Способ теплового нагружения обтекателей ракет из неметаллических материалов

Иллюстрации

Показать все

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры. Токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым. Технический результат - расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции. 1 ил.

Реферат

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Статические испытания на прочность сверхзвуковых самолетов / А.Н.Баранов [и др.]. М.: Машиностроение. 1974. 344 с; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. Т.3. Экспериментальные исследования / Ю.В.Полежаев, С.В.Резник, А.Н.Баранов и др., Под ред. Ю.В.Полежаева и С.В.Резника. М.: Изд-во МГТУ им. Н.Э.Баумана, 2002. 264 с.: ил.). Испытание натурных конструкций в таких установках требует огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя.

Однако стандартные стенды радиационного нагрева (на базе ламп инфракрасного излучения) имеют ряд ограничений. Для элементов летательных аппаратов сложной формы, когда геометрические размеры конструкции сравнимы с размерами нагревателей, присутствует большая погрешность задания температурного поля. Кроме того, при задании высоких температур (выше температуры смягчения кварца) инфракрасные нагреватели выходят из строя.

Наиболее близким по технической сущности является способ теплового нагружения обтекателей ракет из неметаллических материалов по патенту (Пат. №2456568 Российская Федерация, МПК7 G01M 9/04, G01N 25/72, опубл. 20.07.2012). В этом способе тепловое нагружение осуществляют за счет контакта нагревателя с испытуемым образцом, что ограничивает нагрев испытуемого объекта температурой плавления материала. Кроме того, при высоких температурах наблюдается химическое взаимодействие материала нагревателя с материалом обтекателя.

Техническим результатом заявляемого изобретения является расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции.

Указанный технический результат достигается тем, что в способе теплового нагружения обтекателей ракет из неметаллических материалов, включающем нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры, токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым, причем толщину токопроводящей оболочки по высоте определяют по формуле

δ i = ρ I 2 2 π 2 R i ( 2 R i + Δ h i t g α ) ( q i + ε c 0 ( T i 100 ) 4 ) ,                                  ( 1 )

где δi - толщина нагревателя в i-м секторе; I - сила тока в электрической цепи; ρ - удельное сопротивление токопроводящего материала; Ri - расстояние от оси изделия до нагревателя в i-м секторе; Δhi - высота i-го сектора; α - угол наклона поверхности i-го сектора относительно оси обтекателя; qi - требуемая плотность теплового потока на изделии в i-м секторе; ε - степень черноты поверхности изделия в i-м секторе; c0 - коэффициент излучения абсолютно черного тела; Ti - требуемая температура на поверхности изделия в i-м секторе.

При выводе формулы (1) сделано допущение, что вся энергия, выделяемая нагревателем, распределяется по наружной поверхности обтекателя. Это допущение справедливо, если теплопроводность материала ограничителя много меньше теплопроводности материала обтекателя.

Предлагаемый способ изменяет вид передачи энергии от нагревателя; передача энергии за счет непосредственного контакта преобразовывается в радиационный нагрев, так как между нагреваемой поверхностью и нагревателем образуется прозрачный зазор, в котором нагнетается инертный газ. Наличие инертного газа в зазоре под давлением при пористом ограничителе из теплоизолирующего материала приводит к тому, что материал нагревателя омывается газом. Это расширяет температурный диапазон работы нагревателя. Например, для нагревателя из углеродных тканей максимальная рабочая температура может достигать 2400°C, а для нагревателя из вольфрамовой фольги - до 3000°C.

Способ иллюстрирует схема, представленная на фигуре. Нагреватель 2 располагают между обтекателем 1 и ограничителем из теплоизоляционного материала 3, причем в зазоре между нагревателем 2 и обтекателем 1 нагнетают инертный газ, а для подачи напряжения на нагреватель 2 используют шины 4.

Заявленный способ дает возможность воспроизвести аэродинамический нагрев обтекателей ракет из неметаллических материалов при высоких температурах, например для изделий из керамики до 2000°C на наружной поверхности.

Нагреватель может быть выполнен из углеродных тканей или фольги из тугоплавких материалов, например из вольфрама или молибдена. При выполнении нагревателя из металлической фольги его поверхность должна быть перфорирована.

Способ теплового нагружения обтекателей ракет из неметаллических материалов, включающий нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры, отличающийся тем, что токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым, причем толщину токопроводящей оболочки по высоте определяют по формуле δ i = ρ I 2 2 π 2 R i ( 2 R i + Δ h i t g α ) ( q i + ε c 0 ( T i 100 ) 4 ) где δi -толщина нагревателя в i-м секторе; I - сила тока в электрической цепи; ρ - удельное сопротивление токопроводящего материала; Ri - расстояние от оси изделия до нагревателя в i-м секторе; Δhi - высота i-го сектора; α - угол наклона поверхности i-го сектора относительно оси обтекателя; qi - требуемая плотность теплового потока на изделии в i-м секторе; ε - степень черноты поверхности изделия в i-м секторе; c0 - коэффициент излучения абсолютно черного тела; Ti - требуемая температура на поверхности изделия в i-м секторе.