Нейтролизованные металлом сульфированные блок-сополимеры, способ их получения и их применение

Иллюстрации

Показать все

Изобретение относится к способу нейтрализации сульфированного блок-сополимера, вариантам нейтрализованного сульфированного блок-сополимера, вариантам устройств, содержащих мембрану, средству хранения полярного компонента и к способу стабилизации или хранения полярного компонента. Способ нейтрализации заключается в том, что получают мицеллярный раствор, содержащий от 1 до 30 мас.% ненейтрализованного блок-сополимера и органический растворитель, и добавляют соединение металла. Ненейтрализованный сульфированный блок-сополимер является твердым в воде и имеет общую конфигурацию A-B-D-B-A, A-D-B-D-A, (A-D-B)n(A), (A-B-D)n(A), (A-B-D)nX, (A-D-B)nX или их смесей, где n представляет собой целое число в диапазоне от 2 до 30, X представляет собой остаток агента реакции сочетания. Каждый блок A, по существу, не имеет никаких функциональных групп сульфокислоты или сульфонатных групп. Каждый блок B является полимерным блоком, содержащим от 10 до 100 мол.%, функциональных групп сульфокислоты или сульфонатных групп в расчете на количество мономерных звеньев блока B. Каждый блок D представляет собой модифицирующий ударопрочность блок, характеризующийся температурой стеклования менее 20°C. Органический растворитель образован одним или несколькими апротонными аполярными алифатическими растворителями и представляет собой неполярную жидкую фазу. От 80% до 100% функциональных групп сульфокислоты или сульфонатных групп сульфированных блоков B нейтрализуют полярным компонентом - соединением металла, которое содержит натрий, калий, цезий, магний, кальций, стронций, барий, алюминий, олово, свинец, титан, цирконий, ванадий, хром, молибден, марганец, железо, кобальт, никель, медь, серебро, цинк, кадмий или ртуть, либо содержит металл 3-6 периодов и 2-14 групп Периодической таблицы элементов. Нейтрализованный блок-сополимер используют в мембране. Устройство, содержащее такую мембрану, выбирают из группы, включающей устройство для контроля влажности, устройство для прямого электродиализа, устройство для обратного электродиализа, устройство для осмоса, ограниченного давлением, устройство для прямого осмоса, устройство для обратного осмоса, устройство для селективного добавления воды, устройство для селективного удаления воды и аккумуляторов. Средство хранения полярного компонента содержит неполярную жидкую фазу и от 1 до 30 мас.% сульфированного блок-сополимера в мицеллярной форме, адаптированной для заключения полярного компонента. Способ стабилизации или хранения полярного компонента заключается в том, что получают раствор, содержащий неполярную жидкую фазу и сульфированный блок-сополимер, и добавляют полярный компонент. После этого полярный компонент заключается в мицеллы. Изобретение позволяет получить мембраны, способные обеспечивать перенос воды с высокой скоростью при одновременном блокировании переноса других химических реагентов, без значительного набухания ионсодержащей фазы. 7 н. и 26 з.п. ф-лы, 4 табл.

Реферат

Область техники

Изобретение относится к способу нейтрализации сульфированного блок-сополимера соединением металла, к нейтрализованным металлом блок-сополимерам и к различным изделиям, содержащим нейтрализованные металлом блок-сополимеры, например, в виде проницаемой для водяного пара мембраны, которая содержит нейтрализованные металлом блок-сополимеры. Настоящее описание изобретения дополнительно относится к средству и способу хранения и стабилизации полярного компонента, такого как соединение металла, в неполярной жидкой фазе в результате заключения полярного компонента в мицеллы сульфированного блок-сополимера в неполярной жидкой фазе.

Уровень техники

Получение стирольных блок-сополимеров на современном уровне техники хорошо известно. В общем случае стирольные блок-сополимеры («СБС») могут содержать внутренние полимерные блоки и замыкающие концевые полимерные блоки, содержащие химически различные типы мономеров, что, тем самым, обеспечивает получение конкретных желательных свойств. В порядке примера в одной более часто встречающейся форме СБС может содержать внутренние блоки, полученные из сопряженного диена, и внешние блоки, включающие ароматические алкениларены. Взаимодействие различающихся свойств полимерных блоков обеспечивает получение различных характеристик полимера. Например, эластомерные свойства внутренних блоков, полученных из сопряженного диена, совместно с «более жесткими» внешними блоками, полученными из ароматических алкениларенов, совместно формируют полимеры, которые являются подходящими для использования в широком спектре самых разнообразных областей применения. Такие СБС могут быть получены в результате проведения ступенчатой полимеризации и/или в результате проведения реакций сочетания.

