Способ и устройство переработки тяжелого нефтяного сырья
Изобретение относится к области переработки тяжелого нефтяного сырья. Изобретение касается способа переработки тяжелого углеводородного сырья, в котором нагревают перерабатываемое сырье и параллельно готовят перегретый водяной пар, нагретое перерабатываемое сырье и перегретый водяной пар подают в первую реакционную камеру реактора, имеющего две последовательно расположенные и сообщающиеся между собой реакционные камеры, при этом объем первой реакционной камеры меньше объема второй реакционной камеры, и диаметр и объем второй реакционной камеры обеспечивают снижение давления и температуры реакционной смеси, температуру перерабатываемого сырья устанавливают меньше температуры в первой реакционной камере, а температуру водяного пара устанавливают выше температуры в первой реакционной камере, температура и давление перерабатываемого сырья, температура и давление перегретого водяного пара устанавливаются на значения, достаточные для осуществления термического крекинга, по меньшей мере, части углеводородного сырья в первой реакционной камере, при этом обеспечивают среднее время пребывания реакционной смеси в первой реакционной камере менее 0,1 секунды и среднее время пребывания реакционной смеси во второй реакционной камере не менее 10 секунд, выводят продукты реакции из второй реакционной камеры реактора. Изобретение также касается реактора термического крекинга углеводородного сырья, установки переработки тяжелого углеводородного сырья и других способов переработки углеводородного сырья. Технический результат - высокая степень конверсии сырья при минимальном газообразовании и потерях. 5 н. и 15 з.п. ф-лы, 5 табл., 2 ил.
Реферат
Настоящее изобретение относится к области переработки тяжелого нефтяного сырья, такого как тяжелые и сверхтяжелые нефти, сверхвязкие нефти, природные битумы, нефтяных остатков, таких как остатки атмосферной перегонки и продукты на их основе или с их содержанием, остатки вакуумной перегонки и продукты на их основе или с их содержанием, остатки процесса висбрекинга. Изобретение может быть использовано при переработке нефтяного сырья на нефтеперерабатывающих предприятиях и при облагораживании тяжелого нефтяного сырья в промысловых условиях.
Значительную часть мировых запасов углеводородного сырья составляют тяжелые и сверхтяжелые нефти, сверхвязкие нефти и природные битумы (далее тяжелое нефтяное сырье). В условиях роста мирового потребления углеводородного сырья и на фоне снижения существующих запасов обычной нефти наблюдается увеличение доли тяжелого нефтяного сырья в общем объеме добычи нефти. Добыча, первичная подготовка и транспортировка тяжелого нефтяного сырья заметно сложнее аналогичных процессов по сравнению с обычной нефтью. Высокая плотность и вязкость тяжелого нефтяного сырья делает его подготовку значительно более энергоемкой и капиталоемкой. Независимо от способа транспортировки (трубопроводный транспорт, водный транспорт и т.д.) стоимость транспортировки тяжелого нефтяного сырья существенно выше по сравнению с обычной нефтью. Тяжелое нефтяное сырье, как правило, характеризуется низким содержанием моторных фракций, высоким содержанием серы, металлов и т.д. Такое сырье требует использование более дорогих, с точки зрения эксплуатационных и капитальных затрат, процессов на нефтеперерабатывающих заводах для получения конечных продуктов, соответствующих требованиям рынка. Таким образом, тяжелое нефтяное сырье обладает более низкой по сравнению с обычными нефтями коммерческой стоимостью. По этой причине, многие запасы такого сырья остаются неразработанными.
Другая проблема заключается в том, что с увеличением доли тяжелого нефтяного сырья в общем объеме производства, также увеличивается количество образующихся на нефтеперерабатывающих заводах тяжелых нефтяных остатков. При этом существует мировая тенденция в сторону снижения объемов потребления остаточных котельных топлив и увеличения потребления моторных топлив, в первую очередь дизельного топлива. Для многих нефтеперерабатывающих заводов, особенно российских, ресурсы по увеличению мощности существующих производств, направленных на углубление переработки нефти, исчерпаны.
Это определяет необходимость разработки новых способов переработки тяжелых нефтяных остатков в светлые моторные фракции, желательно работающих без катализаторов и водорода и имеющих низкий порог рентабельной мощности. Отказ от использования катализаторов с одной стороны продиктован их относительно высокой стоимостью, сложностью обращения, эрозией внутренней поверхности рабочих аппаратов, так и тем фактом, что тяжелые нефтяные остатки содержат значительные количества металлов и других примесей, являющихся ядами для катализаторов с другой стороны.
