Устройство "орган-на-чипе"

Иллюстрации

Показать все

Группа изобретений относится к медицине и биологии и может быть использована для культивирования, исследования и тестирования тестовых соединений на тканях, органоидах и нишах стволовых клеток в формате миниатюризированной интегральной схемы. Для этого предложены автономное устройство, способ его изготовления и применения для тестирования тестовых соединений на популяциях клеток, блок питания, а также способы культивирования клеток и органоидов, способ тестирования химических соединений на данных клетках. Автономное устройство «орган-на-чипе» содержит резервуары для подачи среды; секции роста органов с полостями для органов, в том числе, с полостью для стволовых клеток; резервуары для сброса среды. Полость для органов посредством микрожидкостных каналов соединена с резервуаром для подачи среды и резервуаром для сброса среды и может быть соединена и/или содержать датчики. Посредством заявленного автономного устройства осуществляют культивирование клеток и органоидов, путем загрузки суспензии клеток или среза ткани в полости для органов, герметизации данных полостей, а также тестирование тестовых соединений на клетках и органоидах с последующей их микроскопической оценкой и определением параметров среды указанными датчиками. Такое соединение «полости для органов» с резервуаром для сброса среды, объединенного с контролируемым датчиками устройством, обеспечивает долговременное культивирование клеток, в том числе, в живом организме, и возможность перемещения данного устройства без отсоединения жидкостных каналов от внешнего резервуара для сброса, что обеспечивает автономность функционирования устройства и расширение круга его использования в клеточных технологиях. 8 н. и 87 з.п. ф-лы, 8 ил.

Реферат

Настоящее изобретение относится к автономному, предпочтительно, контролируемому датчиками устройству «орган-на-чипе», которое позволяет осуществлять создание или поддержание органов или органоидов, а также ниш стволовых клеток в формате миниатюризированной интегральной схемы, пригодной для наблюдения в режиме прямого доступа путем получения изображений живой клетки и, например, двухфотонной микроскопии, и их применения для, например, тестирования активности, фармакодинамики и фармакокинетики химических соединений или для изучения самосборки, гомеостаза, повреждения, регенерации или взаимодействия органов или органоидов и ниш стволовых клеток, а также явлений созревания, старения, смерти и хронобиологии.

Известный уровень техники

Парадигма строгой корреляции между архитектурой и функциональностью применима ко всем уровням биологической жизни на Земле. Эти уровни увеличивающейся биологической сложности шаг за шагом возникали в ходе многих миллионов лет процесса эволюции. Жизнь, наиболее вероятно, возникла посредством небольших изменений окружения, которые создали возможность для самосборки, формирующей следующий уровень сложности. Считается, что для людей эти уровни представляют молекулы, клетки, органоидные ткани, органы, системы и, наконец, сами индивидуальные организмы. В настоящее время доказано, что почти все органы и системы построены из составных, идентичных, функционально самодостаточных структурных элементов. Эти органоидные элементы имеют чрезвычайно малые размеры - от нескольких клеточных слоев до нескольких миллиметров. Дольки печени, нефроны почки, дерма и эпидермис кожи, слизистая оболочка кишечника, островки Лангерганса поджелудочной железы, серое и белое вещество коры головного мозга и мозжечка, и способствующие состоянию покоя ниши взрослых стволовых клеток представляют собой лишь небольшую выборку примеров таких органоидных структур человека, и все они обладают выраженной функциональностью и высокоизменчивой геометрией конгломерата. По причине характерной функциональности, высокого уровня самодостаточности и множественности указанных микроорганоидов в соответствующем органе, модель их реакционной способности в отношении любых химических веществ представляется репрезентативной для всего органа. Для реализации наиболее значительных функций органов и систем, природа создала чрезвычайно малые, но сложно устроенные биологические структуры. Размножение этих структур в любом данном органе является инструментом природы для управления рисками во избежание полной потери функциональности при частичных повреждениях органа. С другой стороны, в эволюционном аспекте, данная концепция позволила легко приспосабливать размер органа и его форму к нуждам данных видов - например, печень у мышей и человека - по-прежнему используя практически одинаковый генеральный план для построения единичного функционального микроорганоидного элемента. Уникальный и выдающийся шанс тестирования химических веществ, обладающий предсказательной силой в отношении воздействия на человека, заключается в создании эквивалентов микроорганоидов человека in vitro. Первое устройство «орган-на-чипе», называемое «Интегрированная дискретная сложная клеточная культура органа», было описано в 2004 г. Li и et al., Chem. Biol. Interaction. Устройство основывается на статических культурах различных тканей в традиционной 6-луночной плашке, покрытой гелем и соединяющей различные культуры посредством полутвердой среды на основе диффузии. С тех пор прилагались значительные усилия для разработки систем культивирования и биореакторов, более естественно имитирующих архитектуру и in vivo-окружение в условиях in vitro. Всестороннее изложение дано в статье М.А. Swartz и др.: Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol., 7, 211-224, 2006. Миниатюризированные перфузионные системы культивирования разрабатывались для ряда различных тканей, например, для почечных канальцев (Minuth et al.: The formation of pores in the basal lamina of regenerated renal tubules. Biomaterials, 29, 2749-2756, 2008) или нейронной ткани (Hillenkamp и et al.: Maintenance of adult porcine retina and retinal pigment epithelium in perfusion culture: Characterization of an organotypic in vitro model. Experimental Eye Research, 86, 661-668, 2008).

