Отбеливающая композиция, содержащая аморфный кварц

Иллюстрации

Показать все

Изобретение относится к химико-фармацевтической промышленности и представляет собой композицию средства для ухода за зубами, содержащую аморфный кварц, имеющий размер частиц, характеризующийся тем, что D90 составляет менее чем приблизительно 50 микрон, и источник пероксидов, при этом площадь поверхности BET аморфного кварца находится в диапазоне от приблизительно 1 м2/г до приблизительно 50 м2/г. 3 н. и 8 з.п. ф-лы, 2 пр., 30 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к композициям для ухода за полостью рта, содержащим аморфный кварц и окислитель.

Уровень техники

Эффективная композиция для ухода за полостью рта может поддерживать и сохранять внешний вид зубов путем удаления зубных пятен и полирования зубов. Она может очищать и удалять также внешний зубной налет, что может способствовать профилактике кариеса зубов и улучшать здоровье десен.

Абразивы в композициях для ухода за полостью рта помогают устранить плотно присоединенный слой зубного налета, к которому прикреплены зубные камни. Слой зубного налета обычно содержит тонкое бесклеточное гликопротеин-мукопротеиновое покрытие, прилипающее к эмали в течение минут после очистки зубов. Присутствие различных пищевых пигментов внутри зубного налета вызывает большую часть обесцвечивания зубов. Абразив может удалять слой зубного налета с минимальным абразивным повреждением тканей полости рта, таких, как дентин и эмаль.

В дополнение к очистке, может быть желательным, чтобы абразивные системы обеспечивали полировку поверхностей зубов, поскольку отполированные поверхности могут иметь большую сопротивляемость к эктопическому осаждению нежелательных компонентов. Внешний вид зубов может быть улучшен путем придания полированности зубу, поскольку шероховатость поверхности, то есть, ее отполированность, влияет на отражение и рассеяние света, что неотъемлемо относится к внешнему виду зуба. Шероховатость поверхности также влияет на ощущение от зуба. Например, отполированные зубы придают ощущение чистоты, гладкости и блеска.

Многочисленные композиции средств для ухода за зубами используют осажденные кремнеземы в качестве абразивов. Осажденные кремнеземы отмечены и описаны в патенте США №4,340,583 20 июля 1982 г., выдан Wason, патенте ЕР 535.943 А1, 7 апреля 1993 г., выдан McKeown et al., заявке РСТ WO 92/02454, 20 февраля 1992 г., выдана McKeown et al., Патенте США №5,603,920, 18 февраля 1997 г. и патенте США №5,716,601, 10 февраля 1998 г., оба выданы Rice, и патенте США №6,740,311, 25 мая 2004 г., выдан White et al.

При обеспечении эффективной очистки зубов, осажденные кремнеземы в композициях для ухода за полостью рта могут иметь проблемы совместимости с основными активными веществами состава, такими как окислители, например, пероксид. Эффективность пероксидов была доказана для целей перорального косметического применения, такого, как отбеливание зубов, а также лечение гингивита, чувствительности, поражения полости рта, эрозии, полостей, зубного камня, пародонтита, герпетического стоматита, зубного налета и для улучшения неприятного запаха из рта. Но часто, из-за проблем с совместимостью, пероксиды и другие окислители не доставляют эффективно пользователю. Как было показано, такие проблемы совместимости непосредственно связаны с поверхностными свойствами осажденных кремнеземов, такими как площадь поверхности, количество гидроксильных групп и пористость, и чистота кремнезема.

Существует потребность в абразивной системе, которая имеет хорошую совместимость с активными веществами полости рта, такими как окислители, при обеспечении эффективной и безопасной очистки и полировки зубных тканей. Композиции в соответствии с настоящим изобретением могут обеспечивать такие полезные эффекты. Настоящее изобретение поэтому относится к композициям для ухода за полостью рта, содержащим аморфный кварц и окислитель.

Сущность изобретения

Настоящее изобретение относится к композициям для ухода за полостью рта, содержащим аморфный кварц и окислитель.

Краткое описание чертежей

ФИГ.1 представляет собой таблицу свойств материалов различных аморфных кварцев и осажденных кремнеземов.

ФИГ.2 представляет собой таблицу данных совместимости для аморфных кварцев и осажденных кремнеземов.

ФИГ.3(A) представляет собой таблицу композиций на основе фторида натрия композиций для ухода за полостью рта.

ФИГ.3(B) представляет собой таблицу значений PCR и RDA для композиций ФИГ.3(A).

ФИГ.4(A) представляет собой таблицу составов на основе фторида олова композиций для ухода за полостью рта.

