Способ профилирования донных отложений

Иллюстрации

Показать все

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря. Сущность: способ профилирования донных отложений включает установку приемоизлучающей антенны профилографа на буксируемый носитель, при этом излучающая и приемная антенны профилографа устанавливаются на носителе раздельно друг от друга, а в качестве приемной антенны используется ориентированная вдоль продольной оси носителя К - элементная приемная антенна. Буксируют носитель над дном, производят излучение импульсного акустического фазоманипулированного сигнала, модулируемого М-последовательностью, прием отраженного сигнала, его корреляционную обработку с копией излученного акустического фазоманипулированного сигнала, при этом усиление и корреляционную обработку принятых сигналов производят К - канальным приемным трактом. После усиления и корреляционной обработки сигналов, принятых каждым элементом К - элементной приемной антенны, формируют Q значений комплексной амплитуды принятого сигнала , из Q элементов - строк формируют матрицу, для каждого момента времени излучения tpn и времени прихода tq вычисляют временные задержки. Повторяют операции временного сдвига и синфазного суммирования для всего массива данных для каждого элемента приемной антенны, для каждого момента времени прихода принятых сигналов tq и времени излучения tp, синфазно суммируют К сигналов, принятых К - элементной приемной антенной. Затем выполняют графическое построение профиля донных отложений по времени задержки отраженного сигнала. Технический результат - увеличение разрешающей способности способа профилирования в продольном направлении при сохранении достаточно большой глубины профилирования и высокой разрешающей способности в вертикальном направлении. 2 ил.

Реферат

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря.

Известен способ профилирования донных отложений, реализованный в работе Касаткина Б.А., Косарева Г.В., Ларионова Ю.Г. Исследование дна Амурского залива профилографом высокого разрешения. Сборник трудов Российского акустического общества. М.: ГЕОС, 2001, т.2, с.18-22. Известное решение основано на принципе отражения распространяющихся в воде и грунте широкополосных акустических импульсов от всех границ раздела, таких как граница раздела вода - морское дно, а также границы раздела между отдельными слоями морских осадочных пород.

Способ включает излучение широкополосных импульсных акустических сигналов в диапазоне частот 3-8 кГц, прием отраженных сигналов, их корреляционную обработку в режиме реального времени и построение профиля донных осадков по времени задержки отраженных сигналов от границ раздела слоев. Использование широкополосных импульсных акустических сигналов позволяет реализовать в данном способе достаточно высокую разрешающую способность метода профилирования. Недостатком данного способа является сравнительно малая глубина профилирования.

Известен способ профилирования донных отложений, в котором для увеличения глубины профилирования при сохранении высокой разрешающей способности в качестве импульсного акустического зондирующего сигнала используют фазоманипулированный сигнал, модулированный М-последовательностью (Патент РФ №23560696, МПК G01V 1/38, 2007 г.,). Данный способ является наиболее близким к заявляемому решению.

Этот способ профилирования донных отложений включает установку приемоизлучающей антенны профилографа на буксируемом носителе и его буксировку над дном, излучение фазоманипулированного сигнала модулированного М-последовательностью, прием отраженного сигнала, его корреляционную обработку с акустической копией излученного сигнала и последующее графическое построение профиля донных отложений по времени задержки отраженного сигнала. В этом способе для увеличения глубины профилирования используют фазоманипулированный сигнал с достаточно большой базой, обладающий достаточной энергией, а разрешающая способность данного способа в вертикальном направлении сохраняется высокой за счет высокого отношения сигнал/шум на входе приемного тракта, что также обеспечивается выбором фазоманипулированного сигнала с достаточно большой базой.

Недостатком данного способа профилирования является низкая разрешающая способность в продольном направлении, т.е. в направлении буксировки антенны профилографа. Это объясняется тем, что антенна профилографа на рабочих частотах профилирования обладает слабой направленностью в вертикальной плоскости, вследствие чего точечный объект профилирования изображается на профилограмме в виде характерной параболы, что затрудняет правильную идентификацию объектов профилирования. Для увеличения разрешающей способности в продольном направлении либо увеличивают апертуру антенны профилографа, что существенно увеличивает и массо-габаритные характеристики профилографа, либо используют методику синтезирования апертуры. Такая методика применительно к задаче профилирования приведена, например, в работе А.И.Захаров, В.И.Каевицер, В.М.Разманов, В.Н.Раскатов, Применение методов синтезирования апертуры в низкочастотных эхолотах-профилографах. Труды VIII международной конференции Прикладные технологии гидроакустики и гидрофизики. С.Петербург, Наука, 2006, с.143-147. Однако алгоритмы синтезирования апертуры, описанные в этой работе, не учитывают различия в скорости распространения звука в воде и донных отложениях и связанного с этим преломления звуковых лучей на границе раздела вода - морское дно, а потому являются весьма приближенными. Как следствие, они являются достаточно эффективными только при малой величине синтезируемой апертуры и в случае, когда донные отложения являются неконсолидированным осадком, скорость звука в котором близка к скорости звука в воде.