Ни одна из существующих трехмерных систем культивирования и биореакторов не конструировалась в соответствии с требованиями в отношении размера, формы и питания различных органоидов в автономного и наблюдаемого в режиме прямого доступа окружения интегральной схемы, не зависящего от внешнего оборудования. Применяя настоящее изобретение, например, для создания органоидов человека, можно предвидеть качественно новый уровень биобезопасности и эффективности тестирования различных химических веществ, таких как химические реактивы, лекарственные вещества, нутрицевтики и космецевтики, перед их воздействием на человеческий организм.

Краткое изложения сути изобретения

Настоящее изобретение относится к автономному устройству «орган-на-чипе» (1), содержащему:

(a) по меньшей мере, один резервуар для подачи среды (2);

(b) по меньшей мере, одну секцию роста органов (3), содержащую, по меньшей мере, одну полость для органов (4, 4а, 4b), где резервуар для подачи среды (2) соединяется, по меньшей мере, с одной секцией роста органов (3) посредством микрожидкостного канала подачи (6).

В дополнительном аспекте настоящее изобретение относится к автономному устройству «орган-на-чипе» (1), содержащему:

(a) по меньшей мере, одну секцию роста органов (3), содержащую, по меньшей мере, одну полость для органов (4, 4а, 4b), и

(b) где, по меньшей мере, одна полость для органов (4, 4а, 4b) содержит и/или соединена, по меньшей мере, с одним датчиком (8, 8а, 8b).

В дополнительном аспекте настоящее изобретение относится к автономному устройству «орган-на-чипе» (1), содержащему:

(a) по меньшей мере, одну секцию роста органов (3), содержащую, по меньшей мере, одну полость для органов (4, 4а, 4b), и

(b) где секция роста органов (3) содержит, по меньшей мере, одну полость для стволовых клеток (9).

В дополнительном аспекте настоящее изобретение относится к способу изготовления предлагаемого автономного устройства «орган-на-чипе» (1), включающему этапы связывания слоя среды (12) непроницаемым для жидкостей образом со слоем секций роста (13) или его частями.

В дополнительном аспекте настоящее изобретение относится к блоку питания (17) для поддержания предлагаемого автономного устройства «орган-на-чипе» (1) при функционировании, содержащему: (а) средства крепления (18) для съемного крепления автономного устройства «орган-на-чипе» (1), и (b) электрические соединители (19) для соединения соответствующих соединителей автономного устройства «орган-на-чипе» (1) с блоком питания (17).

Способ создания органа и/или органоида в предлагаемом автономном устройстве «орган-на-чипе» (1), включающий следующие этапы:

(a) загрузки суспензии клеток и/или среза ткани в одну или несколько полостей для органов (4, 4а, 4b); и

(b) герметизации одной или нескольких полостей для органов (4, 4а, 4b) непроницаемым для жидкостей образом.

В дополнительном аспекте настоящее изобретение относится к способу тестирования влияния одного или нескольких тестовых соединений на одну или несколько тканей, органов и/или органоидов, созданных в предлагаемом автономном устройстве «орган-на-чипе» (1), включающему:

(a) обеспечение автономного устройства «орган-на-чипе» (1) согласно настоящему изобретению, содержащего одну или несколько тканей, органов и/или органоидов, или

реализацию способа создания органа и/или органоида в автономном устройстве «орган-на-чипе» (1) согласно настоящему изобретению;

(b) добавление к органу и/или органоиду одного или нескольких тестовых соединений;

(c) микроскопическую оценку органа и/или органоида, и/или

определение одного или нескольких параметров, определяемых одним или несколькими датчиками (8, 8а, 8b).