ФИГ.4(B) представляет собой таблицу значений PCR и RDA для композиций ФИГ.4(A).

ФИГ.5 представляет собой таблицу очистки и абразивности аморфного кварца.

ФИГ. 6(A)-(I) представляют собой микрофотографии сканирующего электронного микроскопа изображений осажденного кремнезема и аморфного кварца.

ФИГ.7(A) представляет собой таблицу составов композиций.

ФИГ.7(B) представляет собой таблицу совместимости двухвалентного олова, цинка и фторида для композиций ФИГ.7(A).

ФИГ.8 представляет собой таблицу совместимости двухвалентного олова как функции кремнеземной нагрузки.

ФИГ.9(A) представляет собой таблицу состава композиций, содержащих пероксид и аморфный кварц и осажденный кремнезем.

ФИГ.9(B) представляет собой таблицу совместимости с пероксидом для композиций ФИГ.9(A).

ФИГ.10(A) представляет собой таблицу состава композиций, содержащих аморфный кварц.

ФИГ.10(B) представляет собой таблицу характеристик очистки и отбеливания для композиций ФИГ. 10(A).

ФИГ.11(A) представляет собой таблицу состава композиций, содержащих аморфный кварц и осажденный кремнезем.

ФИГ.11(B) представляет собой таблицу данных восприятия потребителями композиций ФИГ.11(A).

ФИГ.12 представляет собой таблицу дополнительных примеров составов.

ФИГ.13(A) представляет собой таблицу примеров составов.

ФИГ.13(B) представляет собой таблицу значений PCR и RDA для композиций на основе фторида натрия ФИГ.13(A).

ФИГ.13(C) представляет собой таблицу примеров составов.

ФИГ.13(D) представляет собой таблицу значений RDA для композиций на основе фторида двухвалентного олова ФИГ.13(C).

Подробное описание изобретения

В то время как данное описание заканчивается формулой настоящего изобретения, в которой конкретно описано и четко заявлено настоящее изобретение, полагают, что настоящее изобретение будет более понятным из приведенного ниже описания.

Определения

Термин «приемлемый для полости рта носитель», как используют в данной заявке, означает приемлемую основу или ингредиент, которые могут быть использованы для получения и/или применения данных композиций в полости рта безопасным и эффективным образом. Такая основа может включать такие вещества, как источники фторид-ионов, антибактериальные средства, агенты, предотвращающие образование камней, буферы, другие абразивные вещества, источники пероксида, бикарбонатные соли щелочных металлов, загустители, увлажнители, воду, поверхностно-активные вещества, диоксид титана, систему ароматизирующих веществ, подсластители, охлаждающие средства, ксилитол, красители, другие приемлемые вещества и их смеси.

Термин «содержащий», как используют в данной заявке, означает, что могут быть добавлены стадии и ингредиенты, отличные от конкретно перечисленных. Данный термин охватывает термины «состоящий из» и «по существу состоящий из». Композиции в соответствии с настоящим изобретением могут содержать, состоять из и по существу состоять из существенных элементов и ограничений настоящего изобретения, описанных в данной заявке, а также любых дополнительных или необязательных ингредиентов, компонентов, стадий или ограничений, описанных в данной заявке.

Термин «эффективное количество», как используют в данной заявке, означает количество соединения или композиции, достаточное для получения полезного эффекта, полезного эффекта для здоровья ротовой полости, и/или количество, достаточно низкое для того, чтобы избежать серьезных побочных эффектов, т.е., обеспечить разумное соотношение полезного эффекта и риска, в пределах здравого суждения специалиста в данной области техники.

Термин «композиция для ухода за полостью рта», как используют в данной заявке, означает продукт, который в ходе стандартного применения остается в полости рта в течение времени, достаточного для контактирования некоторых или всех зубных поверхностей и/или тканей полости рта для пероральной активности. Композиция для ухода за полостью рта в соответствии с настоящим изобретением может быть в различных формах, включая зубную пасту, средство для ухода за зубами, зубной гель, зубные порошки, таблетки, ополаскиватель, поддесневый гель, пену, мусс, жевательную резинку, губную помаду, губку, флосс, профилактическую пасту, вазелиновый гель или зубной протез. Композиция для ухода за полостью рта может быть также включена в полоски или пленки для непосредственного нанесения или присоединения к поверхностям полости рта, или включена во флосс.

Термин «средство для ухода за зубами», как используют в данной заявке, означает пасту, гель, порошок, таблетки или жидкие композиции, если не указано иное, которые используют для очистки поверхностей полости рта.