Известен способ переработки тяжелой нефти с целью снижения вязкости, описанный в патенте US 5096566. Способ предполагает раздельный нагрев потока тяжелой нефти и потока газа, смешение горячего газа и горячей нефти под давлением и немедленное пропускание смеси тяжелая нефть/газ через маленькую форсунку или сопло. При этом происходит существенный перепад давления, и эжектированная смесь тяжелой нефти и газа в виде мелких капель нефти уносится высокотурбулентным потоком газа с образованием струи. Эта струя поступает в реакционную камеру, откуда происходит вывод нефти с пониженной вязкостью. Данный способ основан на разрушении дисперсной структуры тяжелой нефти и асфальтеновых агломератов за счет очень больших сдвиговых усилий, образующихся в процессе прохождения смеси через сопло.
Данный способ решает только проблему снижения вязкости тяжелого нефтяного сырья и может быть использован на промыслах для решения вопроса транспортировки тяжелого нефтяного сырья, но не решает задачи переработки тяжелого нефтяного сырья и тяжелых нефтяных остатков с получением более легких продуктов. Также к недостаткам данного способа можно отнести тот факт, что в качестве газа рекомендуется использовать водород, который является дорогим и требующим отдельного производства для его получения.
Также из уровня техники, соответствующего настоящему изобретению, известен процесс висбрекинга с выносной реакционной камерой, описанный в Ахметов С.А. Технология глубокой переработки нефти и газа, Уфа: Гилем, 2002 и получивший применение на многих нефтеперерабатывающих заводах. При ректификации нефтяного сырья под вакуумом образуются значительные количества вакуумного остатка. К сожалению, на многих российских нефтеперерабатывающих заводах вакуумные остатки используются в качестве основы для производства остаточных котельных топлив. Вязкость вакуумных остатков значительно превышает значения, регламентируемые требованиями к остаточным топливам. Для снижения вязкости, как правило, используются ценные дистиллятные фракции. Процесс висбрекинга направлен на термическую переработку тяжелых нефтяных остатков с целью снижения их вязкости и расхода ценного разбавителя. Режим процесса предполагает крекинг тяжелых углеводородов, входящих в состав сырья, за исключением асфальтенов, а также боковых углеводородных цепей полициклических соединений. Процесс ведется при температуре 480-500°C и времени реакции 1,5-2 минуты или при более низкой температуре 430-450°C и времени реакции 10-15 минут. Продукты реакции, как правило, фракционируют под вакуумом.
Основным недостатком данного процесса является низкая глубина переработки тяжелого нефтяного сырья при значительном выходе газов разложения (5-6% масс, на сырье). Продукт переработки используется в качестве остаточного топлива.
В патенте RU 2354681 описан способ высокотехнологичного термического крекинга тяжелых нефтяных остатков с повышением глубины переработки сырья и с более высоким выходом светлых дистиллятных фракций, в частности дизельных. Способ термического крекинга тяжелых нефтепродуктов, включает их подачу совместно с активной донорно-водородной добавкой как исходного сырья в зону крекинга и его термообработку. В качестве донорно-водородной добавки предлагается использовать воду в количестве 10-50 мас.%, а исходное сырье предлагается подавать в зону крекинга в виде водно-нефтяной эмульсии под сверхкритическим давлением 22,5-35,0 МПа. Предлагаемая температура термообработки 320-480°C.
Основным недостатком данного способа является проведение термообработки под экстремально высоким давлением. В первую очередь, одновременное воздействие высокой температуры и экстремально высокого давления создает множество сложностей с выбором материального исполнения и аппаратурного оформления. Также необходимо учитывать, что продукты реакции, содержащие легкие углеводороды и находящиеся в условиях ведения процесса, являются источником повышенной опасности.
В основу настоящего изобретения положена задача создания способа переработки тяжелого нефтяного сырья, такого как тяжелые и сверхтяжелые нефти, сверхвязкие нефти, природные битумы, нефтяных остатков, таких как остатки атмосферной перегонки и продукты на их основе или с их содержанием, остатки вакуумной перегонки и продукты на их основе или с их содержанием, остатки процесса висбрекинга, имеющего высокую эффективность, высокую глубину переработки сырья, низкий уровень газообразования, низкое коксообразование и низкий порог рентабельной мощности.