В дополнительном аспекте настоящее изобретение относится к применению предлагаемого автономного устройства «орган-на-чипе» (1), содержащего одну или несколько тканей, органов и/или органоидов для тестирования влияний одного или нескольких тестовых соединений на ткани, органы и/или органоиды, или исследования функций органа или органоида.

Краткое описание графических материалов

Фиг.1: вид сверху вниз предпочтительного варианта осуществления секции частично собранного автономного устройства «орган-на-чипе» (1), содержащего верхний закрывающий слой (14) и слой полостей для органов (15). Поскольку верхний закрывающий слой (14) и слой полостей для органов (15) находятся один над другим, их нельзя различить на приведенном здесь виде сверху вниз, и, соответственно, верхний закрывающий слой (14) и слой полостей для органов (15) на этой фигуре не отмечены. Эта секция содержит шесть отдельных секций роста органов (3), каждая из которых содержит по три полости для органов (4, 4а, 4b). Для того чтобы показать заключаемые здесь особенности, детали изображены полупрозрачными. Однако в некоторых предпочтительных вариантах осуществления материал, используемый для изготовления верхнего закрывающего слоя (14) и/или слоя полостей для органов (15), является частично или полностью прозрачным. Среда, подаваемая из расположенного выше слоя среды (12) (не показан), течет через микрожидкостный канал подачи (6), предпочтительно, в центр секции роста органов (3), что позволяет осуществлять равномерное распределение среды по одной, двум, трем или большему количеству полостей для органов (4, 4а, 4b), находящихся в одной секции роста органов (3). Среда предпочтительно подается в секцию роста органов через выпуск (10), расположенный напротив полости для стволовых клеток (9), которая располагается в слое полостей для органов (15). Таким образом, стволовые клетки могут течь вместе со свежей средой в соседние полости для органов (4, 4а, 4b) для пополнения/регенерации клеточных популяций, составляющих соответствующий орган и/или органоид. Полости для органов (4, 4а, 4b) из одной секции роста органов (3) предпочтительно заселяются разными клеточными популяциями, образующими разные ткани, органы и/или органоиды, что позволяет, например, одновременно тестировать влияние одного и того же химического соединения на более чем один орган или органоид. Полости для органов (4, 4а, 4b) предпочтительно микроструктурированы таким образом, чтобы поддерживать организацию клеточной популяции в соответствующий требуемый орган и/или органоид. Некоторые ткани, органы и/или органоиды требуют для своего образования и/или поддержания особенного микроокружения, например, изменений давления, вторичного потока среды в полости для органов, специфической дополнительной среды и т.д. Полость для органов (4) имеет структуру, предусматривающую несколько отдельных микрополостей, что обеспечивает создание и/или поддержание, например, нейронов. Полость для органов (4а) имеет структуру, предусматривающую повышенное давление, что обеспечивает создание и/или поддержание, например, костных и/или хрящевых структур. Полость органа (4b) имеет структуру, предусматривающую вторичный поток в полости для органов, что обеспечивает создание и/или поддержание, например, васкуляризированной кожи. Полость для органов (4, 4а, 4b) предпочтительно ограничена сверху верхним закрывающим слоем (14) и снизу - нижним закрывающим слоем (16), в то время как боковые стороны полости сформированы в слое полостей для органов (15). Таким образом, микроструктуры, необходимые для роста и/или поддержания органов, также могут предусматриваться верхним и/или нижним концами полости для органов (4, 4а, 4b). Выпуск, позволяющий среде затекать в микрожидкостный канал сброса (7, 7а, 7b), предпочтительно расположен в положении напротив выпуска (10) микрожидкостного канала подачи (6) так, чтобы любая среда, текущая через впуск (10) в полость для органов (4, 4а, 4b), преимущественно текла через всю полость для органов (4, 4а, 4b) перед вытеканием из полости для органов через впуск каналов сброса (7, 7а, b). Сбрасываемая среда затем течет, предпочтительно, через отдельный канал (7, 7а, 7b) для каждой полости для органов (4, 4а, 4b) в секции роста органов (3) к одному или нескольким датчикам, расположенным в протоке (8, 8а, 8b). Таким образом, ответная реакция на определенное химическое соединение и/или изменение среды может оцениваться индивидуально для каждого органа и/или органоида, расположенного в полости для органов (4, 4а, 4b) секции роста органов (3). Затем среда затекает в резервуар для сброса среды (5). Несмотря на то, что возможен общий резервуар для сброса среды (5), предусматриваемый для сбрасываемой среды из всех полостей для органов (4, 4а, 4b) секции роста органов (3) или даже для всех секций роста органов единичного устройства «орган-на-чипе» (1), предпочтительным является обеспечение одного резервуара для сброса среды (5) для сбрасываемой среды из каждой секции роста органов, или, предпочтительно, для каждой полости для органов (4, 4а, 4b) во избежание смешивания сбрасываемой среды. Также предпочтительно, чтобы все имеющие одинаковые микроструктуры полости для органов внутри каждой секции роста органов (3), или внутри различных секций роста органов (3), соединялись с одной сбрасываемой средой во избежание смешивания сброса из различных органов или органоидов. В предпочтительном варианте осуществления, где каждая полость для органов (4, 4а, 4b) секций роста органов (3) соединена с отдельным резервуаром для сброса (5), возможен отбор образца или всей сбрасываемой среды из отдельных резервуаров для сброса среды (5) и дальнейший анализ по отдельности каждой из сред, сбрасываемых из каждого органа и/или органоида. Полость резервуара для сброса среды (5) предпочтительно располагается в слое среды (12), который не показан. В предпочтительном варианте осуществления, изображенном на этой фигуре, предусматривается соответствующее прямоугольное отверстие в верхнем закрывающем слое (14) и слое полостей для органов (15). Поэтому в данном варианте резервуар для сброса среды (5) проходит почти через все автономное устройство «орган-на-чипе» (1) между нижней частью нижнего закрывающего слоя (16) и верхним краем слоя среды (12), таким образом, обеспечивая максимальное пространство для хранения сбрасываемой среды.

