Способ рентгенолюминесцентной сепарации минералов и рентгенолюминесцентный сепаратор для его осуществления
Иллюстрации
Показать всеПредлагаемые изобретения относятся к области обогащения полезных ископаемых, а именно к разделению дробленого минерального материала, содержащего люминесцирующие под воздействием возбуждающего излучения минералы, на обогащаемый и хвостовой продукты. Рентгенолюминесцентный сепаратор содержит средство транспортировки сепарируемого материала, источник импульсного возбуждающего рентгеновского излучения, фотоприемное устройство для регистрации люминесценции, задатчик пороговых значений интенсивности сигнала люминесценции и пороговых значений параметров разделения, блок синхронизации, устройство цифровой обработки сигнала люминесценции. Устройство также содержит исполнительный механизм и приемники обогащаемого минерала и хвостового продукта. В сепаратор дополнительно введены источник возбуждающего рентгеновского излучения и фотоприемное устройство, снабженное средством фильтрации спектрального диапазона максимальной интенсивности люминесценции обогащаемого минерала. При этом устройство цифровой обработки сигнала люминесценции выполнено с возможностью одновременной обработки в реальном времени двух сигналов люминесценции. Предложенные изобретения обеспечивают повышение селективности извлечения обогащаемых минералов из разделяемых материалов, а также позволяют одновременно с извлечением разделять минералы по типам. 2 н. и 6 з.п. ф-лы, 4 ил.
Реферат
Предлагаемое изобретение относится к области обогащения полезных ископаемых, а именно к разделению дробленого минерального материала, содержащего люминесцирующие под воздействием возбуждающего излучения минералы, на обогащаемый и хвостовой продукты. Предлагаемое изобретение может быть реализовано как в рентгенолюминесцентных сепараторах на всех стадиях обогащения, так и в устройствах контроля продукции, например, алмазосодержащего сырья.
Известны способы разделения (сепарации) кусковых смесей различных минералов на обогащаемый и хвостовой продукты, основанные на анализе регистрируемого сигнала их люминесценции, возникающей под воздействием электромагнитного излучения.
Известен, например, способ сортировки алмазов как из смеси алмазов с другими минералами, так и из смеси алмазов по их типам, в частности разделение на тип I или II, основанный на анализе спектральных характеристик регистрируемого излучения термолюминесценции минералов [GB 1379923, B07C 5/342, 08.01.1975; GB 1384813, B07C 5/34, 26.02.1975]. В этом способе транспортируемую смесь минералов сначала облучают возбуждающим излучением от источника γ-излучения (изотоп Co60), рентгеновского или ультрафиолетового излучения, а после прекращения возникшей в минералах люминесценции на следующем участке транспортировки смеси ее нагревают, вызывая термолюминесценцию минералов, которую регистрируют и анализируют с помощью спектрального прибора с решеткой. Сортируют алмазы на основе различий в регистрируемых спектральных характеристиках.
Этот способ обладает достаточно высокой селективностью разделения (сепарации) минералов.
Однако он обладает достаточно низкой производительностью, так как требует довольно много времени (до нескольких сотен мс) на регистрацию и анализ характеристик. Поэтому его использование в условиях обогатительных фабрик весьма ограничено. Кроме того, для реализации этого способа предпочтительно использовать радиоактивный источник излучения (изотоп Co60) и спектрометр с достаточно высокой разрешающей способностью.
Известен также способ рентгенолюминесцентной сепарации минералов, основанный на выборе спектрального диапазона для регистрации интегрального сигнала люминесценции минерала, которую проводят в области минимума спектральной плотности люминесценции минералов хвостового продукта сепарации [RU 2334557, С2, B03B 13/06, B07C 5/342, 27.09.2008].
Этот способ обладает достаточно высокой селективностью разделения (сепарации) минералов.