Другой недостаток описанного способа заключается в том, что в области углов падения, меньших критического, а профилограф работает именно в этом диапазоне углов падения, имеет место обратная волна отдачи и связанное с ней двойное лучепреломление. Это явление также искажает изображение реальных объектов профилирования на профилограмме и ухудшает разрешающую способность по глубине залегания рассеивающих объектов.

Задачей изобретения является увеличение разрешающей способности способа профилирования в продольном направлении методом синтезирования апертуры с учетом преломления лучей на границе раздела вода - морское дно и увеличение разрешающей способности в вертикальном направлении методом компенсации эффекта двойного лучепреломления, который возникает всегда при углах падения, меньших критического.

Поставленная задача решается способом профилирования донных отложений, включающим установку приемоизлучающей антенны профилографа на буксируемом носителе и его буксировку над дном, излучение импульсного акустического фазоманипулированного сигнала, модулируемого М-последовательностью, прием отраженного сигнала, его корреляционную обработку с копией излученного акустического фазоманипулированного сигнала и последующее графическое построение профиля донных отложений по времени задержки отраженного сигнала. Для компенсации пространственных искажений, связанных со слабой направленностью антенны профилографа, а следовательно, для увеличения разрешающей способности в продольном направлении и по глубине залегания рассеивающих объектов, излучающая и приемная антенны профилографа устанавливаются на носителе раздельно друг от друга, причем в качестве приемной антенны используется ориентированная вдоль продольной оси носителя К - элементная приемная антенна, а усиление и корреляционную обработку принятых сигналов производят К - канальным приемным трактом. После усиления и корреляционной обработки сигналов, принятых каждым элементом К - элементной приемной антенны, для каждой посылки импульсного сигнала, излученного в момент времени tp=t0+pT, Т - период следования импульсов излучения профилографа, р=1, 2, 3…, из массива обработанных данных формируются Q значений комплексной, амплитуды принятого сигнала S q p ( к ) , соответствующих Q элементам пространственного разрешения в интервале времен прихода отраженного акустического фазоманипулированного сигнала tq∈(t0, tMAX), q=1, 2, Q, где Q = ( t M A X − t 0 ) Δ t , t 0 = 2 h c 1 , t M A X = t 0 + 2 H c 2 (c1, c2 - предварительно определенные эффективная скорость звука в воде и в донных отложениях соответственно, h - высота антенны профилографа над дном, Δ t = 1 Δ f , Δf - полоса частот акустического фазоманипулированного сигнала, Н - предполагаемая глубина профилирования морского дна). Из Q элементов - строк формируется матрица из Q×(2N+1) - значений комплексной амплитуды принятого сигнала S q p n ( к ) соответствующих Q элементам пространственного разрешения по временам прихода tq и временам излучения tpn=tp±nT q∈(1, Q); n∈(0, N). Для каждого момента времени излучения tpn и времени прихода tq вычисляются временные задержки

Δ t q n = Δ t q n ( 1 ) + Δ t q n ( 2 )

Δ t q n ( 1 ) = t 0 [ 1 − cos θ 11 cos θ 11 + 1 − cos θ 21 cos θ 21 − t q − t 0 t 0 ] ,

t q = 2 h c 1 + 2 z q c 2 , t 0 = 2 h c 1 , cos θ 11 = 1 − sin 2 θ 11 , cos θ 21 = 1 − c 21 2 sin 2 θ 11 ,

sin θ 11 = χ 0 [ 1 − z ¯ q ( 1 − χ 0 2 ) 3 / 2 ( c 12 2 − χ 0 2 ) ( c 12 2 − χ 0 2 ) 3 / 2 + c 12 2 z ¯ q ( 1 − χ 0 2 ) 3 / 2 ] , χ 0 = r ¯ n 1 + r ¯ n 2 , r ¯ n = n U T c 1 t 0 , z ¯ q = c 21 t q − t 0 t 0