Термин «зубы», как используют в данной заявке, относится к природным зубам, а также искусственным зубам и зубным протезам.

Термин «полимер», как используют в данной заявке, должен включать вещества, полученные полимеризацией одного типа мономера или полученные из двух (т.е., сополимеров) или более типов мономеров.

Термин «водорастворимый», как используют в данной заявке, означает, что вещество растворимо в воде в данной композиции. В общем, вещество должно быть растворимым при 25ºС при концентрации 0,1% по массе водного растворителя, предпочтительно при 1%, более предпочтительно при 5%, более предпочтительно при 15%.

Термин «фаза», как используют в данной заявке, означает механически отдельную гомогенную часть гетерогенной системы.

Термин «по существу не гидратированный», как используют в данной заявке, означает, что вещество имеет малое количество поверхностных гидроксильных групп или является по существу свободным от поверхностных гидроксильных групп. Это также может означать, что вещество содержит менее чем приблизительно 5% общей воды (свободной и/или связанной).

Термин «большинство», как используют в данной заявке, означает большее количество или часть; количество, превышающее половину от общего количества.

Термин «средний», как используют в данной заявке, означает среднее значение распределения, выше и ниже которого находятся равные значения.

Все процентные содержания, части и соотношения основаны на общей массе композиций в соответствии с настоящим изобретением, если не указано иное. Все такие массы, поскольку они относятся к перечисленным ингредиентам, основаны на активном уровне и поэтому не включают растворители или побочные продукты, которые могут быть включены в коммерчески доступные материалы, если не указано иное. Термин «массовый процент» может быть обозначен как «мас.%» в данной заявке.

Все молекулярные массы, как используют в данной заявке, являются средневзвешенными молекулярными массами, выраженными как грамм/моль, если не указано иное.

Аморфный кварц

Аморфный кварц является высокочистым аморфным диоксидом кремния. Его иногда называют плавленым кварцем, кварцевым стеклом или спеченным стеклом. Аморфный кварц является типом стекла, которое, что типично для стекол, не имеет дальнего порядка в атомной структуре. Но оптические и термические свойства аморфного кварца являются уникальными по сравнению с другими стеклами, поскольку аморфный кварц типично имеет большую прочность, термостойкость и ультрафиолетовую проницаемость. Для этого, как известно, аморфный кварц используют в таких ситуациях, как изготовление полупроводников и лабораторное оборудование.

Настоящее изобретение использует аморфный кварц в композициях для ухода за полостью рта, в особенности в композициях средств для ухода за зубами. В то время как многие современные композиции средств для ухода за зубами используют кремнезем в качестве загустителя, а также абразива, кремнеземы типично используют как осажденные кремнеземы. Осажденные кремнеземы получают водным осаждением или процессом высушивания. Наоборот, аморфный кварц типично получают путем плавления высокочистого кремнеземного песка при очень высоких температурах, около 2000ºС.

На Фиг.1 представлена таблица материальных свойств различных типов аморфного кварца. Для сравнения, также показаны те же самые физические свойства для некоторых осажденных кремнеземов. Показаны некоторые из основных материальных свойств, отличающих аморфный кварц от осажденного кремнезема, включая площадь поверхности BET, потери при высушивании, потери при прокаливании, силанольную плотность, объемную плотность, насыпную плотность, поглощение масла и распределение размеров частиц. Каждое из таких материальных свойств более подробно обсуждено ниже.

Процесс нагревания кремнезема до таких высоких температур разрушает пористость и поверхностные функциональные группы кремнезема. В нем получают кремнезем, который является чрезвычайно твердым и инертным для большинства веществ. Процесс плавления также приводит к получению низкой площади поверхности BET, меньшей, чем площадь поверхности BET осажденного кремнезема. Площадь поверхности BET аморфного кварца находится в диапазоне от приблизительно 1 м2/г до приблизительно 50 м2/г, от приблизительно 2 м2/г до приблизительно 20 м2/г, от приблизительно 2 м2/г до приблизительно 9 м2/г и от приблизительно 2 м2/г до приблизительно 5 м2/г. Для сравнения, осажденные кремнеземы типично имеют площадь поверхности BET в диапазоне от 30 м2/г до 80 м2/г. Площадь поверхности BET определяют по способу поглощения азота BET Brunaur et al., /. Am. Chem. Soc, 60, 309 (1938). См. также патент США №7,255,852, выданный 14 августа 2007 г. Gallis.