Фиг.2А: Покомпонентное изображение предпочтительного варианта осуществления автономного устройства «орган-на-чипе» (1), содержащего слой среды (12), слой секций роста органов (13), содержащий верхний закрывающий слой (14), слой полостей для органов (15) и нижний закрывающий слой (16). Слой среды (12) включает вырезы, которые позволяют осуществлять доступ к секциям роста органов (3), располагающимся в слое секций роста органов (15) между верхним и нижним закрывающими слоями. Указанные вырезы предпочтительно соответствуют по размеру расположенным ниже вырезам на соответствующей секции роста органов (3) для осуществления доступа к каждой полости для органов (4, 4а, 4b) внутри секции роста органов (3). Предпочтительно, клеточная популяция, предпочтительно, суспензия клеток и/или срез ткани, используемые для создания соответствующего органа или органоида, загружается непосредственно в полость для органов (4, 4а, 4b) через указанные вырезы, которые затем герметизируются во избежание загрязнения загруженных клеточных популяций. Указанное уплотнение предпочтительно является непроницаемым для жидкостей, однако является газопроницаемым. В альтернативном варианте осуществления, вся клеточная популяция генерируется из одной или нескольких стволовых клеток, которые могут вноситься в секцию роста органов через микрожидкостный канал подачи (6) вместе со средой, и/или через дополнительный порт доступа непосредственно в полость для стволовых клеток (9). Кроме того, внутри слоя среды (12) находится резервуар для подачи среды (2). Этот резервуар предпочтительно снабжается портом доступа, позволяющим заполнять резервуар для подачи среды (2) необходимыми средами, или слой среды (12) снабжается предварительно заполненным резервуаром для подачи среды, который может обеспечиваться отверстием, позволяющим воздуху попадать в резервуар для подачи среды. Для гибкости слой среды (12), содержащий заранее заполненный резервуар для подачи среды (2), может соединяться в месте применения со слоем секций роста органов (13) для образования автономного устройства «орган-на-чипе» (1), или полностью собранное автономное устройство «орган-на-чипе» может предусматриваться как с предварительно заполненным резервуаром для подачи среды (2), так и с пустым резервуаром для подачи среды (2), который заполняется в месте применения. Кроме того, слой среды (12) содержит один или несколько резервуаров для сброса среды (5). Они находятся в жидкостном соединении с секцией роста органов (3) и, в частности, с содержащимися в ней полостями для органов (4, 4а, 4b). Предпочтительно, чтобы датчик (8, 8а, 8b) находился в протоке (7, 7а, 7b), соединяющем отдельные полости для органов с резервуаром (резервуарами) для сброса среды (5), предпочтительно расположенным (расположенными) внутри автономного устройства «орган-на-чипе» (1). В предпочтительном варианте, изображенном на этой фигуре, предусматривается вырез одинаковой формы и размерами в верхнем закрывающем слое, слое полостей для органов и слое среды для образования резервуара для сброса среды (5). Нижний закрывающий слой (16) оснащается электрическими соединителями (19), которые обеспечивают (1) подачу электроэнергии к средствам нагрева (11), которые могут располагаться в нижних частях полостей для органов (4, 4а, 4b), в резервуаре для подачи среды (2) или в любой другой части нижнего закрывающего слоя; и/или (ii) для соединения с сенсорными устройствами и/или приводами (средствами повышения давления, насосами, датчиками температуры и т.д.), которые предпочтительно располагаются внутри полостей для органов (4, 4а, 4b) или могут располагаться в любой другой части нижнего закрывающего слоя; и/или (iii) для соединения с датчиками (8, 8а, 8b).