Как также известно, СБС могут быть функционализованы для дополнительного модифицирования их характеристик. Одним примером этого является присоединение функциональных групп сульфокислоты или сложного эфира сульфокислоты к основной цепи полимера. Один из первых таких сульфированных блок-сополимеров описывается, например, в публикации US 3577357 автора Winkler. Получающийся в результате блок-сополимер охарактеризовали наличием общей конфигурации А-В-(В-А)1-5, где каждый А представляет собой неэластомерный сульфированный моновинилареновый полимерный блок, а каждый В представляет собой, по существу, насыщенный эластомерный альфа-олефиновый полимерный блок, при этом упомянутый блок-сополимер сульфируют в степени, достаточной для получения, по меньшей мере, 1% (масс.) серы в совокупном полимере и вплоть до одного сульфированного заместителя для каждого моновиниларенового звена. Сульфированные полимеры могли бы быть использованы как таковые или могли бы быть использованы в форме их кислоты, соли щелочного металла, соли аммония или соли амина. В соответствии с публикацией Winkler, трехблочный сополимер полистирол-гидрированный полиизопрен-полистирол подвергали обработке сульфирующим агентом, содержащим триоксид серы/триэтилфосфат в 1,2-дихлорэтане. Сульфированные блок-сополимеры описывались как демонстрирующие характеристики абсорбирования воды, которые могли бы оказаться подходящими при использовании в мембранах для очистки воды и тому подобном, но, как позднее было установлено, из них невозможно отливать пленки (US 5468574).

Не так давно в публикации US 2007/0021569 авторов Willis et al. описывалось получение сульфированного полимера, и, помимо прочего, проиллюстрирован сульфированный блок-сополимер, который является твердым в воде и содержит, по меньшей мере, два полимерных концевых блока и, по меньшей мере, один насыщенный полимерный внутренний блок, где каждым концевым блоком является полимерный блок, стойкий к сульфированию, а, по меньшей мере, одним внутренним блоком является насыщенный полимерный блок, подверженный сульфированию, и где, по меньшей мере, один внутренний блок сульфируют в степени в диапазоне от 10 до 100 молярных процентов мономера, подверженного сульфированию, в блоке. Сульфированные блок-сополимеры описываются как способные переносить большие количества водяного пара при одновременной демонстрации хорошей стабильности геометрических размеров и прочности в присутствии воды, и как являющиеся ценными материалами для областей конечного применения, в которых требуется наличие комбинации из хорошей прочности во влажном состоянии, хороших характеристик переноса воды и протонов, хорошей стойкости к метанолу, легкого образования пленки или мембраны, барьерных свойств, контроля гибкости и эластичности, регулируемой твердости и термической/окислительной стойкости.

В дополнение к этому, в публикации WO 2008/089332 авторов Dado et al. описывается способ получения сульфированных блок-сополимеров, иллюстрирующий, например, сульфирование блок-полимерного предшественника, содержащего, по меньшей мере, один концевой блок А и, по меньшей мере, один внутренний блок В, где каждым блоком А является полимерный блок, стойкий к сульфированию, а каждым блоком В является полимерный блок, подверженный сульфированию, где упомянутые блоки А и В по существу свободны от олефиновой ненасыщенности. Блок-полимерного предшественника вводили в реакцию с ацилсульфатом в реакционной смеси, дополнительно содержащей, по меньшей мере, один негалогенированный алифатический растворитель. В соответствии с публикацией авторов Dado et al. способ в результате приводит к получению продукта реакции, который включает мицеллы сульфированного полимера и/или агрегаты другого полимера, характеризующиеся определяемыми размером и распределением.

Как также сообщалось, сульфированные полимеры могут быть нейтрализованы самыми разнообразными соединениями. Как указывается, например, в публикациях US 5239010 авторов Pottick et al. и US 5516831 авторов Balas et al., стирольные блоки, имеющие функциональные группы сульфокислоты, могут быть нейтрализованы в результате проведения реакции между сульфированным блок-сополимером и ионизуемым соединением металла с образованием соли металла.

В дополнение к этому, в публикации US 2007/0021569 (Willis et al.) указывается, по меньшей мере, на частичную нейтрализацию сульфированных блок-сополимеров самыми разнообразными основными материалами, включающими, например, ионизуемые соединения металлов, а также различные амины. Как, кроме того, предложили, сульфированный блок-сополимер может быть модифицирован в результате взаимодействия по водородной связи с основным материалом, который, одновременно будучи недостаточно сильным для нейтрализации кислотных центров сульфированного блок-сополимера, является достаточно сильным для достижения значительного притяжения к блок-сополимеру в результате взаимодействия по водородной связи.