Задача, положенная в основу настоящего изобретения, решается с помощью способа переработки углеводородного сырья, заключающимся в том, что нагревают перерабатываемое сырье и параллельно готовят перегретый водяной пар, нагретое перерабатываемое сырье и перегретый водяной пар подают в первую реакционную камеру реактора, имеющего две последовательно расположенные и сообщающиеся между собой реакционные камеры, при этом объем первой реакционной камеры меньше объема второй реакционной камеры, и диаметр и объем второй реакционной камеры обеспечивают снижение давления и температуры реакционной смеси, температуру перерабатываемого сырья устанавливают меньше температуры в первой реакционной камере, а температуру водяного пара устанавливают выше температуры в первой реакционной камере, температура и давление перерабатываемого сырья, температура и давление перегретого водяного пара устанавливаются на значения достаточные для осуществления термического крекинга, по меньшей мере, части углеводородного сырья в первой реакционной камере, при этом давление и температуру перерабатываемого сырья, давление и температуру перегретого пара устанавливают с обеспечением давления и температуры во второй реакционной камере, при которых протекание реакций термического крекинга является маловероятным, продукты реакции выводят из второй реакционной камеры реактора.
В соответствии с данным способом достигается низкий уровень газообразования, так как во второй реакционной камере реакция термического крекинга практически прекращается и, соответственно, снижается вероятность образования короткоцепочных углеводородов и твердых остатков, что означает низкое газообразование и низкое коксообразование при высокой степени конверсии сырья.
Для осуществления данного способа используется стандартная аппаратура, а конструкция реактора является простой для промышленного исполнения. Соответственно, для воплощения данного способа требуются низкие затраты, что означает низкий порог рентабельной мощности. Данный способ может быть использован при низкой мощности по сырью, что позволяет его применение даже в промысловых условиях.
При переработке тяжелого углеводородного сырья, такого как тяжелые и сверхтяжелые нефти, сверхвязкие нефти, природные битумы, и нефтяные остатки, таких как остатки атмосферной перегонки и продукты на их основе или с их содержанием, остатки вакуумной перегонки и продукты на их основе или с их содержанием, остатки процесса висбрекинга, достигается максимальная эффективность способа, так как достигается высокая степень переработки сырья, а именно, высокая степень снижения средней молекулярной массы сырья.
Предпочтительно обеспечивают среднее время пребывания реакционной смеси в первой реакционной камере менее 0,1 секунды. В данном случае обеспечивается необходимая степень конверсии сырья при ограничении образования короткоцепочных углеводородов и твердых остатков, соответственно, низкое газообразование и коксообразование.
Также предпочтительно обеспечивают среднее время пребывания реакционной смеси во второй реакционной камере не менее 10 секунд. В данном случае обеспечивается стабилизация продуктов реакции.
Кроме того, согласно данному способу, перерабатываемое сырье до подачи в первую реакционную камеру реактора нагревают до температуры в интервале от на 30°C меньше до на 15°C больше температуры начала термического разложения углеводородного сырья. Это позволяет минимизировать нежелательные процессы газообразования и коксообразования в теплообменной аппаратуре. Кроме того, при данном уровне нагрева сырья, реакция термического крекинга в реакторе проводится с наибольшей эффективностью, так как для начала реакции термического крекинга требуется сообщить сырью сравнительно небольшое количество энергии.
Также, согласно данному способу, готовят водяной пар с температурой от 500°C до 800°C. Такая температура перегретого водяного пара является достаточной для инициирования реакции термического крекинга сырья, нагретого до указанной выше температуры, и не является избыточной, то есть сырью не сообщается избыточное количество энергии, которое может вызвать повышение образования короткоцепочных углеводородов и увеличение энергетических затрат процесса.
Согласно настоящему изобретению, кратность подачи водяного пара к сырью составляет от 0,6 кг водяного пара на 1 кг сырья до 1,5 кг водяного пара на 1 кг сырья. В отношении указанных выше параметров сырья и водяного пара, данное количество пара достаточно для обеспечения необходимой для реакции термического крекинга сырья и дополнительно достаточно для обеспечения функции ингибирования реакции поликонденсации с участием образовавшихся радикалов. При этом данное количество водяного пара не является избыточным и не оказывает заметного отрицательного влияния на целевые реакции.
Кроме того, перед нагревом сырья, в углеводородное сырье может быть добавлена вода в количестве до 15% масс. Это снизит вероятность нежелательного на этапе нагрева термического крекинга углеводородного сырья и снизит образование коксовых отложений на поверхности теплообменных аппаратов.
Также задача, положенная в основу настоящего изобретения, решается с помощью реактора термического крекинга углеводородного сырья, содержащего две последовательно расположенные и сообщающиеся между собой реакционные камеры, при этом объем первой реакционной камеры меньше объема второй реакционной камеры, первая реакционная камера имеет средства подачи сырья и перегретого водяного пара, вторая реакционная камера имеет средство вывода продуктов реакции, диаметр и объем второй реакционной камеры выполнены с возможностью обеспечения снижения давления и температуры реакционной смеси до температуры и давления, при которых протекание реакций термического крекинга является маловероятным.