Фиг.2В. Вид сверху вниз верхней стороны нижнего закрывающего слоя (16). Изображены средства нагрева (11), которые предпочтительно изготавливаются из оксида индия и олова (ITO), датчик температуры (23), который предпочтительно представляет собой извилистую конструкцию, изготавливаемую из платины, и электрические соединители (19), которые предпочтительно изготавливаются из золота. Проводящие дорожки также изготавливаются из золота. Нижний закрывающий слой (16) предпочтительно изготавливается из стекла и является прозрачным, по меньшей мере, в областях секций роста органов (3) для осуществления просвечивающейся микроскопии. Нижний закрывающий слой (16) предпочтительно снабжается датчиками температуры для контроля температуры внутри секций роста органов (3).

Фиг.3. Покомпонентный вид предпочтительного варианта осуществления секции роста органов (3), содержащей три полости для органов (4, 4а, 4b). В этом предпочтительном варианте каждая из полостей для органов (4, 4а, 4b) закрыта или, по меньшей мере, частично закрыта с верхней стороны верхним закрывающим слоем (14), который включает микроструктуры, слоем полостей для органов (15), который предусматривает большинство необходимых микроструктур, и нижним закрывающим слоем (16), который предусматривает, например, средства измерения полного сопротивления (22), необходимые для оценки полного сопротивления в полости органа, адаптированной для роста нервов.

Фиг.4А. Вид сверху вниз на секцию согласно предпочтительному варианту осуществления слоя полостей для органов (15), содержащего секцию роста органов (3), содержащую три полости для органов (4, 4а, 4b) с разной структурой. Течение среды внутри секции роста органов (3) в полости для органов (4, 4а, 4b) начинается от выпуска (10) микрожидкостного канала подачи (не показан, поскольку в данном варианте находится на верхнем закрывающем слое), находящегося рядом с полостью для стволовых клеток (9), в полости для органов (4, 4а, 4b) и наружу через три отдельных микрожидкостных канала сброса (7, 7а, 7b). Направление течения жидкости показано прямыми белыми стрелками. Течение в полостях для органов предпочтительно происходит радиально наружу от выпуска среды в середине секции роста в направлении впусков каналов сброса (7, 7а, 7b) на периферии секции роста. В полости роста (4b), которая обеспечивает среду для создания/поддержания васкуляризированной кожи, под действием средств повышения давления или насосов, расположенных в боковых камерах полости для органа (4b) возникает вторичный поток жидкости (21).

Фиг.4В. Трехмерное изображение части секции роста органов (3), содержащей три полости для органов (4, 4а, 4b), где в предпочтительном варианте осуществления полость для зрелых стволовых клеток (9) располагается в центре трех полостей для органов (4, 4а, 4b).

Фиг.5. Вид сверху (А) и снизу (В) секции предпочтительного слоя полостей для органов (15), содержащего средний сегмент секции роста органов (3), содержащей три полости для органов (4, 4а, 4b). Верхнее уплотнение и нижнее уплотнение полостей для органов (4, 4а, 4b), обеспечиваемые соответственно верхним и нижним закрывающими слоями, которые не показаны. Панель А отображает микрожидкостный канал подачи (6), который заканчивается выпуском (10). Панель В отображает полость для стволовых клеток (9), которая расположена напротив выпуска (10).

Фиг.6. Вид в разрезе предпочтительного варианта осуществления автономного устройства «орган-на-чипе» (1). Отображен слой среды (12) и слой секций роста органов (13), которые удерживаются на месте средствами крепления (18), которые также предоставляют, по меньшей мере, одну контактную поверхность, содержащую электрические соединители (19), которые съемным образом соединяются с соответствующими соединителями на нижней стороне автономного устройства «орган-на-чипе» (1). Блок питания (17) обеспечивает подачу электроэнергии, например, для нагревания, нагнетания и/или электростимуляции, и предпочтительно содержит блок обработки данных, предназначенный для оценки и/или индикации сигналов от одного или нескольких датчиков.

Фиг.7. Трехмерное изображение предпочтительного варианта осуществления интегрированного блока питания (17), содержащего средства крепления (18) на обеих сторонах автономного устройства «орган-на-чипе» (1). Электрические соединители (19) соединяют автономное устройство «орган-на-чипе» (1) с блоком питания (17) и средствами индикации перегрева (20), указывающими на избыточное количество тепла в соответствующих секциях роста органов (3).