Однако его чувствительность недостаточно высока для использования в сепараторах с высокой (100 т/час) и средней (10 т/час) производительностью, особенно для извлечения слаболюминесцирующих алмазов, так как при такой спектральной фильтрации люминесценции минералов интенсивность регистрируемого излучения обогащаемого минерала (алмаза) снижается в два раза.
Известны также способы разделения (сепарации) кусковых смесей различных минералов, основанные на использовании различий в коэффициенте поглощения рентгеновского и оптического излучений между алмазом и сопутствующим минералом при анализе регистрируемого сигнала их люминесценции, возникающей под воздействием электромагнитного излучения.
Например, известен способ сепарации минералов, заключающийся в транспортировании минералов монослойным потоком, облучении минералов проникающим излучением, возбуждающим их люминесценцию, регистрации интенсивности люминесценции со стороны проникающего излучения и с противоположной стороны, определении степени прозрачности минералов и отделении полезного минерала по степени его прозрачности для проникающего излучения [RU 2303495, C2, B07C 5/342, 27.07.2007]. Степень прозрачности минерала для возбуждающего рентгеновского излучения может быть определена по разности логарифмов интенсивностей люминесценции, регистрируемых со стороны потока проникающего излучения и с противоположной стороны, или по логарифму отношения этих интенсивностей.
При таком способе разделения минералов могут быть обнаружены все типы алмазов.
Однако его степень селективности недостаточно высока, так как параметр разделения не учитывает оптические свойства минерала и зависит от размера (толщины) минерала, которая существенно меняется не только от разброса в пределах класса крупности сепарируемого материала, но и различий в положении минерала неправильной формы относительно направления действия возбуждающего излучения в момент регистрации. Кроме того, способ не позволяет надежно идентифицировать сигнал слаболюминесцирующих алмазов, особенно среди сигналов люминесценции ряда сопутствующих минералов, обладающих интенсивной люминесценцией, так как использование логарифмического усилителя в блоке обработки сигналов люминесценции с высоким коэффициентом передачи для слабых сигналов, близких к уровню собственных шумов, приводит к значительным погрешностям.
Реальный сигнал люминесценции минерала, регистрируемый в течение некоторого времени, обладает кинетическими характеристиками и может рассматриваться как суперпозиция (наложение) двух компонент. В общем случае, такой сигнал может содержать короткоживущую или быструю компоненту (далее - БК) люминесценции, возникающую практически одновременно (с интервалом в несколько микросекунд) с началом воздействия возбуждающего излучения и отсутствующую сразу же после его окончания, и долгоживущую или медленную компоненту (далее - МК) люминесценции, интенсивность которой непрерывно увеличивается во время воздействия возбуждающего излучения и относительно медленно (от нескольких сот микросекунд до единиц миллисекунд) уменьшается после его окончания (период послесвечения люминесценции).
Известен способ сепарации минералов, заключающийся в транспортировании минералов в виде монослойного потока сепарируемого материала, облучении этого материала проникающим излучением, регистрации под тупым или развернутым углом относительно падающего потока проникающего излучения интенсивности короткой и длительной компонент люминесценции минерала в пересекающихся зонах облучения и регистрации интенсивности только длительной компоненты люминесценции в непересекающихся зонах облучения и также регистрации интенсивности люминесценции воздуха, причем люминесценцию воздуха регистрируют за пределами ширины потока сепарируемого материала, и отделении полезного минерала по результату сравнения с заданным пороговым значением для регистрируемой интенсивности люминесценции минерала, пропорциональным интенсивности сигнала люминесценции воздуха [RU 2310523, C2, B07C 5/342, 20.11.2007].
Способ позволяет повысить селективность сепарации за счет возможности использования в качестве параметров разделения минералов не только различия в поглощении рентгеновского и оптического излучений между алмазом и сопутствующим минералом, но и кинетические характеристики сигнала люминесценции минерала, регистрируемые как в присутствии возбуждающего излучения, так и в его отсутствии.
Однако из-за недостаточной чувствительности способ не позволяет надежно идентифицировать сигнал слаболюминесцирующих алмазов, особенно среди сигналов люминесценции ряда сопутствующих минералов, обладающих интенсивной люминесценцией.