Применение такого реактора обеспечивает возможность регулирование давления подачи сырья, температуры сырья, давления и температуры перегретого пара с обеспечения давления и температуры во второй реакционной камере, при которых протекание реакций термического крекинга является маловероятным, что на практике означает практически полную и моментальную остановку реакции термического крекинга сырья и, соответственно, возможность обеспечения низкого газообразования и низкого коксообразования при высокой степени конверсии сырья.
Кроме того, конструкция реактора является простой для промышленного исполнения. Соответственно, изготовления данного реактора требуются низкие затраты, что означает низкий порог рентабельной мощности. Данный реактор может быть использован при низкой мощности по сырью, даже в промысловых условиях.
В соответствии с экспериментальными данными, предпочтительно, объем второй реакционной камеры больше объема первой реакционной камеры минимум в пять раз. При такой разнице объемов возможно регулирование параметров процесса с получением стабильных условий в первой и второй реакционных камерах. При меньшей разнице объемов, становиться сложным регулирование параметров процесса с обеспечением протекания реакции термического крекинга в первой реакционной камере и прекращения реакции термического крекинга во второй реакционной камере.
Предпочтительно средства подачи сырья и перегретого водяного пара выполнены с обеспечением приложения сдвиговых усилий в отношении сырья. Сдвиговые усилия в отношении сырья обеспечивают разрушение надмолекулярных структур в составе сырья, например, асфальтеновых агломератов, что обеспечивает вовлечение этих углеводородов в реакции крекинга.
Также реактор термического крекинга может содержать несколько первых реакционных камер, соединенных со второй реакционной камерой, при этом объем второй реакционной камеры больше суммы объемов первых реакционных камер минимум в пять раз. В данном случае увеличивается единичная производительность реактора при сохранении всех его преимуществ.
Предпочтительно первая реакционная камера выполнена с возможностью обеспечения среднего времени пребывания реакционной смеси в первой реакционной камере менее 0,1 секунды.
В данном случае обеспечивается необходимая степень конверсии сырья при ограничении образования короткоцепочных углеводородов и твердых остатков, соответственно, низкое газообразование и коксообразование.
Также предпочтительно вторая реакционная камера выполнена с возможностью обеспечения среднего времени пребывания реакционной смеси во второй реакционной камере не менее 10 секунд. В данном случае обеспечивается стабилизация продуктов реакции.
Также задача, положенная в основу настоящего изобретения, решается с помощью установки переработки тяжелого углеводородного сырья, содержащей средство нагрева тяжелого углеводородного сырья, средство подготовки перегретого водяного пара, реактор термического крекинга углеводородного сырья, систему разделения продуктов реакции и систему рекуперации тепла, при этом реактор термического крекинга углеводородного сырья содержит две последовательно расположенные и сообщающиеся между собой реакционные камеры, объем первой реакционной камеры меньше объема второй реакционной камеры, первая реакционная камера имеет средства подачи сырья и водяного пара, вторая реакционная камера имеет средство вывода продуктов реакции, диаметр и объем второй реакционной камеры обеспечивают изменение давления и температуры реакционной смеси до температуры и давления, при которых протекание реакций термического крекинга является маловероятным, средство нагрева тяжелого углеводородного сырья и средство подготовки водяного пара подключены к первой реакционной камере, и система разделения продуктов реакции и система рекуперации тепла подключены ко второй реакционной камере.
При применении настоящей установки достигается низкий уровень газообразования, так как во второй реакционной камере реакция термического крекинга практически прекращается и, соответственно, снижается вероятность образования короткоцепочных углеводородов и твердых остатков, что означает низкое газообразование и низкое коксообразование при высокой степени конверсии сырья.
В состав данной установки входит стандартная аппаратура, а конструкция реактора является простой для промышленного исполнения. Соответственно, при строительстве и эксплуатации данной установки требуются низкие затраты, что означает низкий порог рентабельной мощности. Данная установка может быть использована при низкой мощности по сырью и даже в промысловых условиях.
В соответствии с экспериментальными данными, предпочтительно, объем второй реакционной камеры больше объема первой реакционной камеры минимум в пять раз. При такой разнице объемов возможно регулирование параметров процесса с получением стабильных условий в первой и второй реакционных камерах. При меньшей разнице объемов, становиться сложным регулирование параметров процесса с обеспечением протекания реакции термического крекинга в первой реакционной камере и прекращения реакции термического крекинга во второй реакционной камере.