Фиг.8. Каждая из трех панелей А, В и С на Фиг.8 показывает трехмерное изображение и сечение различных полостей для стволовых клеток (9). Панель А показывает иллюстративную полость ниши неонатальных стволовых клеток (9а); Панель В показывает иллюстративную полость ниши пре-/постнатальных стволовых клеток (9b); и панель С показывает иллюстративную полость способствующей состоянию покоя ниши взрослых стволовых клеток (9с).

Подробное описание изобретения

Перед тем как настоящее изобретение ниже будет описано более подробно, следует понять, что данное изобретение не ограничивается конкретными описанными здесь методикой, протоколами или реактивами, поскольку они могут изменяться. Следует также понимать, что используемая в данном описании терминология преследует цель описания лишь конкретных вариантов осуществления изобретения и не предназначена для ограничения объема настоящего изобретения, который ограничивается только приложенной формулой изобретения. Если не определено обратное, все технические и специфические термины, используемые в данном описании, обладают теми же значениями, что и в обычном понимании специалистов в данной области.

Используемые в данном описании термины предпочтительно определены как описано в словаре "A multilingual glossary of biotechnological terms: (IUPAC Recommendations)", Leuenberger, H.G.W, Nagel, B. and Kölbl, H. eds. (1995), Helvetica Chimica Acta, CH-4010 Basel, Switzerland).

Везде в данном описании и следующей за ним формуле изобретения, за исключением тех случаев, когда контекст требует обратного, слово «содержать», а также его разновидности, такие как «содержит» и «содержащий», следует понимать как подразумевающее включение определенного целого или этапа, или группы целых или этапов, но не исключение любого другого целого или этапа, или группы целых или этапов. В нижеследующих абзацах различные аспекты изобретения определены более детально. Каждый аспект, определенный таким образом, может комбинироваться с любым другим аспектом или аспектами, если ясно не указывается на обратное. В частности, любая особенность, указанная как предпочтительная или преимущественная, может комбинироваться с любой другой особенностью или особенностями, указанными как предпочтительные или преимущественные.

В тексте настоящего описания цитируется несколько документов. Каждый из процитированных здесь документов (включая патенты, заявки на патенты, научные публикации, технические описания производителей, инструкции и т.д.), как выше, так и ниже, ссылкой полностью включаются в настоящее описание. Ничто здесь не следует истолковывать как допущение того, что данное изобретение не имеет права противопоставлять данное описание более раннему приоритету на основании предшествующих изобретений.

Ниже приводятся некоторые определения терминов, часто используемых в настоящем описании. Эти термины в каждом случае их использования в оставшейся части настоящего описания имеют должным образом определенное значение и предпочтительные значения:

«Аутокринные факторы» - это все те вещества, секретируемые клетками, которые поддерживают и являются посредниками в поддержании, росте и дифференцировке той же клетки, которая секретирует этот фактор.

«Паракринные факторы» - это все вещества, секретируемые клетками, которые поддерживают и являются посредниками в поддержании, росте и дифференцировке другой, но соседней клетки.

Термин «самообучение» описывает все факторы, ведущие к усовершенствованному поведению клеток.

Термин «дифференцировка» означает развитие тканеспецифических функций культивированных клеток.

Термин «поддержание» описывает способность поддерживать все функции данной ткани постоянными в процессе культивирования данной клеточной культуры.

Термин «живой клеточный материал» описывает клетки, клеточные агрегаты, ткани, органоиды и органы.

Термин «клетки» означает клеточные линии или эмбриональные клетки позвоночных или беспозвоночных.

Термин «ткань» означает биопсийный материал или эксплантат, взятый у пациентов или животных.

Термин «органоиды» означает искусственные, вновь генерированные, функциональные клеточные агрегаты клеток различных типов in vitro, которые проявляют, по меньшей мере, одну функцию органа или ткани, а предпочтительно проявляют большинство функций органа или ткани.

Термин «орган» означает искусственные, вновь генерированные, функциональные клеточные агрегаты клеток различных типов in vitro, которые проявляют все функции натурального органа.

Термин «среда» (множественное число: «среды») означает поддерживающую рост жидкость, содержащую питательные и другие вещества для культивирования клеток.

Термин «добавки» описывает вещества, которые необходимо добавить к культуральным средам с целью индукции или модификации клеточной функции, которые могут иметь определенный состав, как, например, очищенные или рекомбинантные цитокины или факторы роста, или неопределенный состав, как, например, сыворотка.