Наиболее близким аналогом предлагаемому способу рентгенолюминесцентной сепарации минералов является способ, включающий транспортирование потока разделяемого материала, облучение этого материала последовательностью импульсов возбуждающего рентгеновского излучения в пределах заданного участка траектории движения материала, регистрацию интенсивности сигнала люминесценции минерала в течение каждого периода последовательности в пределах облучаемого участка траектории движения материала, обработку в реальном времени в соответствии с заданными условиями для каждой из кинетических компонент зарегистрированного сигнала для определения параметров разделения, сравнение полученных параметров с заданными пороговыми значениями и отделение обогащаемого минерала из потока транспортируемого материала по результатам сравнения [RU 2437725, C2, B07C 5/00, 27.12.2011]. При обработке зарегистрированного сигнала сначала определяют значение интенсивности сигнала люминесценции через заданное время после окончания возбуждающего импульса, сравнивают полученное значение с заданным для него пороговым значением и в случае превышения порогового значения производят обработку сигнала для определения значения выбранного критерия разделения, сравнивают результат обработки с заданным пороговым значением критерия разделения и выделяют обогащаемый минерал из разделяемого материала, если результат сравнения удовлетворяет заданному критерию, в том случае, если полученное значение интенсивности сигнала люминесценции через заданное время после окончания возбуждающего импульса меньше его порогового значения, определяют значение интенсивности сигнала люминесценции, возникающего во время импульса возбуждающего излучения, сравнивают его с заданным для него пороговым значением и выделяют обогащаемый минерал из разделяемого материала при превышении порогового значения.
Такой способ сепарации минералов обеспечивает извлечение всех типов обогащаемых минералов из потока разделяемого материала с достаточно высокой селективностью, так как использует в качестве параметров разделения различные соотношения кинетических характеристик сигнала люминесценции, регистрируемого как во время воздействия на минеральный материал возбуждающего излучения, так и после него (в период послесвечения).
Однако при извлечении слаболюминесцирующих минералов, интенсивность люминесценции медленной компоненты которых ниже порогового значения, например у алмазов II типа, селективность недостаточно высока. Это обусловлено недостаточной чувствительностью регистрации по быстрой компоненте сигнала люминесценции из-за высокой флуктуации интенсивности (от 1,5 В до 10 В) регистрируемого во время облучения светового сигнала воздуха, различных паров, частиц породы и сопутствующих минералов.
Известны также и рентгенолюминесцентные сепараторы, в которых может быть реализован тот или иной из вышеописанных способов сепарации минералов.
Известен, например, рентгенолюминесцентный сепаратор, содержащий средство транспортировки сепарируемого материала, фотоприемное устройство, установленное относительно траектории движения сепарируемого материала с противоположной стороны от источника проникающего излучения, блок обработки сигналов люминесценции минералов, блок регистрации и запоминания амплитуды сигнала люминесценции воздуха и исполнительный механизм [RU 2310523, C2, B07C 5/342, 20.11.2007]. Источник проникающего излучения установлен таким образом, чтобы ширина области облучения превышала ширину потока сепарируемого материала. Фотоприемное устройство соединено с первым входом блока обработки сигналов люминесценции минералов и с входом блока регистрации и запоминания амплитуды сигнала люминесценции воздуха, выход которого соединен со вторым входом блока обработки сигналов люминесценции минералов. Выход блока обработки сигналов люминесценции минералов соединен с исполнительным механизмом.
Сепаратор позволяет повысить селективность сепарации, так как расположение фотоприемного устройства с противоположной стороны от источника проникающего излучения (под тупым или развернутым углом относительно падающего потока проникающего излучения) позволяет использовать различия в поглощении рентгеновского и оптического излучений между алмазом и сопутствующим минералом для снижения вклада люминесценции сопутствующих минералов в регистрируемую интенсивность люминесценции.
