в них, может оказаться, что система подвергшаяся гелеобразованию, физически связанная воедино нерастворимыми сегментами, сможет действовать без использования нереакционноспособных растворителей или при использовании их ограниченных количеств. В таких случаях только сдвиговые усилия могут превратить такие обратимые гели в жидкости, при этом гель на печатной поверхности быстро образуется повторно. Одним примером такой системы является сложный полиэфир (или сложный полиэфир, модифицированный маслом), который также содержит блоки или сегменты полиамида. Отличающиеся характеристики растворимости частей сложного полиэфира в сопоставлении с тем, что имеет место для частей полиамида, делают возможным гелеобразование, основанное на взаимной нерастворимости полиамидных частей в жидкости, которая действительно растворяет сложный полиэфир. В принципе также мог бы быть образован и обратный гель в результате растворения сегментов полиамида и осаждения сегментов сложного полиэфира, но жидкости, необходимые для этого, являются неподходящими с точки зрения охраны окружающей среды и практического применения по сравнению с теми, которые требуются для растворения сложного полиэфира. Полимеры, обладающие двойственной природой данного типа, также могут сделать возможной потребность в чрезвычайно малых количествах нереакционноспособных растворителей для получения требуемых гелей.

Для подвергшихся гелеобразованию пленок, полученных способом данного изобретения, печать поверх может быть проведена намного быстрее и намного легче по сравнению с тем, что имеет место для пленок, полученных по механизму увеличения вязкости предшествующего уровня техники; им придаются превосходные свойства захвата краски, которые в общем случае являются намного лучшими, чем в случае свойств печати «по сырому», получаемых при офсетной печати.

Во время осаждения полимеры в среде создают сетку, что в результате приводит к образованию системы, подобной твердому веществу, по отношению к усилиям, которые будут действовать в способе флексографической печати при печати поверх, и создает возможность реализации упомянутого способа печати поверх - то есть, способность нести и принимать другие слои красок на слоях, полученных при предварительной печати. В способе флексографической печати гель образуется мгновенно при нанесении в виде очень тонкого слоя при использовании типографских красок, характеризующихся очень высокими насыщенностями цвета. Нанесенный слой при флексографической печати в среднем варьируется в диапазоне от 0,3 до 2,5 микрона; благодаря действию поверхностной энергии подложки и ранее нанесенных слоев типографской краски (в случае наличия таковых) гелеобразование в способе печати может считаться мгновенным гел еобразованием.

Прочность геля предпочтительно выражают и идентифицируют, придавая гелю значение твердости в надлежащей шкале, такой как шкала Шора 00, при проведении измерения в соответствии с документом ASTM D2240-05 Standard Test Method for Rubber Property для свежеобразованного геля перед отверждением геля. В лабораторных условиях для измерения твердости геля требуется получение достаточно большого образца типографской краски (несколько сотен граммов) также и вследствие размера склерометра.

Данная флексографическая печать включает гелеобразование типографской краски сразу после нанесения на подложку при совершенно отличном подходе к разрешению компромисса между печатью «по сырому» и степенью отверждения. Решение проблемы заключается в полностью отличном состоянии системы, то есть система представляет собой гель, а не концентрированный раствор. По сравнению с современным уровнем техники, настоящее изобретение предлагает два важных принципа и отличия: гелеобразование или образование геля типографской краски на подложке и использование параметра растворимости Хансена для достижения данного гелеобразования.

В дополнение к этому, все перемешивание, проводимое во время фазы печати, прекращается после нанесения типографской краски на подложку, что создает существенное содействие гелеобразованию в нанесенном слое типографской краски.

Гелеобразное состояние основными исследователями материалов определяется как состояние, подобное состоянию твердого вещества, которое характеризуется огромной степенью подвижности жидкостей внутри системы, а также состояние, которое может быть возвращено в состояние жидкости под действием определенной величины тепла того же самого порядка, как и то, которое образуется в момент отверждения по экзотермической реакции.