Термин «матрикс» обозначает вещества или смеси веществ, которые усиливают пролиферацию, дифференцировку, функционирование или формирование органа или органоида клеток. Материал матрикса может наноситься на поверхности или обеспечиваться в объемных приложениях для оптимизации прикрепления клеток или образования трехмерных культур. Матрикс, применимый в контексте настоящего изобретения, может принимать множество форм, включая, например, гидрогели, пены, тканые или нетканые материалы. Материал матрикса может включать вещества матрикса, имеющие природное происхождение, такие как белки внеклеточного матрикса, предпочтительно коллагены, ламинины, эластин, витронектин, фибронектин, малые белки клеточного матрикса, малые интегрин-связывающие гликопротеины, факторы роста или протеогликаны, или может включать искусственные вещества матрикса, такие как нерасщепляемые полимеры, например, полиамидные волокна, метилцеллюлоза, агароза или альгинатные гели, или расщепляемые полимеры, такие как полилактид.

Термин «микрожидкостный» относится к поведению, точному управлению и манипуляциям с жидкостями, которые геометрически ограничены малым, как правило, субмиллиметровым, масштабом. Термин «микрожидкостный» означает один или несколько следующих вариантов: (i) малые объемы (мкл, нл, пл или фл), т.е. полости для органов предпочтительно имеют объем 1 мм3 или менее, а микрожидкостные каналы допускают течение 0,1-2 мм3 среды в день под давлением 0,005-2 Бар, т.е. 0,05, 0,1, 0,2, 0,3, 0,4, 0,5, 1,0, 1,5, или 2,0 Бар, и (ii) малый размер, т.е. диаметр канала от около 100 нанометров до нескольких сотен микрометров. В контексте настоящего изобретения, микрожидкостный канал предпочтительно имеет диаметр между 100 нм и 1 мм, предпочтительно, 0,5-200 мкм, более предпочтительно, 1-100 мкм, т.е. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 или 100 мкм. Если отверстие канала не имеет круглого поперечного сечения, тогда отверстие предпочтительно имеет площадь поверхности, находящуюся в пределах и предпочтительных пределах площадей поверхности для каналов с указанными выше круглыми поперечными сечениями.

Для преодоления трудностей, связанных с известными системами культивирования клеток, настоящее изобретение обеспечивает автономное устройство «орган-на-чипе» (1), содержащее:

(a) по меньшей мере, один резервуар для подачи среды (2),

(b) по меньшей мере, одну секцию роста органов (3), содержащую, по меньшей мере, одну полость для органов (4, 4а, 4b), и

где резервуар для подачи среды (2) соединяется, по меньшей мере, с одной секцией роста органов (3) микрожидкостным каналом подачи (6).

Термин «автономный» относится к тому факту, что среды и добавки, необходимые для дифференцировки и поддержания органов, тканей или органоидов, по меньшей мере, в одной секции роста органов (3), доставляются из устройства «орган-на-чипе» (1), т.е., по меньшей мере, один резервуар для среды (2) содержится в устройстве «орган-на-чипе» (1) и соединяется посредством микрожидкостных каналов (6) внутри устройства «орган-на-чипе» (1) с секцией роста органов (3) и/или с одной или несколькими полостями органов (4, 4а, 4b), которые содержатся внутри одной или нескольких секций роста органов (3). Таким образом, жидкостное соединение, доставляющее жидкость из внешнего резервуара для жидкостей, отсутствует. Соответственно, устройство «орган-на-чипе» (1) может быть подвергнуто манипуляциям и перемещению без возникновения опасности загрязнения среды, а затем и клеток в секциях роста органов (3). Кроме того, предпочтительной является доставка газообразной среды, например О2/СО2, в секцию роста органов пассивным образом, т.е путем диффузии в среду через мембрану или биосовместимую полимерную пленку из окружающей среды. Такая мембрана или полимерная пленка предпочтительно является непроницаемой для жидкостей. Опять таки это является предпочтительным является при выполнении манипуляций с устройством «орган-на-чипе». Мембрана или пленка, по меньшей мере, частично покрывает секцию роста органов (3), таким образом, позволяя О2/СО2 диффундировать в среду, которая течет через полости для органов. В предпочтительном варианте осуществления мембрана формируется или прикрепляется после загрузки клеток в полости для органов, или составляет неотъемлемую часть устройства «орган-на-чипе». Соответственно, в предпочтительном варианте осуществления устройство «орган-на-чипе» не содержит соединителей с внешними источниками газообразной среды, и/или не содержит устройств для активного аэрирования среды. Среда предпочтительно повторно не проходит через секцию роста органов (3), а течет от одного или нескольких резервуаров со средой (2) через секции роста органов (3) в один или несколько резервуаров для сброса среды (5).