Краткое изложение изобретения

Настоящая технология в общем случае относится к способу нейтрализации ненейтрализованного сульфированного блок-сополимера, содержащего, по меньшей мере, один концевой блок А и, по меньшей мере, один внутренний блок В, где каждый блок А, по существу, не имеет никаких функциональных групп сульфокислоты или сложного эфира сульфокислоты, а каждым блоком В является полимерный блок, содержащий от приблизительно 10 до приблизительно 100% (мол.) функциональных групп сульфокислоты или сложного эфира сульфокислоты в расчете на количество подверженных сульфированию мономерных звеньев блока В. В общем случае способ включает

получение раствора, содержащего ненейтрализованный сульфированный блок-сополимер и органический растворитель, и

добавление к раствору, по меньшей мере, одного соединения металла, где металл имеет атомный номер, равный, по меньшей мере, 11.

В конкретных аспектах способ, описанный в настоящем документе, удовлетворяет одному или нескольким из следующих далее условий:

- раствор содержит растворенный ненейтрализованный сульфированный блок-сополимер в мицеллярной форме, и/или

- нейтрализуют от приблизительно 80% до приблизительно 100% функциональных групп сульфокислоты или сложного эфира сульфокислоты и/или

- добавляют соединение металла в количестве в диапазоне от приблизительно 0,8 до приблизительно 10 эквивалентов металла в расчете на 1 эквивалент функциональной группы сульфокислоты или сложного эфира сульфокислоты ненейтрализованного сульфированного блок-сополимера, и/или

- органическим растворителем является негалогенированный алифатический растворитель, и/или

- органический растворитель содержит, по меньшей мере, первый и второй алифатический растворитель, и где блок В является, по существу, растворимым в первом растворителе, а блок А является, по существу, растворимым во втором растворителе, и/или

- соединение металла выбирают из группы металлоорганических соединений, гидридов металлов, оксидов металлов, гидроксидов металлов, алкоксидов металлов, карбонатов металлов, гидрокарбонатов металлов и карбоксилатов металлов, и/или

- соединение металла содержит натрий, калий, цезий, магний, кальций, стронций, барий, алюминий, олово, свинец, титан, цирконий, ванадий, хром, молибден, марганец, железо, кобальт, никель, медь, серебро, цинк, кадмий или ртуть, и/или

- металл соединения металла имеет атомный номер, равный по меньшей мере, 12, и/или

- соединение металла содержит магний, кальций, алюминий, свинец, титан, медь или цинк, и/или

- металл находится в степени окисления +2, +3 или +4.

Технология, описанная в настоящем документе, кроме того, в общем случае относится к нейтрализованному сульфированному блок-сополимеру, который является твердым в воде, и который содержит, по меньшей мере, два полимерных концевых блока А и, по меньшей мере, один полимерный внутренний блок В, где

a) каждый блок А, по существу, не имеет никаких функциональных групп сульфокислоты или сложного эфира сульфокислоты, а каждым блоком В является полимерный блок, содержащий от приблизительно 10 до приблизительно 100% (мол.) функциональных групп сульфокислоты или сложного эфира сульфокислоты в расчете на количество подверженных сульфированию мономерных звеньев блока В; и

b) от 80% до 100% функциональных групп сульфокислоты или сложного эфира сульфокислоты сульфированных блоков В нейтрализуют соединением металла, где металл имеет атомный номер, равный, по меньшей мере, 11.

В конкретных аспектах нейтрализованный сульфированный блок-сополимер, описанный в настоящем документе, удовлетворяет одному или нескольким из следующих далее условий:

- соединение металла содержит натрий, калий, цезий, магний, кальций, стронций, барий, алюминий, олово, свинец, титан, цирконий, ванадий, хром, молибден, марганец, железо, кобальт, никель, медь, серебро, цинк, кадмий или ртуть, и/или

- соединение металла содержит магний, кальций, алюминий, свинец, титан, медь или цинк, и/или

- металл находится в степени окисления +2, +3 или +4, и/или

- нейтрализованный сульфированный блок-сополимер характеризуется уровнем водопоглощения, который является равным или меньшим в сопоставлении с уровнем водопоглощения у соответствующего ненейтрализованного сульфированного блок-сополимера; и/или

- нейтрализованный сульфированный блок-сополимер характеризуется модулем упругости при растяжении во влажном состоянии, который является равным или большим в сопоставлении с модулем упругости при растяжении во влажном состоянии у соответствующего ненейтрализованного сульфированного блок-сополимера; и/или

- нейтрализованный сульфированный блок-сополимер характеризуется уровнем водопоглощения, меньшим, чем 80% от уровня водопоглощения у соответствующего ненейтрализованного сульфированного блок-сополимера; и/или

- нейтрализованный сульфированный блок-сополимер характеризуется уровнем водопоглощения, меньшим, чем 50% (масс.) от его сухой массы; и/или

- нейтрализованный сульфированный блок-сополимер характеризуется уровнем водопоглощения, равным, по меньшей мере, 0,1% (масс.) от его сухой массы; и/или

- нейтрализованный сульфированный блок-сополимер имеет гидратированную форму.