Однако такой сепаратор обладает недостаточной чувствительностью для надежной идентификации сигнала слаболюминесцирующих алмазов, особенно среди сигналов люминесценции ряда сопутствующих минералов, обладающих интенсивной люминесценцией. Это обусловлено тем, что регистрируемый фотоприемным устройством сигнал люминесценции воздуха имеет достаточно высокую интенсивность из-за увеличения люминесцирующего объема, что приводит к увеличению значения порога разделения.
Известен рентгенолюминесцентный сепаратор, содержащий средство транспортировки сепарируемого материала, источник рентгеновского излучения, два фотоприемных устройства, одно из которых расположено по одну сторону с источником рентгеновского излучения относительно облучаемой поверхности транспортируемого материала, а другое - с противоположной стороны относительно траектории движения сепарируемого материала, устройство цифровой обработки сигнала люминесценции, исполнительный механизм и приемники хвостового и концентратного продуктов [RU 2303495, C2, B07C 5/342, 27.07.2007]. Устройство цифровой обработки сигнала люминесценции снабжено функциями логарифмирующего усиления сигналов с фотоприемных устройств, их дифференциального (разностного) усиления, определяемого в качестве параметра разделения, сравнения полученного значения с заданным пороговым значением и выработки команды исполнительному механизму.
В таком сепараторе могут быть обнаружены все типы алмазов.
Однако его селективность недостаточно высока, так как определяемый параметр разделения зависит от размера (толщины) минерала, которая существенно меняется не только от разброса в пределах класса крупности сепарируемого материала, но и различий в положении минерала неправильной формы относительно направления действия рентгеновского излучения в момент регистрации. Кроме того, такой сепаратор не позволяет надежно идентифицировать сигнал слаболюминесцирующих алмазов, особенно среди сигналов люминесценции ряда сопутствующих минералов, обладающих интенсивной люминесценцией, так как использование в устройстве обработки сигналов люминесценции логарифмического усилителя с высоким коэффициентом передачи для слабых сигналов, близких к уровню собственных шумов, приводит к значительным погрешностям.
Известен принятый за прототип рентгенолюминесцентный сепаратор, содержащий средство транспортировки сепарируемого материала, источник импульсного возбуждающего рентгеновского излучения, расположенный над поверхностью транспортируемого материала с возможностью его облучения на участке траектории свободного падения материала вблизи места его схода со средства транспортировки, фотоприемное устройство для регистрации люминесценции, расположенное по одну сторону с источником импульсного возбуждающего рентгеновского излучения относительно облучаемой поверхности транспортируемого материала с возможностью совмещения области регистрации люминесценции транспортируемого материала на участке траектории его свободного падения, совпадающем с областью облучения, задатчик пороговых значений интенсивности сигнала люминесценции и пороговых значений параметров разделения, блок синхронизации, устройство цифровой обработки сигнала люминесценции, снабженное функциями определения параметров разделения, сравнения полученных значений параметров с соответствующими заданными пороговыми значениями и выработки команды исполнительному механизму, исполнительный механизм и приемники обогащаемого и хвостового продуктов [RU 2437725, C2, B07C 5/00, 27.12.2011]. Фотоприемное устройство выполнено с возможностью одновременного усиления регистрируемого сигнала с различным коэффициентом усиления. В качестве параметров разделения в устройстве цифровой обработки сигнала люминесценции могут быть определены значения таких характеристик сигнала люминесценции, как нормированная автокорреляционная функция, отношение суммарной интенсивности быстрой и медленной компонент сигнала к интенсивности его медленной компоненты и постоянная времени затухания люминесценции после завершения возбуждающего импульса, а также значение интенсивности быстрой компоненты сигнала люминесценции.
Такой сепаратор обеспечивает извлечение всех типов обогащаемых минералов из потока разделяемого материала с достаточно высокой селективностью, так как использует в качестве параметров разделения различные соотношения кинетических характеристик сигнала люминесценции, регистрируемого как во время воздействия на минеральный материал возбуждающего излучения, так и после него (в период послесвечения).