Аморфный кварц, относительно других типов кремнезема, типично содержит малое количество свободной и/или связанной воды. Количество связанной и свободной воды в аморфном кварце типично менее чем приблизительно 10%. Количество связанной и свободной воды в аморфном кварце может составлять менее чем приблизительно 5%, или менее чем приблизительно 3%. Кремнеземы, содержащие менее чем приблизительно 5% связанной и свободной воды, могут быть рассмотрены как по существу не гидратированные. Общее количество связанной и свободной воды может быть рассчитано путем объединения двух измерений, потерь при высушивании (LOD) и потерь при прокаливании (LOI). Для потерь при высушивании, которые происходят первыми, проба может быть высушена при 105ºС в течение двух часов, потеря массы представляет собой свободную воду. Для потерь при прокаливании, высушенную пробу затем можно нагревать в течение одного часа при 1000ºС, потеря массы представляет собой связанную воду. Сумма LOD и LOI представляет общую связанную и свободную воду в исходной пробе. Например, в соответствии с описанным способом анализа, аморфный кварц (Teco-Sil 44CSS) имеет потери при высушивании 0,1% и потери при прокаливании 2,2%, для суммы 2,3% общей воды. Для сравнения, типичный осажденный кремнезем, Z-119, имеет потери при высушивании 6,1% и потери при прокаливании 5,1%, для суммы 11,2% общей воды. (Другие способы анализа см. В United States Pharmacopeia-National Formulary (USFI-NF), General Chapter 731, Loss on Drying and USn-NF, General Chapter 733, Loss on Ingnition.)

Аморфный кварц, относительно осажденного кремнезема, имеет малое количество поверхностных гидроксильных или силанольных групп. Подсчет поверхностных гидроксильных групп может быть осуществлен при помощи спектроскопии ядерного магнитного резонанса (ЯМР) для измерения силанольной плотности конкретного кремнезема. Силанолы являются соединениями, содержащими атомы кремния, к которым непосредственно присоединены гидроксильные заместители. При выполнении анализа ЯМР твердых веществ на различных кремнеземах, сигнал кремния усилен переносом энергии от соседних протонов. Количество усилений сигнала зависит от близости атомов кремния к протонам гидроксильных групп, расположенных на поверхности или близко от нее. Поэтому, силанольная плотность, заявленная как нормализованная интенсивность силанольного сигнала (интенсивность/г), является мерой концентрации поверхностных гидроксильных групп. Силанольная плотность для аморфных кварцев может быть менее чем приблизительно 3000 интенсивность/г, в некоторых осуществлениях менее чем приблизительно 2000 интенсивность/г и обычно менее чем приблизительно 900 интенсивность/г. Аморфные кварцы могут иметь интенсивность/г, составляющую от приблизительно 10 до приблизительно 800 и типично от приблизительно 300 до приблизительно 700. Например, проба аморфного кварца (Teco-Sil 44CSS) имеет силанольную плотность 574 интенсивность/г. Типичный осажденный кремнезем имеет более 3000 интенсивность/г и типично более 3500 интенсивность/г. Например, Huber Z-119 измеряет 3716 интенсивность/г. Способ анализа силанольной плотности с использованием ЯМР твердого тела с перекрестной поляризацией и вращением под магическим углом (5 кГц) и высокоэнергетическим протонным развязыванием и спектрометром Varian Unity Plus-200 с ультразвуковым двухканальным зондом на 7 мм от Doty Scientific. Задержка релаксации составляла 4 секунды и время контактирования составляло 3 мс. Количество сканов составляло от 8000 до 14000, и временные рамки эксперимента составляли 10-14 часов на пробу. Пробы взвешивали до 0,1 мг для процедуры нормализации. Спектры наносили на график в режиме абсолютной интенсивности и интегралы получали в режиме абсолютной интенсивности. Силанольную плотность измеряли при помощи нанесения на график и интегрирования спектров в режиме абсолютной интенсивности.

Поверхностная реакционная способность кремнезема, представление относительного количества поверхностных гидроксильных групп могут быть измерены по способности кремнезема адсорбировать метиленовый красный из раствора. Так измеряют относительное количество силанолов. Анализ основан на факте, что метиленовый красный селективно адсорбируется на реакционно-способных силанольных сайтах поверхности кремнезема. В некоторых осуществлениях раствор метиленового красного после воздействия аморфного кварца может иметь поглощение, превышающее поглощение раствора после воздействия типичного осажденного кремнезема. Это происходит, поскольку аморфный кварц так сильно не реагирует с раствором метиленового красного, как осажденный кремнезем. Типично, аморфный кварц будет иметь поглощение раствора метиленового красного на 10% выше, чем у стандартного осажденного кремнезема, поскольку осажденный кремнезем более легко реагирует с раствором метиленового красного. Поглощение может быть измерено при 470 нм. Десять грамм 0,001% метиленового красного в бензоле добавляют к 0,1 граммам каждой из двух проб кремнезема и смешивают в течение пяти минут на магнитной мешалке. Полученные в результате суспензии центрифугируют в течение пяти минут при 12000 об/мин, и затем процент передачи при 470 нм определяют для каждой пробы и усредняют. См. «Improving Cationic Compatibility Silica Abrasives Through Use of Topochemical Reactions» от Gary Kelm, Nov. 1, 1974, в Her, Ralph К., Colloid Chemistry Silica and Silicates, Comell University Press, Ithaca, N.Y., 1955.