Δ t q n ( 2 ) = t 0 [ cos θ 11 − cos θ 12 cos θ 11 cos θ 12 + c 12 2 cos θ 21 − cos θ 22 cos θ 11 cos θ 12 sin ( θ 12 − θ 11 ) cos θ 11 cos 22 + cos θ 12 cos θ 21 ]

cos θ 22 = 1 − c 21 2 sin 2 θ 12 ; c 21 = c 2 c 1 , c 21 = c 1 c 2 ,

sin θ 12 = [ 1 − z ¯ q 2 c 12 f 1 ( c 12 , r ¯ n ) 1 + z ¯ q 2 f 2 ( c 12 , r ¯ n ) ] c 12 2 − z ¯ q 2 1 − z ¯ q 2 ,

f 1 ( c 12 , r ¯ n ) = c 12 2 ( 1 − c 12 2 ) 2 c 12 ( c 12 − r ¯ n 1 − c 12 2 ) ,

f 2 ( c 12 , r ¯ n ) = f 1 ( c 12 , r ¯ n ) [ 3 − 7 c 12 2 2 c 12 ( 1 − c 12 2 ) − 2 1 − c 12 2 + r ¯ n c 12 2 c 12 1 − c 12 2 − r ¯ n ( 1 − c 12 2 ) ] ,

(U - предварительно определенная скорость носителя антенны профилографа, Zq - глубина отражающего слоя). Для каждого момента времени прихода принятых сигналов tq и времени излучения tpn синфазно суммируются 2N+1 сигналов, сдвинутых по временной шкале на величину

〈 S q p ( k ) 〉 = 1 2 N + 1 ∑ n = 0 N S q p n ( k ) ( t p + Δ t q n )                                 ( 1 )

повторяются операции временного сдвига и синфазного суммирования для всего массива данных р>N+1, q≤Q для каждого элемента приемной антенны. Для каждого момента времени прихода принятых сигналов tq и времени излучения tp синфазно суммируются К сигналов, принятых К - элементной приемной антенной, сдвинутых по временной шкале на величину кТ

〈 S q p 〉 = 1 K ∑ k = 1 K 〈 S q p ( k ) 〉 ( t q p + k T )                                 ( 2 )

причем период следования импульсов излучения Т, длина отдельного элемента К - элементной приемной антенны L и скорость носителя антенны профилографа U связаны соотношением L=TU.

Изобретение поясняется чертежами, где на фиг.1 показана лучевая трактовка двойного преломления лучей на границе раздела вода - морское дно z0=h, rn=nUT, на фиг.2 - схема формирования синтезированной апертуры.

В результате такой обработки всего массива данных пространственные искажения, связанные со слабой направленностью антенны профилографа, а также с двойным лучепреломлением, компенсируются, что равносильно увеличению направленности антенны профилографа в вертикальной плоскости и улучшению его разрешающей способности в продольном направлении и по глубине залегания рассеивающих объектов.

Способ профилирования донных отложений реализуется следующим образом.

При профилировании осадочного слоя морского дна предварительно измеряются или вычисляются эффективные значения скорости звука в воде и осадочном слое морского дна, которые входят в качестве параметров в алгоритмы обработки сигналов. Излучающая и приемная антенны профилографа устанавливаются на носителе раздельно друг от друга. В качестве приемной антенны используется ориентированная вдоль продольной оси носителя К - элементная приемная антенна. Процесс профилирования включает в себя установку приемоизлучающей антенны профилографа на буксируемый носитель, движение носителя антенны профилографа над дном со скоростью U, которая находится в определенном соотношении с длиной отдельного элемента антенны L и периодом следования импульсов излучения Т, излучение импульсного акустического фазоманипулированного сигнала, модулируемого М-последовательностью, прием отраженного сигнала К - элементной приемной антенной, ориентированной вдоль носителя антенны профилографа, усиление и корреляционную обработку принятых сигналов К - канальным приемным трактом.

Для увеличения разрешающей способности способа профилирования в продольном направлении производят обработку всего массива данных, полученных на выходе К - канального приемного тракта, методом синтезирования апертуры с учетом преломления лучей на границе раздела вода - морское дно и эффектов двойного лучепреломления по формуле (1) для каждого элемента К - элементной приемной антенны и синфазное сложение сигналов, принятых отдельными элементами К - элементной приемной антенны, по формуле (2) с последующим графическим построением профиля донных отложений по времени задержки отраженного сигнала.

При такой структуре приемной антенны профилографа, приемного тракта профилографа и предложенных алгоритмах обработки сигналов разрешающая способность профилографа в продольном направлении будет равна длине одного элемента антенны L, а эффективная синтезированная апертура равна (2N+1)KL.

Таким образом, предложенный способ отличается от известных новизной решения поставленной задачи и позволяет существенно увеличить разрешающую способность метода профилирования как в продольном направлении, так и в вертикальном направлении.