Движение, вызываемое сдвиговыми усилиями, например, также может превращать гели в жидкости, в особенности в случае если полимер, образующий гель, содержит блоки или сегменты, которые являются нерастворимыми в жидкой фазе, в то время как некоторые другие части полимера будут истинно растворимыми в жидкой фазе. Сдвиговые усилия могут оказаться достаточными для растягивания подвергшихся гелеобразованию сегментов друг от друга, что позволяет им еще раз повторно образовывать гель, когда внешние сдвиговые усилия больше уже не будут действовать. Данная ситуация также может быть использована для получения типографских красок, демонстрирующих качество и эксплуатационные характеристики, подобные тем, которыми обладают типографские краски, содержащие пониженные количества нереакционноспособного летучего растворителя. В любом случае у типографских красок требуется контроль параметров растворимости Хансена, как это обсуждается в последующем изложении.

Изобретение относится к способу флексографической печати, включающему возможность печати по влажному слою (печати «по сырому»), основанному на гелеобразовании или временном растворении геля типографских красок флексографической печати в результате контроля параметра растворимости Хансена системы типографской краски. Механизм получения желательного захвата краски при печати по влажному слою основывается на гелеобразовании в нанесенной типографской краске при использовании контролируемого физико-химического механизма осаждения полимера. Это может быть осуществлено благодаря контролю параметра растворимости Хансена, например, в результате нагревания или в результате испарения нереакционноспособного и летучего растворителя, после чего остается жидкость, которая не растворяет заданный полимер или его сегменты.

Данный способ флексографической печати, включающий возможность печати по влажному слою, основан на контролируемом осаждении, приводящем к гелеобразованию рецептур типографских красок, в результате изменения параметра растворимости Хансена системы типографской краски при воздействии теплом на использующуюся типографскую краску с использованием или без использования промежуточного высушивания на воздухе и конечном отверждении под действием радиационных способов. В способе могут быть использованы радиационно-отверждаемые типографские краски, которые отверждают только после нанесения на подложку всех цветов. Типографская краска флексографической печати при ее нанесении на конечную подложку характеризуется вязкостью, меньшей, чем 4000 сПз, предпочтительно меньшей, чем 2500 сПз, а наиболее предпочтительно меньшей, чем 1000 сПз.

Данное изобретение анализирует то, что может быть определено обратной растворяющей способностью, обеспечивая контроль или изменение параметра растворимости Хансена среды таким образом, чтобы получить определенную модифицированную степень растворяющей способности или сольватации для выбранного полимера в целях получения гелеобразного, или подобного твердому, слоя типографской краски, характеризующейся достаточными прочностью и жесткостью для обеспечения реализации способа флексографической печати при печати поверх или способа типографской печати.

Большое преимущество данного принципа заключается в возможности получения данного явления при очень низком уровне содержания растворителя благодаря принципу действия параметров растворимости Хансена. Выбор полимера и жидкостей, которые будут составлять конечную рецептуру, может быть сделан таким образом, чтобы получить параметры растворимости Хансена несовместимой реакционноспособной жидкости в геле непосредственно на границе растворимости полимера или обеспечить только самую малую степень сольватации заданных сегментов полимера. Очень небольшие изменения количества надлежащего растворителя или величины модифицирования параметра растворимости реакционноспособной жидкости, характеризующихся надлежащими параметрами растворимости Хансена, могут регулировать переход состояния от жидкости к гелю или наоборот.

Настоящее изобретение, основанное на гелеобразовании типографской краски во время процесса печати, а именно, между двумя соседними секциями накатывания краски, делает возможной успешную практическую реализацию способа печати поверх. Как можно видеть на фиг.6, в настоящем изобретении используют как подвижность маловязкой жидкости по всему огромному свободному пространству в сетке полимерного геля, так и разрушение геля во время отверждения. Данное разрушение геля вызывается действием тепла, образующегося по экзотермической химической реакции во время отверждения. Как хорошо известно, физические гели являются очень чувствительными к воздействию тепла. Пленка еще раз становится жидкостью или подобной жидкости и может стекаться в единое целое с образованием прочного отвержденного отпечатка. Области растворимости, продемонстрированные на фиг.1, 2 и 7, увеличиваются при большей температуре, и жидкости, характеризующиеся параметрами растворимости Хансена непосредственно вне границы растворимости при комнатной температуре, при повышенной температуре становятся хорошими растворителями. В настоящем изобретении данный эффект способствует требуемому разжижению геля при повышенных температурах. Данная концепция положена в основу создания типографской краски, которая представляет со