Технология, описанная в настоящем документе, в общем случае также относится к гидратированному нейтрализованному сульфированному блок-сополимеру, который содержит, по меньшей мере, 0,1% (масс.), в расчете на сухую массу нейтрализованного блок-сополимера, воды во включенной форме. В конкретных аспектах гидратированный нейтрализованный сульфированный блок-сополимер, описанный в настоящем документе, удовлетворяет одному или нескольким из следующих далее условий:

- гидратированный нейтрализованный сульфированный блок-сополимер характеризуется скоростью переноса водяного пара, равной, по меньшей мере, приблизительно 15000 г/м2/день/мил (591 г/м2/день/мкм), и/или

- гидратированный нейтрализованный сульфированный блок-сополимер характеризуется скоростью переноса воды, равной, по меньшей мере, приблизительно 50% от скорости переноса воды у гидратированной формы соответствующего ненейтрализованного сульфированного блок-сополимера, и/или

- гидратированный нейтрализованный сульфированный блок-сополимер характеризуется модулем упругости при растяжении во влажном состоянии, который является равным или большим в сопоставлении с модулем упругости при растяжении во влажном состоянии у гидратированной формы соответствующего ненейтрализованного сульфированного блок-сополимера, и/или

- гидратированный нейтрализованный сульфированный блок-сополимер характеризуется скоростью переноса воды, равной, по меньшей мере, приблизительно 75% от скорости переноса воды у гидратированной формы соответствующего ненейтрализованного сульфированного блок-сополимера.

Технология, описанная в настоящем документе, кромке того, относится к аппарату или устройству, которые включают мембрану, таким как устройство для контроля влажности, устройство для прямого электродиализа, устройство для обратного электродиализа, устройство для осмоса, ограниченного давлением, устройство для прямого осмоса, устройство для обратного осмоса, устройство для селективного добавления воды, устройство для селективного удаления воды и аккумулятор. Соответствующие аппарат или устройство в каждом случае включают мембрану, которая содержит вышеупомянутый нейтрализованный сульфированный блок-сополимер.

Кроме того, технология, описанная в настоящем документе, в общем случае относится к средству хранения полярного компонента, содержащему неполярную жидкую фазу и сульфированный блок-сополимер, содержащий, по меньшей мере, один концевой блок А и, по меньшей мере, один внутренний блок В, где каждый блок А, по существу, не имеет никаких функциональных групп сульфокислоты или сложного эфира сульфокислоты, а каждым блоком В является полимерный блок, содержащий от приблизительно 10 до приблизительно 100% (мол.) функциональных групп сульфокислоты или сложного эфира сульфокислоты в расчете на количество подверженных сульфированию мономерных звеньев блока В, в котором неполярная жидкая фаза содержит вышеупомянутый сульфированный блок-сополимер в мицеллярной форме, адаптированной для заключения полярного компонента.

Технология, описанная в настоящем документе, в дополнение к этому, в общем случае относится к способу стабилизации или хранения полярного компонента в неполярной жидкой фазе. В общем случае способ включает

а) получение раствора, содержащего неполярную жидкую фазу и сульфированный блок-сополимер, содержащий, по меньшей мере, один концевой блок А и, по меньшей мере, один внутренний блок В, где каждый блок А, по существу, не имеет никаких функциональных групп сульфокислоты или сложного эфира сульфокислоты, а каждым блоком В является полимерный блок, содержащий от приблизительно 10 до приблизительно 100% (мол.) функциональных групп сульфокислоты или сложного эфира сульфокислоты в расчете на количество подверженных сульфированию мономерных звеньев блока В,

где раствор содержит сульфированный блок-сополимер в мицеллярной форме, и

b) добавление к раствору (а), по меньшей мере, одного полярного компонента, в результате чего полярный компонент заключается в мицеллы.

В конкретных аспектах способа полярный компонент представляет собой соединение металла.

Описание изобретения

В настоящем документе раскрывается подробное описание вариантов осуществления настоящего изобретения; однако, необходимо понимать то, что описанные варианты осуществления представляют собой всего лишь примеры изобретения, и то, что изобретение может быть осуществлено в различных и альтернативных формах описанных вариантов осуществления. Поэтому конкретные структурные и функциональные детали, которые относятся к описанию вариантов осуществления в настоящем документе, должны интерпретироваться не в качестве ограничения, а просто в качестве базиса для формулы изобретения и в качестве представительного базиса для предложения специалисту в соответствующей области техники инструкций по различному использованию настоящего изобретения.