Способ профилирования донных отложений, включающий установку приемоизлучающей антенны профилографа на буксируемый носитель и его буксировку над дном, излучение импульсного акустического фазоманипулированного сигнала, модулируемого М-последовательностью, прием отраженного сигнала, его корреляционную обработку с копией излученного акустического фазоманипулированного сигнала и последующее графическое построение профиля донных отложений по времени задержки отраженного сигнала, отличающийся тем, что излучающая и приемная антенны профилографа устанавливаются на носителе раздельно друг от друга, причем в качестве приемной антенны используется ориентированная вдоль продольной оси носителя К - элементная приемная антенна, а усиление и корреляционную обработку принятых сигналов производят К - канальным приемным трактом; после усиления и корреляционной обработки сигналов, принятых каждым элементом К - элементной приемной антенны, для каждой посылки импульсного сигнала, излученного в момент времени t0=t0+pT, Т - период следования импульсов излучения профилографа, р=1, 2, 3…, из массива обработанных данных формируют Q значений комплексной амплитуды принятого сигнала S q p ( к ) , в интервале времен прихода отраженного акустического фазоманипулированного сигнала tq∈(t0, tMAX), q=1, 2, Q, где Q = ( t M A X − t 0 ) Δ t , t 0 = 2 h c 1 , t M A X = t 0 + 2 H c 2 , (c1, c2 - предварительно определенные эффективная скорость звука в воде и в донных отложениях соответственно, h - высота антенны профилографа над дном, Δ t = 1 Δ f , Δf - полоса частот акустического фазоманипулированного сигнала, Н - предполагаемая глубина профилирования морского дна), из Q элементов - строк формируют матрицу из Q×(2N+1) - значений комплексной амплитуды принятого сигнала S q p n ( к ) , соответствующих временам прихода tq и временам излучения tpn=tp±nT q∈(1, Q); n∈(0, N), для каждого момента времени излучения tpn и времени прихода tq вычисляют временные задержки Δ t q n = Δ t q n ( 1 ) + Δ t q n ( 2 ) Δ t q n ( 1 ) = t 0 [ 1 − cos θ 11 cos θ 11 + 1 − cos θ 21 cos θ 21 t q − t 0 t 0 ] , t q = 2 h c 1 + 2 z q c 2 , t 0 = 2 h c 1 , cos θ 11 = 1 − sin 2 θ 11 , cos θ 21 = 1 − c 21 2 sin 2 θ 11 , sin θ 11 = χ 0 [ 1 − z ¯ q ( 1 − χ 0 2 ) 3 / 2 ( c 12 2 − χ 0 2 ) ( c 12 2 − χ 0 2 ) 3 / 2 + c 12 2 z ¯ q ( 1 − χ 0 2 ) 3 / 2 ] , χ 0 = r ¯ n 1 + r ¯ n 2 , r ¯ n = n U T c 1 t 0 , z ¯ q = c 21 t q − t 0 t 0 Δ t q n ( 2 ) = t 0 [ cos θ 11 − cos θ 12 cos θ 11 cos θ 12 + c 12 2 cos θ 21 − cos θ 22 cos θ 11 cos θ 12 sin ( θ 12 − θ 11 ) cos θ 11 cos 22 + cos θ 12 cos θ 21 ] , cos θ 22 = 1 − c 21 2 sin 2 θ 12 ; c 21 = c 2 c 1 , c 21 = c 1 c 2 , sin θ 12 = [ 1 − z ¯ q 2 c 12 f 1 ( c 12 , r ¯ n ) 1 + z ¯ q 2 f 2 ( c 12 , r ¯ n ) ] c 12 2 − z ¯ q 2 1 − z ¯ q 2 , f 1 ( c 12 , r ¯ n ) = c 12 2 ( 1 − c 12 2 ) 2 c 12 ( c 12 − r ¯ n 1 − c 12 2 ) 2 , f 2 ( c 12 , r ¯ n ) = f 1 ( c 12 , r ¯ n ) [ 3 − 7 c 12 2 2 c 12 ( 1 − c 12 2 ) − 2 1 − c 12 2 + r ¯ n c 12 c 12 1 − c 12 2 − r ¯ n ( 1 − c 12 2 ) ] ,(U - предварительно определенная скорость носителя антенны профилографа, zq - глубина отражающего слоя), синфазно суммируют 2N+1 сигналов, сдвинутых по временной шкале на величину Δtqn по формуле 〈 S q p ( k ) 〉 = 1 2 N + 1 ∑ n = 0 N S q p n ( k ) ( t p + Δ t q n )                         повторяют операции временного сдвига и синфазного суммирования для всего массива данных р>N+1, q≤Q для каждого элемента приемной антенны, для каждого момента времени прихода принятых сигналов tq и времени излучения tp синфазно суммируют К сигналов, принятых К - элементной приемной антенной, сдвинутых по временной шкале на величину кТ, по формуле 〈 S q p 〉 = 1 K ∑ k = 1 K 〈 S q p ( k ) 〉 ( t q p + k T )     причем период следования импульсов излучения Т, длина отдельного элемента К - элементной приемной антенны L и скорость носителя антенны профилографа U связаны соотношением L=TU.