He будучи связанными теорией, считают, что аморфный кварц, с его низкой удельной площадью поверхности BET, малой пористостью и низким числом поверхностных гидроксильных групп, является менее реакционно-способным, чем осажденный кремнезем. Следовательно, аморфный кварц может адсорбировать меньшее количество других компонентов, таких, как ароматизирующие вещества, активные вещества, или катионы, что приводит к лучшей доступности для других компонентов. Например, средства для ухода за зубами, содержащие аморфный кварц, имеют прекрасную стойкость и биодоступность для двухвалентного олова, фторида, цинка, других катионных антибактериальных средств и пероксида водорода. Аморфный кварц, включенный в композицию средства для ухода за зубами, может привести к, по меньшей мере, приблизительно 50%, 60%, 70%, 80% или 90% совместимости с катионами или другими компонентами. В некоторых осуществлениях катион может быть двухвалентным оловом.

На Фиг.2 показана совместимость двухвалентного олова и фторида различных типов аморфного кварца и осажденного кремнезема. Совместимость двухвалентного олова и фторида определяют путем добавления 15% кремнезема в смесь сорбит/вода, содержащую 0,6% глюконата натрия и 0,454% фторида двухвалентного олова и хорошего перемешивания. Каждую пробу кремнеземной суспензии затем помещают на стабильность при 40ºС в течение 14 дней, а затем анализируют на двухвалентное олово и фторид. Измерение концентрации растворимого двухвалентного олова и растворимого цинка при нормальных условиях чистки зубов щеткой может быть следующим: подготовьте суспензию 3:1 воды и средства для ухода за зубами (кремнезем) и центрифугируйте ее для выделения прозрачного слоя надосадочной жидкости. Разбавляют надосадочную жидкость в кислой среде (азотной или соляной кислоте) и анализируют при помощи оптической эмиссионной спектрометрии с индуктивно связанной плазмой. Процент совместимости рассчитывают путем вычитания проанализированных из начальных значений. Измерение концентрации растворимого фторида при нормальных условиях чистки зубов щеткой может быть следующим: подготовьте суспензию 3:1 воды и средства для ухода за зубами (кремнезем) и центрифугируйте ее для выделения прозрачного слоя надосадочной жидкости. Надосадочную жидкость анализируют на фторид при помощи фторидного электрода (после смешивания 1:1 с буфером TISAB) или разбавляют гидроксидным раствором и анализируют методом ионной хроматографии с детекцией проводимости. Процент совместимости рассчитывают путем вычитания проанализированных из начальных значений. В общем, катионную совместимость можно определять «% СРС тест на совместимость», описанный в патенте США 7,255,852.

Существуют многочисленные другие характеристические различия между аморфным кварцем и осажденным кремнеземом, кроме совместимости и концентрации поверхностных гидроксильных групп. Например, аморфный кварц более плотный и менее пористый. Объемная пористость аморфного кварца типично превышает 0,45 г/мл и может составлять от приблизительно 0,45 г/мл до приблизительно 0,80 г/мл, в то время как объемная плотность осажденных кремнеземов составляет не более чем приблизительно 0,40 г/мл. Насыпная плотность аморфного кварца типично превышает 0,6 г/мл и может составлять от приблизительно 0,8 г/мл до приблизительно 1,30 г/мл, в то время как насыпная плотность осажденных кремнеземов составляет не более чем 0,55 г/мл. Объемная плотность и насыпная плотность могут быть измерены следующими способами в USP-NF, General Chapter 616, Bulk density and Tapped Density. Для объемной плотности может быть использован способ 1. Измерение в градуированном цилиндре: для насыпной плотности может быть использован способ 2, использующий механическую насыпку. Объемная плотность и насыпная плотность представляют соотношения массы к объему частиц (множество частиц, находящихся в данном объеме) и отображают уловленный воздух, пористость и то, каким образом частицы расположены взаимно в данном объеме. Истинная или собственная плотность частицы (соотношения массы к объему одной частицы) для аморфного кварца составляет от приблизительно 2,1 г/см3 до 2,2 г/см3, в то время как истинная или собственная плотность осажденных кремнеземов составляет не более чем приблизительно 2,0 г/см3. Аналогично, удельная масса аморфных кварцев может составлять от приблизительно 2,1 до 2,2, в то время как удельная масса осажденных кремнеземов может составлять не более чем приблизительно 2,0, Различие в плотности может иметь значительное влияние во время производства средства для ухода за зубами, например, там, где более высокая плотность аморфных кварцев уменьшает или удаляет стадию обработки или деаэрации, что может привести к сокращению периодов периодических циклов.