Однако при извлечении слаболюминесцирующих минералов, интенсивность люминесценции медленной компоненты которых ниже порогового значения, например у алмазов II типа, селективность недостаточно высока. Это обусловлено тем, что фотоприемное устройство регистрирует суммарную интенсивность возникающей во время действия импульса рентгеновского излучения люминесценции, в которую входит как интенсивность быстрой компоненты люминесценции минерала, так и интенсивность светового сигнала воздуха, различных паров, частиц породы и сопутствующих минералов. Интенсивность этого светового сигнала обладает высокой флуктуацией (от 1,5 В до 10 В), что определяет относительно высокое пороговое значение интенсивности быстрой компоненты сигнала люминесценции.
Техническим результатом изобретений является повышение селективного извлечения обогащаемых минералов из разделяемого материала за счет повышения чувствительности регистрации по быстрой компоненте сигнала люминесценции минерала. Кроме того, изобретения позволяют одновременно с извлечением разделять обогащаемые минералы по типам. Например, разделять алмазы на алмазы I типа и алмазы II типа на всех технологических стадиях обогащения, в том числе и на стадии первичного обогащения при высокой производительности сепаратора (до 100 тонн/час).
Достижение технического результата обеспечивает предлагаемый способ рентгенолюминесцентной сепарации минералов, включающий транспортирование потока разделяемого материала, облучение этого материала последовательностью импульсов возбуждающего рентгеновского излучения в пределах заданного участка траектории свободного падения материала, регистрацию интенсивности сигнала люминесценции минерала в течение каждого периода последовательности в пределах облучаемого участка траектории движения материала, обработку в реальном времени в соответствии с заданными условиями для каждой из кинетических компонент зарегистрированного сигнала для определения параметров разделения, сравнение полученных параметров с заданными пороговыми значениями и отделение обогащаемого минерала из потока транспортируемого материала по результатам сравнения, в котором дополнительно облучают транспортируемый материал возбуждающим рентгеновским излучением на участке его транспортировки до границы участка регистрации интенсивности сигнала люминесценции минерала, регистрируют интенсивности сигналов люминесценции минерала одновременно с облучаемой стороны и с противоположной стороны потока материала в течение каждого периода последовательности, при этом с противоположной стороны потока материала сигналы люминесценции минерала регистрируют в спектральном диапазоне максимальной интенсивности люминесценции обогащаемого минерала только в пределах облучаемого участка траектории свободного падения материала, обрабатывают зарегистрированные сигналы люминесценции для определения параметров разделения в том случае, если величина интенсивности медленной компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, превышает заданное для нее пороговое значение, при этом дополнительно определяют в качестве параметра разделения значение отношения величины медленной компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине медленной компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока, сравнивают результат обработки каждого сигнала люминесценции с заданными пороговыми значениями параметров разделения и отделяют обогащаемый минерал из разделяемого материала, если результат сравнения удовлетворяет заданному критерию, в противном случае, обрабатывают зарегистрированные сигналы люминесценции, если величина интенсивности быстрой компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока материала, превышает заданное для нее пороговое значение, а в качестве параметра разделения определяют значение отношения величины быстрой компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине быстрой компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока, сравнивают результат обработки с заданным пороговым значением параметра разделения и отделяют обогащаемый минерал из разделяемого материала, если результат сравнения удовлетворяет заданному критерию.