Если только конкретно не будет указано другого, то все технические термины, использующиеся в настоящем документе, имеют значение, обычно понимаемое специалистами в соответствующей области техники.

Кроме того, если только конкретно не будет указано другого, то все следующие далее выражения, использующиеся в настоящем документе, понимаются имеющими следующие далее значения.

Выражения «ненейтрализованный сульфированный блок-сополимер» и «сульфированный блок-сополимерный предшественник» в соответствии с использованием в настоящем документе относятся к сульфированному блок-сополимеру, который, по существу, не был нейтрализован амином, металлом или другим полярным соединением и содержит функциональность сульфокислоты и/или сложного эфира сульфокислоты.

Выражение «нейтрализованный блок-сополимер» в соответствии с использованием в настоящем документе относится к сульфированному блок-сополимеру, который был нейтрализован, по меньшей мере, частично.

Выражение «конструкционная термопластичная смола» в соответствии с использованием в настоящем документе включает различные полимеры, такие как, например, термопластичный сложный полиэфир, термопластичный полиуретан, простой поли(ариловый эфир) и поли(арилсульфон), поликарбонат, ацетальная смола, полиамид, галогенированный термопласт, нитрильная барьерная смола, поли(метилметакрилат) и циклические олефиновые сополимеры, и дополнительно определенные в публикации US 4107131, описание которой посредством ссылки включается в настоящий документ.

Выражение «равновесие» в соответствии с использованием в настоящем документе в контексте абсорбирования воды относится к состоянию, в котором скорость абсорбирования воды блок-сополимером сбалансирована со скоростью потери воды блок-сополимером. Состояние равновесия в общем случае может быть достигнуто в результате погружения сульфированного блок-сополимера или нейтрализованного блок-сополимера настоящего изобретения в воду на период времени в 24 часа (один день). Состояние равновесия также может быть достигнуто и в других влажных средах, однако, период времени для достижения равновесия может отличаться.

Выражение «гидратированный» блок-сополимер в соответствии с использованием в настоящем документе относится к блок-сополимеру, который абсорбировал значительное количество воды.

Выражение «влажное состояние» в соответствии с использованием в настоящем документе относится к состоянию, в котором блок-сополимер достиг равновесия или погружен в воду на период времени в 24 часа.

Выражение «сухое состояние» в соответствии с использованием в настоящем документе относится к состоянию блок-сополимера, который, по существу, не абсорбировал воды или абсорбировал только незначительные ее количества. Например, сульфированный или нейтрализованный блок-сополимер, который просто находится в контакте с атмосферой, в общем случае будет оставаться в сухом состоянии.

Выражение «уровень водопоглощения» в соответствии с использованием в настоящем документе относится к массе воды, которую абсорбирует блок-сополимер в равновесии, в сопоставлении с первоначальной массой сухого материала при расчете в виде процентной величины. Меньший уровень водопоглощения указывает на меньшее абсорбирование воды и поэтому соответствует лучшей стабильности геометрических размеров.

Все публикации, патентные заявки и патенты, упомянутые в настоящем документе, во всей своей полноте посредством ссылки включаются в настоящий документ. В случае конфликта предполагается главенствование настоящего описания изобретения, включая определения.

Кроме того, все диапазоны, описанные в настоящем документе, предполагают включение любой комбинации из упомянутых верхних и нижних пределов даже и при отсутствии специального приведения конкретных комбинации и диапазона.

Как к удивлению было установлено, в соответствии с несколькими вариантами осуществления настоящего описания изобретения нейтрализованные сульфированные полимеры могут быть получены в результате непосредственного введения мицеллярного раствора сульфированного блок-сополимера в контакт с соединением металла. По данному способу для нейтрализации сульфированного блок-сополимера и последующего получения из данного нейтрализованного блок-сополимера мембран и изделий могут быть использованы широкий спектр самых разнообразных соединений металлов. Кроме того, способ, соответствующий нескольким вариантам осуществления, делает возможным непосредственный контакт между соединением металла и сульфированным блок-сополимером и приводит к получению нейтрализованных блок-сополимеров, подходящих для использования в качестве материалов мембраны, которые демонстрируют наличие неожиданно превосходного баланса свойств в сопоставлении со свойствами ненейтрализованных сульфированных блок-сополимеров. Конкретные свойства включают нижеследующее, но не ограничиваются только этим:

(1) неожиданно высокая скорость переноса водяного пара;

(2) стабильность геометрических размеров во влажных условиях, о чем свидетельствуют низкие уровни водопоглощения и низкое набухание;

(3) увеличенный модуль упругости при растяжении во влажном состоянии в сопоставлении с тем, что имеет место для соответствующего ненейтрализованного сульфированного блок-сополимера;

(4) согласованные пределы прочности при растяжении как во влажном, так и в сухом состояниях.