Аморфный кварц имеет сравнительно низкое поглощение воды и масла, измерения хорошо коррелируют с удельной площадью поверхности BET. Поглощение воды для аморфного кварца, означающее количество воды, которое он может поглотить, сохраняя при этом однородность порошка, составляет менее чем приблизительно 80 г/100 г, необязательно менее чем приблизительно 70 г/100 г, приблизительно 60 г/100 г или приблизительно 50 г/100 г. Поглощение воды для аморфного кварца может быть даже меньшим, в диапазоне менее чем приблизительно 40 г/100 г, необязательно менее чем приблизительно 30 г/100 г и может составлять от приблизительно 2 г/100 г до приблизительно 30 г/100 г. Для осажденных кремнеземов поглощение воды составляет типично приблизительно 90 г/100 г. Поглощение воды измеряют при помощи J.M Huber Corp. Способ стандартной оценки, S.E.M No. 5,140, August 10, 2004). Поглощение масла для аморфного кварца составляет менее чем, приблизительно 75 мл дибутилфталата/100 г аморфного кварца, и может составлять менее чем, приблизительно 60 мл дибутилфталата/100 г аморфного кварца. Поглощение масла может находиться в диапазоне от приблизительно 10 мл дибутилфталата/100 г аморфного кварца до приблизительно 50 мл дибутилфталата/100 г аморфного кварца, и может быть желаемым значение от приблизительно 15 мл дибутилфталата/100 г аморфного кварца до приблизительно 45 мл дибутилфталата/100 г аморфного кварца. Для осажденных кремнеземов, поглощение масла составляет типично приблизительно 100 мл дибутилфталата/100 г осажденного кремнезема. (Поглощение масла измеряли в соответствии со способом, описанным в патентной заявке США 2007/0001037 А1, опубликованной 4 января 2007 г.).

Ввиду относительно низкого поглощения воды, аморфный кварц может становиться суспензией во время обработки, в конечном счете, позволяя более быструю обработку и меньшие времена периодических циклов. В общем, для создания суспензии осажденного кремнезема типично требуется, по меньшей мере, приблизительно 50% воды. Поэтому, не будет практичным использовать суспензию осажденного кремнезема при производстве композиций для ухода за полостью рта. Но ввиду инертности, или отсутствия пористости аморфного кварца, что приводит к относительно низкому поглощению воды аморфным кварцем, могут быть получены суспензии аморфного кварца, в которых вода составляет менее чем приблизительно 30% в некоторых осуществлениях, или менее чем 40% в некоторых осуществлениях. Некоторые осуществления могут представлять собой способ получения композиции для ухода за полостью рта, включающий добавление суспензии аморфного кварца. В некоторых осуществлениях, суспензия аморфного кварца содержит связующее вещество. Это может способствовать сохранению аморфного кварца, суспендированного в суспензии, в особенности при большом количестве воды. Это может также предоставлять связующему веществу больше времени для гидратирования. В некоторых осуществлениях, связующее вещество выбирают из группы, состоящей из карбоксивиниловых полимеров, каррагенана, гидроксиэтилцеллюлозы, водорастворимых солей эфиров целлюлозы, таких как натрий карбоксиметилцеллюлоза, перекрестно-сшитая карбоксиметилцеллюлоза, натрий гидроксиэтилцеллюлоза, перекрестно-сшитого крахмала, натуральных камедей, таких как камедь карайи, ксантановая камедь, гуммиарабик и трагакантовая камедь, магний алюминий силиката, кремнезема, алкилированных полиакрилатов, алкилированных перекрестно-сшитых полиакрилатов и их смесей. Суспензия аморфного кварца может быть предварительно смешана. В некоторых осуществлениях, суспензия аморфного кварца может быть текучей или прокачиваться. В некоторых осуществлениях, суспензия аморфного кварца может дополнительно содержать консервант, например бензойную кислоту, бензоат натрия, сорбиновую кислоту или парабены, которые могут быть использованы при менее чем приблизительно 1%.