В отличие от известного в предлагаемом способе рентгенолюминесцентной сепарации минералов дополнительно облучают транспортируемый материал возбуждающим рентгеновским излучением на участке его транспортировки до границы участка регистрации интенсивности сигнала люминесценции минерала, регистрируют интенсивности сигналов люминесценции минерала одновременно с облучаемой стороны и с противоположной стороны потока материала в течение каждого периода последовательности, при этом с противоположной стороны потока материала сигналы люминесценции минерала регистрируют в спектральном диапазоне максимальной интенсивности люминесценции обогащаемого минерала только в пределах облучаемого участка траектории свободного падения материала, обрабатывают зарегистрированные сигналы люминесценции для определения параметров разделения в том случае, если величина интенсивности медленной компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, превышает заданное для нее пороговое значение, при этом дополнительно определяют в качестве параметра разделения значение отношения величины медленной компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине медленной компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока, сравнивают результат обработки каждого сигнала люминесценции с заданными пороговыми значениями параметров разделения и отделяют обогащаемый минерал из разделяемого материала, если результат сравнения удовлетворяет заданному критерию, в противном случае, обрабатывают зарегистрированные сигналы люминесценции, если величина интенсивности быстрой компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока материала, превышает заданное для нее пороговое значение, а в качестве параметра разделения определяют значение отношения величины быстрой компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине быстрой компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока, сравнивают результат обработки с заданным пороговым значением параметра разделения и отделяют обогащаемый минерал из разделяемого материала, если результат сравнения удовлетворяет заданному критерию.
При обработке сигналов люминесценции минерала, в которых величина интенсивности медленной компоненты сигнала, регистрируемого с облучаемой стороны потока материала, превышает заданное для нее пороговое значение, в качестве параметров разделения также могут определять такие характеристики сигнала люминесценции, как нормированная автокорреляционная функция, отношение суммарной интенсивности быстрой и медленной компонент сигнала к интенсивности его медленной компоненты и постоянная времени затухания люминесценции после завершения возбуждающего импульса.
Достижение технического результата обеспечивает также предлагаемый рентгенолюминесцентный сепаратор, содержащий средство транспортировки сепарируемого материала, источник импульсного возбуждающего рентгеновского излучения, расположенный над поверхностью транспортируемого материала с возможностью его облучения на участке траектории свободного падения материала вблизи места схода материала со средства транспортировки, фотоприемное устройство для регистрации люминесценции, расположенное по одну сторону с источником импульсного возбуждающего рентгеновского излучения относительно облучаемой поверхности транспортируемого материала с возможностью совмещения области регистрации люминесценции транспортируемого материала на участке траектории его свободного падения, совпадающем с областью облучения, задатчик пороговых значений интенсивности сигнала люминесценции и пороговых значений параметров разделения, блок синхронизации, устройство цифровой обработки сигнала люминесценции, снабженное функциями определения параметров разделения, сравнения полученных значений параметров с соответствующими заданными пороговыми значениями и выработки команды исполнительному механизму, исполнительный механизм и приемники обогащаемого и хвостового продуктов, при этом в сепаратор дополнительно введены источник возбуждающего рентгеновского излучения, расположенный над поверхностью транспортируемого материала таким образом, чтобы обеспечить его облучение на участке до схода материала со средства его транспортировки, и фотоприемное устройство, снабженное средством фильтрации спектрального диапазона максимальной интенсивности люминесценции обогащаемого минерала и расположенное относительно траектории движения сепарируемого материала с противоположной от источников возбуждающего рентгеновского излучения стороны с возможностью ограничения его поля зрения облучаемым участком траектории свободного падения материала таким образом, чтобы расстояние от центра приемного окна фотоприемного устройства до середины облучаемого участка траектории свободного падения материала удовлетворяло соотношению h=L/2·tgβ/2, где
L - наибольший линейный размер облучаемого участка траектории свободного падения материала;
β - апертура фотоприемного устройства;
а устройство цифровой обработки сигнала люминесценции выполнено с возможностью одновременной обработки в реальном времени сигналов люминесценции от двух фотоприемных устройств и дополнительно снабжено функциями определения в качестве параметров разделения значения отношения величины медленной компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине медленной компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока, и значения отношения величины быстрой компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине быстрой компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока.