Термин «устройство «орган-на-чипе» относится к блоку, который предпочтительно изготовлен из нескольких индивидуально структурированных и микроструктурированных слоев, находящихся в непроницаемом для жидкостей соединении друг с другом, и предпочтительно способен обеспечить непроницаемое для жидкости окружение, и, таким образом, стерильные условия. Устройство предпочтительно имеет размеры для использования в стандартных высокопроизводительных установках систем бесперебойного электропитания, например, имеющих размеры стандартного титрационного микропланшета или полоски. Таким образом, его ширина составляет 2-10 см, предпочтительно, 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 см, и/или длина составляет 3-15 см, предпочтительно, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 или 15 см, и/или высота составляет 0,2-10 мм, предпочтительно, 1-4 мм, т.е. 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 1,0, 1,1, 1,2, 1,3, 1,4, 1,5, 1,6, 1,7, 1,8, 1,9, 2,0, 2,1, 2,2, 2,3, 2,4, 2,5, 2,6, 2,7, 2,8, 2,9, 3,0, 3,1, 3,2, 3,3, 3,4, 3,5, 3,6, 3,7, 3,8, 3,9, 4,0, 5,0, 6,0, 7,0. 8,0, 9,0 или 10,0 мм. Для соответствия формату стандартного титрационного микропланшета, отношение ширины к длине предпочтительно составляет 1:3. Особенно предпочтительны размеры: ширина - 2,5 см, длина - 7,5 см, высота - 3 мм.

Предпочтительные материалы включают SiO2, стекло и синтетические полимеры. Предпочтительные синтетические полимеры включают полистирол (PS), поликарбонат (PC), полиамид (РА), полиимид (PI), полиэфирэфиркетон (PEEK), полифениленсульфид (PPSE), эпоксидная смола (ЕР), ненасыщенный полиэфир (UP), феноловая смола (PF), полисилоксан, например, полидиметилисилоксан (PDMS), меламиновая смола (MF), сложный эфир цианата (СА), политетрафторэтилен (PTFE) и их смеси. Особенно предпочтительны синтетические полимеры, которые оптически прозрачны и включают, например, полистирол (PS), поликарбонат (PC) и полисилоксан, полидиметилсилоксан (PDMS).

Секция роста органов (3) представляет собой микроструктурированную область внутри устройства «орган-на-чипе» (1), которая предусматривает все необходимое микроокружение для дифференцировки и/или поддержания органа и/или органоида, и предпочтительно содержит впуск среды, выпуск среды, полость для стволовых клеток (см. ниже), датчики (см. ниже) и полость для органов (4) (см. ниже), которая удерживает большую часть клеток, образующих соответствующий органоид или орган, и/или открытую поверхность, которая может покрываться, в значительной степени, непроницаемым для жидкостей и газопроницаемым образом соответствующими средствами, включающими мембрану, например, мембрану из PTFE, фибриновые пластины, пластины из напыляемого пластыря и/или продуктов коагуляции, после загрузки клеток/тканей в секцию роста органов (3), или эластичными пластинами, которые покрывают отверстие, например, губами, изготовленными из эластичного материала типа полисилоксана, например PDMS. В предпочтительном варианте осуществления указанная эластичная пластина полностью накрывает секцию роста органов и имеет вырезы в каждой из полостей для органов (4, 4а, 4b), при этом вырезы позволяют осуществлять доступ к отдельным полостям для органов (4, 4а, 4b). Эластичные пластины обладают тем преимуществом, что секции роста органов (3) остаются доступными без необходимости повторной герметизации мембраны после осуществления доступа. Покрытая поверхность предпочтительно непроницаема для жидкостей, однако при этом газопроницаема и, таким образом, допускает обмен О2 и СO2 между клетками в секции роста органов и окружающей средой. Секция роста органов предпочтительно имеет практически круглую или круглую форму, что является благоприятным в случае, когда секция роста органов содержит более одной полости для органов. В этом предпочтительном варианте осуществления секция роста органов в значительной степени имеет форму плоского цилиндра, который, однако, не является полностью полым, но содержит структуры и микроструктуры, описываемые в настоящем описании. Отношение диаметра к высоте секции роста органов предпочтительно составляет 2:1-6:1, более предпочтительно, 3:1-5:1. В частности, если секция включает две, три, четыре, пять, шесть, семь, восемь или большее количество полостей для органов (4, 4а, 4b), более предпочтительна круглая структура, поскольку тогда возможна по