Аморфный кварц типично имеет гораздо меньшую проводимость, чем осажденный кремнезем. Проводимость является косвенной мерой растворенных электролитов, и осажденный кремнезем не может быть получен без получения растворимых электролитов. Таким образом, в то время как проводимость осажденного кремнезема находится в диапазоне от приблизительно 900-1600 микроСименс/см (исходя из 5% дисперсии в деионизированной воде), проводимость аморфного кварца составляет менее чем приблизительно 10 микроСименс/см (измерения выполнены с использованием настольного измерителя проводимости Orion 3, доступного от Thermo Electron Corporation).

Значение pH аморфного кварца может находиться в диапазоне от приблизительно 5 до приблизительно 8, в то время как pH осажденного кремнезема типично составляет от приблизительно 7 до приблизительно 8. Значение pH определяют согласно патентной заявке США 2007/0001037 А1, опубликованной 4 января 2007 г.

Показатель преломления, мера пропускания света, типично, выше для аморфного кварца, чем для осажденного кремнезема. Помещенный в смесь сорбитол/вода, аморфный кварц имеет показатель преломления, по меньшей мере, приблизительно 1,45, в то время как осажденные кремнеземы имеют показатель преломления от 1,44 до 1,448. Более высокий показатель преломления может позволить более легкое получение прозрачных гелей. Показатель преломления определяют при помощи способа, описанного в патентной заявке США 2006/0110307 А1, опубликованной 25 мая 2006 г.

Аморфный кварц типично имеет твердость по Мосу, превышающую приблизительно 6, превышающую приблизительно 6,5 и превышающую приблизительно 7. Осажденные кремнеземы не настолько твердые, типично имеют твердость по Мосу 5,5-6.

Другим различием между аморфным кварцем и осажденным кремнеземом является чистота, при этом аморфный кварц имеет более высокую чистоту, чем осажденный кремнезем. Процент кремнезема, по массе, в аморфном кварце может превышать приблизительно 97%, приблизительно 97,5%, приблизительно 98%, приблизительно 98,5%, в некоторых осуществлениях превышать приблизительно 99%, и в некоторых осуществлениях превышать приблизительно 99,5%. Для осажденного кремнезема, процент кремнезема, по массе, составляет типично только приблизительно 90%. Такие измерения чистоты включают воду в качестве примеси и могут быть рассчитаны при помощи LOD и LOI способов, описанных ранее.

В зависимости от поставщика, примеси, отличные от воды, могут включать ионы и соли металлов, среди прочих веществ. В общем, для осажденных кремнеземов, примеси, отличные от воды, являются, в основном, сульфатом натрия. Осажденные кремнеземы будут типично содержать от приблизительно 0,5% до 2,0% сульфата натрия. Аморфный кварц типично не содержит сульфата натрия, или содержит менее, чем 0,4%. Уровни чистоты, не включающие воду, могут быть определены путем обращения к USP-NF Dental Silica Silicon Monograph, следующим образом: чистота является комбинированными результатами анализа (диоксид кремния) и тестов на сульфат натрия. Для анализа - перенесите приблизительно 1 г геля кремезема во взвешенную платиновую посуду, прокаливайте при 1000ºС в течение 1 часа, охлаждайте в сушильной печи и взвесьте. Осторожно смочите водой и добавьте приблизительно 10 мл фтороводородной кислоты небольшими порциями. Испаряйте на паровой бане до сухого остатка и охладите. Добавьте приблизительно 10 мл фтороводородной кислоты и приблизительно 0,5 мл серной кислоты и испаряйте до сухого остатка. Медленно повышайте температуру, до улетучивания всех кислот, и прокаливайте при 1000ºС. Охладите в сушильной печи и взвесьте. Разность между конечной массой и массой изначальной прокаленной порции представляет собой массу SiO2. Сульфат натрия - перенесите приблизительно 1 г кремнезема зубного типа, точно взвесьте, в платиновой посуде, смочите несколькими каплями воды, добавьте 15 мл хлорной кислоты и поместите посуду на горячую плиту. Добавьте 10 мл фтороводородной кислоты. Нагревайте до образования обильной пены. Добавьте 5 мл фтороводородной кислоты и снова нагревайте до образования обильной пены. Добавьте приблизительно 5 мл раствора борной кислоты (1 в 25) и нагревайте до образования пены. Охладите и перенесите осадок в стакан на 400 мл при помощи 10 мл соляной кислоты. Доведите объем водой до приблизительно 300 мл и доведите до кипения на горячей плите. Добавьте 20 мл горячего хлорида бария TS. Держите стакан на горячей плите в течение 2 часов, поддерживая объем приблизительно 200 мл. После охлаждения перенесите осадок и раствор в высушенный взвешенный тигель с фильтром с пористостью 0,8 мкм. Промойте фильтр и осаждайте 8 раз горячей водой, высушите тигель при 105ºС в течение 1 часа и взвесьте. Масса, умноженная на 0,6085, представляет собой содержание сульфата натрия во взятом образце. Найдено не более чем 4,0%. Чистоту можно также определять посредством применения стандартных аналитических методов, таких, как атомная абсорбционная спектроскопия или при помощи элементного анализа.