В отличие от известного в предлагаемый рентгенолюминесцентный сепаратор дополнительно введены источник возбуждающего рентгеновского излучения, расположенный над поверхностью транспортируемого материала таким образом, чтобы обеспечить его облучение на участке до схода материала со средства его транспортировки, и фотоприемное устройство, снабженное средством фильтрации спектрального диапазона максимальной интенсивности люминесценции обогащаемого минерала и расположенное относительно траектории движения сепарируемого материала с противоположной от источников возбуждающего рентгеновского излучения стороны с возможностью ограничения его поля зрения облучаемым участком траектории свободного падения материала таким образом, чтобы расстояние от центра приемного окна фотоприемного устройства до середины облучаемого участка траектории свободного падения материала удовлетворяло соотношению h=L/2·tgβ/2, где
L - наибольший линейный размер облучаемого участка траектории свободного падения материала;
β - апертура фотоприемного устройства;
а устройство цифровой обработки сигнала люминесценции выполнено с возможностью одновременной обработки в реальном времени сигналов люминесценции от двух фотоприемных устройств и дополнительно снабжено функциями определения в качестве параметров разделения значения отношения величины медленной компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине медленной компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока, и значения отношения величины быстрой компоненты сигнала люминесценции, регистрируемого с облучаемой стороны потока материала, к величине быстрой компоненты сигнала люминесценции, регистрируемого с противоположной облучению стороны потока.
Дополнительный источник возбуждающего рентгеновского излучения может быть выполнен в виде генератора импульсного рентгеновского излучения или в виде генератора постоянного рентгеновского излучения.
Средство фильтрации спектрального диапазона фотоприемного устройства может быть выполнено в виде дифференциального фильтра.
Поле зрения фотоприемного устройства, расположенного с противоположной от источников возбуждающего рентгеновского излучения стороны относительно траектории движения сепарируемого материала, может быть ограничено участком свободного падения материала, совпадающим с участком его облучения, с помощью конструктивных элементов сепаратора, связанных с фотоприемным устройством взаимным расположением.
Поле зрения фотоприемного устройства по направлению движения потока материала может быть ограничено с одной стороны краем средства транспортировки сепарируемого материала, а с другой - непрозрачным для оптического излучения экраном, установленным с противоположной от источников возбуждающего рентгеновского излучения стороны перпендикулярно траектории свободного падения материала.
Предлагаемая в изобретениях совокупность отличительных и ограничительных признаков обладает новизной, так как не описана в известной авторам литературе.
Совокупность отличительных признаков и их взаимосвязь с ограничительными признаками в предлагаемых изобретениях позволяет решить техническое противоречие: увеличение интенсивности регистрируемого сигнала люминесценции обеспечивает повышение чувствительности, тем самым, приводит к повышению селективности извлечения, однако при этом увеличивается интенсивность регистрируемого во время действия импульса рентгеновского излучения светового сигнала от всех минералов и воздуха, что приводит к снижению чувствительности по быстрой компоненте сигнала люминесценции и к снижению селективности извлечения обогащаемого минерала. Предлагаемая в изобретении совокупность действий позволяет повысить чувствительность регистрации во время действия импульса рентгеновского излучения (по быстрой компоненте сигнала люминесценции) как увеличение отношения сигнал/шум за счет уменьшения флуктуации и снижения уровня интенсивности светового сигнала воздуха, различных паров и частиц породы, регистрируемого во время облучения. Предлагаемая совокупность действий и их последовательность позволяет учитывать различные проявления природных особенностей не только обогащаемого минерала, но и всего сепарируемого материала, таких как структура и элементный состав, при его взаимодействии с излучением. Выявление и учет этих особенностей являются определяющими для предлагаемого в изобретении критерия разделения минералов. Рентгенолюминесцентный сепаратор, предлагаемый для реализации этого способа, полностью обеспечивает достижение технического результата. Таким образом, предлагаемые технические решения имеют изобретательский уровень.
На фиг.1а представлены временные диаграммы регистрируемых сигналов люминесценции минерала с интенсивной медленной компонентой.