В соответствии с этим, нейтрализованные металлом сульфированные блок-сополимеры, представленные в настоящем документе, являются вполне подходящими для использования в широком спектре самых разнообразных областей применения на практике и являются в особенности хорошо подходящими для использования в областях применения, которые задействуют воду, или которые имеют место во влажных средах.

В некоторых вариантах осуществления сульфированные блок-полимерные предшественники, которые могут быть нейтрализованы в соответствии с вариантами осуществления настоящего описания изобретения, включают ненейтрализованные сульфированные блок-сополимеры, описанные в публикации US 2007/021569 авторов Willis et al., полное описание которой посредством ссылки включается в настоящий документ. Сульфированные блок-полимерные предшественники, в том числе ненейтрализованные сульфированные блок-сополимеры, описанные в публикации US 2007/021569, могут быть получены в соответствии со способом публикации WO 2008/089332 авторов Dado et al., полное описание которой посредством ссылки включается в настоящий документ.

Блок-сополимеры, необходимые для получения сульфированных блок-сополимеров настоящего изобретения, могут быть получены по нескольким различным способам, включающим анионную полимеризацию, замедленную анионную полимеризацию, катионную полимеризацию, полимеризацию Циглера-Натта и полимеризацию с участием живых цепей или стабильных свободных радикалов. Анионная полимеризация более подробно описывается ниже и в документах, приведенных в качестве ссылок. Способы замедленной анионной полимеризации для получения стирольных блок-сополимеров описываются, например, в публикациях US 6391981, US 6455651 и US 6492469, каждая из которых посредством ссылки включается в настоящий документ. Способы катионной полимеризации для получения блок-сополимеров описываются, например, в публикациях US 6515083 и US 4946899, каждая из которых посредством ссылки включается в настоящий документ.

Обзор способов живой полимеризации Циглера-Натта, которые могут быть использованы для получения блок-сополимеров, недавно был сделан в публикации G. W. Coates, P. D. Hustad, and S. Reinartz, Angew. Chem. Int. Ed., 41, 2236-2257 (2002); в последующей публикации авторов H. Zhang и K. Nomura (J. Am. Chem. Soc., Comm., 2005) живые методики Циглера-Натта для получения стирольных блок-сополимеров описываются конкретно. Был сделан обзор обширной работы в области химии живой радикальной полимеризации с участием нитроксида; смотрите публикацию C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101(12), 3661-3688 (2001). Как обрисовано в данном обзоре, стирольные блок-сополимеры могут быть синтезированы по живым методикам или методикам с участием стабильных свободных радикалов. При получении полимерных предшественников предпочтительными способами полимеризации с участием живых цепей или стабильных свободных радикалов являются способы полимеризации с участием нитроксида.

1. Структура полимера

Один аспект изобретения, описанного в настоящем документе, относится к структуре полимера у нейтрализованных сульфированных блок-сополимеров. В одном варианте осуществления нейтрализованные блок-сополимеры, полученные в настоящем изобретении, будут содержать, по меньшей мере, два полимерных концевых или внешних блока А и, по меньшей мере, один насыщенный полимерный внутренний блок В, где каждым блоком А является полимерный блок, который является стойким к сульфированию, а каждым блоком В является полимерный блок, который является подверженным сульфированию.

Предпочтительные структуры блок-сополимера имеют общую конфигурацию А-В-А, (A-B)n(A), (A-B-A)n, (A-B-A)nX, (A-B)nX, A-B-D-B-A, A-D-B-D-A, (A-D-B)n(A), (A-B-D)n(A), (A-B-D)nX, (A-D-B)nX или их смесей, где n представляет собой целое число в диапазоне от 2 до приблизительно 30, Х представляет собой остаток агента реакции сочетания, и А, В и D представляют собой то, что определено ниже в настоящем документе.

Наиболее предпочтительными структурами являются линейные структуры, такие как А-В-А, (А-В)2Х, А-В-D-B-A, (A-B-D)2X, A-D-B-D-A и (A-D-B)2X, и радиальные структуры, такие как (A-B)nX и (A-D-B)nX, где n находится в диапазоне от 3 до 6. Такие блок-сополимеры обычно получают в результате проведения анионной полимеризации, полимеризации с участием стабильных свободных радикалов, катионной полимеризации или полимеризации Циглера-Натта. Предпочтительно блок-сополимеры получают в результате проведения анионной полимеризации. Специалисты в соответствующей области техники должны понимать то, что при любой полимеризации полимерная смесь в дополнение к любым линейным и/или радиальным полимерам будет содержать определенное количество двухблочного сополимера А-В. Как было установлено, соответствующие количества не являются неблагоприятными для практики изобретения.