Уникальная морфология поверхности аморфного кварца может приводить к более благоприятным соотношениям PCR/RDA. Эффективность удаления зубного налета (PCR) аморфного кварца в соответствии с настоящим изобретением, которая является мерой очищающих характеристик средства для ухода за зубами, находится в диапазоне от приблизительно 70 до приблизительно 200 и предпочтительно от приблизительно 80 до приблизительно 200. Абразивный износ дентина по радиоактивному методу (RDA) кремнезема в соответствии с настоящим изобретением, который является мерой абразивности аморфного кварца при включении в средство для ухода за зубами, составляет менее чем приблизительно 250 и может находиться в диапазоне от приблизительно 100 до приблизительно 230.

На Фиг.3(A) показан состав композиций на основе фторида натрия, содержащий различные аморфные кварцы и осажденные кремнеземы. На Фиг.3(B) показаны соответствующие значения PCR и RDA. На Фиг.4(A) показан состав композиций на основе фторида двухвалентного олова, содержащий различные аморфные кварцы и осажденные кремнеземы. На Фиг.4(B) показаны соответствующие значения PCR и RDA. Значения PCR определяли при помощи способа, обсужденного в «In Vitro Removal of Stain with Dentifrice,» Г.К. Stookey, et al., J. Dental Res., 61, 1236-9, 1982. Значения RDA определяли в соответствии со способом, приведенным в Hefferren, Journal of Dental Research, July-August 1976, pp.563-573, и описанным в Wason, патенты США №№4,340,583, 4,420,312 и 4,421,527. Значения RDA могут быть также определены при помощи процедуры, рекомендованной ADA для определения абразивности средства для ухода за зубами. Соотношение PCR/RDA аморфного кварца, если он включен в средство для ухода за зубами, может превышать 1, что указывает на то, что средство для ухода за зубами обеспечивает эффективную очистку зубного налета без излишней абразивности. Соотношение PCR/RDA может быть также, по меньшей мере, приблизительно 0,5. Соотношение PCR/RDA является функцией размера частиц, формы, структуры, твердости и концентрации.

На Фиг.5 представлена таблица данных PCR и RDA для различных количеств кремнезема, как аморфного кварца, так и осажденного кремнезема. В ней продемонстрировано, что аморфный кварц (TS10 и TS44CSS) может иметь превосходную чистящую способность (PCR) по сравнению с осажденными кремнеземами (Z119 и Z109). Данные показывают, что композиция для ухода за полостью рта с 5% аморфного кварца может очищать лучше, чем композиция для ухода за полостью рта с 10% осажденного кремнезема. Дополнительно, данные демонстрируют, что аморфный кварц может обеспечивать очистку при сохранении приемлемых уровней абразивности (RDA).

Форма частиц аморфного кварца может быть классифицирована как остроугольная или сферическая, или комбинация форм, в зависимости от типа процесса производства. Дополнительно, аморфный кварц может быть также измельчен для уменьшения размеров частиц. Сферические частицы включают любые частицы, где целая частица почти полностью имеет закругленную или эллиптическую форму. Остроугольные частицы включают любые частицы, которые не являются сферическими, включая полиэдрическую форму. Остроугольные частицы могут иметь несколько закругленных краев, несколько или все острые края, несколько или все зубчатые края, или их комбинацию. Форма частиц аморфного кварца может влиять на абразивность. Например, при том же самом размере частиц, сферический аморфный кварц может иметь более низкий абразивный износ дентина по радиоактивному методу (RDA), чем RDA остроугольного аморфного кварца. Следовательно, может быть возможным оптимизировать чистящую способность, в то же время не повышая абразивность. Или, в качестве другого примера, профилактическая паста или паста для еженедельного применения могут содержать остроугольный аморфный кварц с большим размером частиц.

Композиции, содержащие сферический аморфный кварц, то есть, где, по меньшей мер