На фиг.1б представлены временные диаграммы регистрируемых сигналов люминесценции минерала, у которых интенсивность медленной компоненты незначительна.
На фиг.2 схематически представлен один из вариантов рентгенолюминесцентного сепаратора для реализации предлагаемого способа.
На фиг.2а схематически представлено взаимное расположение элементов сепаратора в области облучения/регистрации на участке свободного падения сепарируемого материала.
Осуществление предлагаемого способа рентгенолюминесцентной сепарации минералов происходит следующим образом. Разделяемый материал транспортируют на подложке, обеспечивая его движение в виде монослойного потока. Облучают этот поток материала возбуждающим рентгеновским излучением, обеспечивая достаточную заселенность долгоживущих (метастабильных) состояний атомов обогащаемого минерала за время транспортировки материала по облучаемому участку подложки. При этом возникает люминесценция воздуха и минералов с разрешенных атомарных переходов. При сходе потока материала с транспортирующей подложки его облучают последовательностью импульсов tи возбуждающего рентгеновского излучения в пределах заданного участка траектории свободного падения материала. Длина этого участка выбирается с учетом скорости транспортировки материала, частоты следования, длительности и мощности импульсов рентгеновского излучения, а ширина участка ограничена шириной падающего потока сепарируемого материала. В результате воздействия на минерал импульсов tи рентгеновского излучения (фиг.1а, б) возникает люминесценция, интенсивность которой, по-видимому, обусловлена не только прямой инверсной заселенностью соответствующих уровней разрешенных переходов в атомах минерала, но и дополнительной, которую под стимулирующим воздействием импульсов tи излучения обеспечивают безызлучательные переходы с ранее заселенных метастабильных состояний атомов на разрешенные. За время прохождения материалом облучаемого участка траектории успевает разгореться медленная компонента (МК) сигнала U(t) люминесценции минерала. Регистрируют интенсивности сигналов U=f(t) люминесценции минерала одновременно с облучаемой стороны Uоб(t) (фиг.1а, б) и с противоположной стороны Uпр(t) (фиг.1а, б) потока материала в течение каждого периода Т (фиг.1а, б) последовательности импульсов. При этом интенсивность сигнала Uпр(t) регистрируют в том волновом диапазоне, в котором расположены наиболее интенсивные спектральные линии обогащаемого минерала, а область наблюдаемого при регистрации свечения ограничена размерами облучаемого участка траектории свободного падения материала. Регистрируемые сигналы Uоб(t) и Uпр(t) люминесценции (фиг.1а, б) могут включать как участок Tр разгорания быстрой (БК) и медленной (МК) компонент сигнала люминесценции, так и участок Tз затухания его медленной (МК) компоненты (фиг.1а, б). У регистрируемых сигналов Uоб(t) и Uпр(t) может присутствовать участок Tр разгорания БК и, возможно, МК сигнала люминесценции и практически отсутствовать участок Tз затухания его МК (фиг.1а, б). Все регистрируемые сигналы Uоб(t) и Uпр(t) обрабатывают в режиме реального времени для определения значения каждого из заданных параметров разделения. Если сигналы Uоб(t) и Uпр(t) имеют МК люминесценции (фиг.1а), то величину интенсивности сигнала Uмкоб(tмк), зарегистрированную в заданный момент времени tмк после окончания импульса tи возбуждающего излучения, сравнивают с заданным для нее пороговым значением Uмк0. В случае (фиг.1а) превышения этого значения (Uмкоб(tмк)>Uмк0), сигналы Uоб(t) и Uпр(t) подвергают дальнейшей обработке для получения в качестве параметра разделения значения отношения величины МК сигнала Uмкоб(tмк) люминесценции, регистрируемого с облучаемой стороны потока материала, к величине МК сигнала Uмкпр(tмк) люминесценции, регистрируемого с противоположной облучению стороны потока материала (Uмкоб(tмк)/Uмкпр(tмк)), а также значений кинетических характеристик сигнала Uоб(t), задан