Блоки А представляют собой один или несколько сегментов, выбираемых из заполимеризованных (i) пара-замещенных стирольных мономеров, (ii) этилена, (iii) альфа-олефинов, содержащих от 3 до 18 атомов углерода, (iv) 1,3-циклодиеновых мономеров, (v) мономерных сопряженных диенов при наличии до гидрирования уровня содержания винила, меньшего, чем 35 молярных процентов, (vi) акриловых сложных эфиров, (vii) метакриловых сложных эфиров и (viii) их смесей. В случае сегментов А в виде полимеров 1,3-циклодиена или сопряженных диенов после проведения полимеризации для получения блок-сополимера и до проведения сульфирования блок-сополимера сегменты будут гидрировать.

Пара-замещенные стирольные мономеры выбирают из пара-метилстирола, пара-этилстирола, пара-н-пропилстирола, пара-изопропилстирола, пара-н-бутилстирола, пара-втор-бутилстирола, пара-изобутилстирола, пара-трет-бутилстирола, изомеров пара-децилстирола, изомеров пара-додецилстирола и смесей из вышеупомянутых мономеров. Предпочтительные пара-замещенные стирольные мономеры представляют собой пара-трет-бутилстирол и пара-метилстирол, при этом пара-трет-бутилстирол является наиболее предпочтительным. Мономеры могут представлять собой смеси из мономеров в зависимости от конкретного источника. Желательно, чтобы совокупная степень чистоты пара-замещенных стирольных мономеров соответствовала бы, по меньшей мере, 90% (масс.), предпочтительно, по меньшей мере, 95% (масс.), а еще более предпочтительно, по меньшей мере, 98% (масс.), желательного пара-замещенного стирольного мономера.

В случае блоков А в виде полимерных сегментов этилена подходящим может оказаться проведение полимеризации этилена по способу Циглера-Натта, как это излагается в ссылках в процитированной выше обзорной статье авторов G. W. Coates et al, описание которой посредством ссылки включается в настоящий документ. Этиленовые блоки предпочитается получать при использовании методик анионной полимеризации, как это излагается в публикации US 3450795, описание которой посредством ссылки включается в настоящий документ. Молекулярная масса блока для таких этиленовых блоков обычно будет находиться в диапазоне от приблизительно 1000 до приблизительно 60000.

В случае блоков А в виде полимеров альфа-олефинов, содержащих от 3 до 18 атомов углерода, такие полимеры будут получать по способу Циглера-Натта, как это излагается в ссылках в процитированной выше обзорной статье авторов G. W. Coates et al.. Предпочтительно альфа-олефины представляют собой пропилен, бутилен, гексан или октан, при этом пропилен является наиболее предпочтительным. Молекулярная масса блока для каждого из таких альфа-олефиновых блоков обычно будет находиться в диапазоне от приблизительно 1000 до приблизительно 60000.

В случае блоков А в виде гидрированных полимеров 1,3-циклодиеновых мономеров такие мономеры будут выбирать из группы, состоящей из 1,3-циклогексадиена, 1,3-циклогептадиена и 1,3-циклооктадиена. Предпочтительно циклодиеновый мономер представляет собой 1,3-циклогексадиен. Полимеризация таких циклодиеновых мономеров описывается в публикации US 6699941, описание которой посредством ссылки включается в настоящий документ. В случае использования циклодиеновых мономеров необходимо будет гидрировать блоки А, поскольку негидрированные заполимеризованные циклодиеновые блоки подвержены сульфированию. В соответствии с этим, после синтеза блока А при использовании 1,3-циклодиеновых мономеров блок-сополимер будут гидрировать.

В случае блоков А в виде гидрированных полимеров сопряженных ациклических диенов, характеризующихся уровнем содержания винила, меньшим, чем 35 молярных процентов, до гидрирования, предпочитается, чтобы спряженным диеном был бы 1,3-бутадиен. Необходимо, чтобы уровень содержании винила в полимере до гидрирования был бы меньшим, чем 35 молярных процентов, предпочтительно меньшим, чем 30 молярных процентов. В определенных вариантах осуществления уровень содержания винила в полимере до гидрирования будет меньшим, чем 25 молярных процентов, еще более предпочтительно меньшим, чем 20 молярных процентов, и даже меньшим, чем 15 молярных процентов, при этом один из более выгодных уровней содержания винила в полимере до гидрирования составит менее, чем 10 молярных процентов. Таким образом, блоки А будут обладать кристаллической структурой, подобной структуре полиэтилена. Такие структуры блоков А описываются в публикациях US 3670054 и US 4107236, каждое из описаний которых посредством ссылки включается в настоящий документ.

Блоки А также могут представлять собой полимерные сегменты акриловых сложных эфиров или метакриловых сложных эфиров. Такие полимерные блоки могут быть получены в соответствии со способами, описанными в публикации US 6767976, описание которой посредством ссылки включается в настоящий документ. Конкретные примеры метакрилового сложного эфира включают сложные эфиры, полученные из первичного спирта и метакриловой кислоты, такие как метилметакрилат, этилметакрилат, пропилметакрилат, н-бутилметакрилат, изобутилметакрилат, гексилметакрилат, 2-этилгексилметакрилаит, додецилметакрилат, лаурилметакрилат, метоксиэтилметакрилат, диметиламиноэтилметакрилат, диэтиламиноэтилметакрилат, глицидилметакрилат, триметоксисилилпропилметакрилат, трифторметилметакрилат, трифторэтилметакрилат; сложные эфиры, полученные из вторичного спирта и метакриловой кислоты, такие как изопропилметакрилат, циклогексилметакрилат и изоборнилметакрилат; и сложные эфиры, полученные из третичного спирта и метакриловой кислоты, такие как трет-бутилметакрилат. Конкретные примеры акрилового сложного эфира включают сложные эфиры, полученные из первичного спирта и акриловой кислоты, такие как метилакрилат, этилакрилат, пропилакрилат, н-бутилакрилат, изобутилакрилат, гексилакрилат, 2-этилгексилакрилат, додецилакрилат, лаурилакрилат, метоксиэтилакрилат, диметиламиноэтилакрилат, диэтиламиноэтилакрилат, глицидилакрилат, триметоксисилилпропилакрилат, трифторметилакрилат, трифторэтилакрилат; сложные эфиры, полученные из вторичного спирта и акриловой кислоты, такие как изопропилакрилат, циклогексилакрилат и изоборнилакрилат; и сложные эфиры, полученные из третичного спирта и акриловой кислоты, такие как трет-бутилакрилат. При необходимости в качестве материала исходного сырья или материалов исходного сырья в настоящем изобретении совместно с (мет)акриловым сложным эфиром могут быть использованы один или несколько других анионно-полимеризуемых мономеров. Примеры анионно-полимеризуемого мономера, который необязательно может быть использован, включают метакриловые или акриловые мономеры, такие как триметилсилилметакрилат, N,N-диметилметакриламид, N,N-диизопропилметакриламид, N,N-диэтилметакриламид, N,N-метилэтилметакриламид, N,N-ди-трет-бутилметакриламид, триметилсилилакрилат, N,N-диметилакриламид, N,N-ди-изопропилакриламид, N,N-метилэтилакриламид и N,N-ди-трет-бутилакриламид. Кроме того, может быть использован и полифункциональный анионно-полимеризуемый мономер, включающий в своей молекуле две и более метакриловые или акриловые структуры, такие как структуры метакрилового сложного эфира или структуры акрилового сложного эфира (например, этиленгликольдиакрилат, этиленгликольдиметакрилат, 1,4-бутандиолдиакрилат, 1,4-бутандиолдиметакрилат, 1,6-гександиолдиакрилат, 1,6-гександиолдиметакрилат, триметилолпропантриакрилат и триметилолпропантриметакрилат).

В способах полимеризации, использующихся для получения акриловых или метакриловых сложноэфирных полимерных блоков, может быть использован только один из мономеров, например, (мет)акриловый сложный эфир, или два и более из них могут быть использованы в комбинации. В случае использования двух и более мономеров в комбинации в результате выбора условий, таких как комбинация из мономеров и момент времени добавления мономеров в полимеризационную систему (например, одновременное добавление двух и более мономеров или раздельные добавления с интервалами в заданное время) может быть осуществлена любая форма сополимеризации, выбираемая из форм статистической сополимеризации, блочной сополимеризации, блочной сополимеризации с линейным изменением составов блоков по блокам и тому подобного.

Блоки А также могут содержать вплоть до 15 молярных процентов винилароматических мономеров, таких как те, которые присутствуют в блоках В, которые более подробно рассматриваются в последующем изложении. В некоторых вариантах осуществления блоки А могут содержать вплоть до 10 молярных процентов, предпочтительно они будут содержать только вплоть до 5 молярных процентов, а в особенности предпочтительно только вплоть до 2 молярных процентов, винилароматических мономеров, упомянутых для блоков В. Однако, в наиболее предпочтительных вариантах осуществления блоки А не будут содержать никаких винильных мономеров, присутствующих в блоках В. Уровень сульфирования в блоках А может находиться в диапазоне от 0 вплоть до 15 молярных процентов от совокупных мон