Также реактор термического крекинга в составе установки переработки тяжелого углеводородного сырья может содержать несколько первых реакционных камер, соединенных со второй реакционной камерой, при этом объем второй реакционной камеры больше суммы объемов первых реакционных камер минимум в пять раз. В данном случае увеличивается единичная производительность реактора и установки в целом при сохранении всех преимуществ.
Предпочтительно первая реакционная камера выполнена с возможностью обеспечения среднего времени пребывания реакционной смеси в первой реакционной камере менее 0,1 секунды.
В данном случае обеспечивается необходимая степень конверсии сырья при ограничении образования короткоцепочных углеводородов и твердых остатков, соответственно, низкое газообразование и коксообразование.
Также предпочтительно вторая реакционная камера выполнена с возможностью обеспечения среднего времени пребывания реакционной смеси во второй реакционной камере не менее 10 секунд. В данном случае обеспечивается стабилизация продуктов реакции.
При переработке тяжелого углеводородного сырья, такого как тяжелые и сверхтяжелые нефти, сверхвязкие нефти, природные битумы, и нефтяные остатки, таких как остатки атмосферной перегонки и продукты на их основе или с их содержанием, остатки вакуумной перегонки и продукты на их основе или с их содержанием, остатки процесса висбрекинга, достигается максимальная эффективность процесса, так как достигается высокая степень переработки сырья, а именно, высокая степень снижения средней молекулярной массы сырья.
Также задача, положенная в основу настоящего изобретения, решается с помощью способа переработки углеводородного сырья, заключающегося в том, что нагревают перерабатываемое сырье до температуры в интервале от на 30°C меньше до на 15°C больше температуры начала термического разложения углеводородного сырья, параллельно готовят перегретый водяной пар с температурой от 500°C до 800°C, нагретое перерабатываемое сырье и перегретый водяной пар подают в полый реактор, где происходит реакция термического крекинга сырья, выводят продукты реакции из реактора.
В соответствии с указанным способом основная масса сырья после его нагрева находится в предкритическом по отношении к реакции термического крекинга состоянии. В результате при смешении с перегретым водяным паром происходит очень быстрый нагрев сырья до температур, при которых начинаются реакции термического крекинга сырья. На практике можно сказать о том, что происходит практически мгновенная инициализация реакции термического крекинга. При этом благодаря способу подвода энергии, а именно подводу энергии путем смешения потоков сырья и перегретого пара, инициализация реакции происходит в отношении всего объема сырья в один момент времени.
Таким образом исключается чрезмерный перегрев части сырья и наличие недостаточно нагретой части сырья, как в случае в висбрекингом или другими известными способами крекинга, основанных на передаче тепловой энергии через поверхность теплообмена, например, стенки трубок. Часть сырья, которая ближе к стенке, получает больше энергии, чем часть сырья, расположенная в центре трубки. Кроме того, в случае передачи энергии через поверхность теплообмена, из-за неравномерного нагрева сырья, необходимо подавать большее, чем необходимо для реакции крекинга количество энергии. Это означает, что, в соответствии с заявленным способом, общее количество затрачиваемой процессом энергии ниже.
Кроме того, отсутствие чрезмерного перегрева части сырья снижает образование короткоцепочных углеводородов, а значит снижает газообразование и коксообразование.
Как отмечалось выше, данный способ является менее энергоемким, по сравнению с известными способами, при достижении одной степени конверсии сырья. Соответственно снижаются энергетические и операционные расходы на переработку сырья, что означает снижение порога рентабельной мощности.
Кроме того, для осуществления данного способа используется стандартная аппаратура. Соответственно, для воплощения данного способа требуются низкие затраты, что означает низкий порог рентабельной мощности. Данный способ может быть использован при низкой мощности по сырью, что позволяет его применение даже в промысловых условиях.
При переработке тяжелого углеводородного сырья, такого как тяжелые и сверхтяжелые нефти, сверхвязкие нефти, природные битумы, и нефтяные остатки, таких как остатки атмосферной перегонки и продукты на их основе или с их содержанием, остатки вакуумной перегонки и продукты на их основе или с их содержанием, остатки процесса висбрекинга, достигается максимальная эффективность способа, так как достигается высокая степень переработки сырья, а именно, высокая степень снижения средней молекулярной массы сырья.
Предпочтительно реакцию термического крекинга сырья проводят в реакторе, имеющем две последовательно расположенные и сообщающиеся между собой реакционные камеры, при этом объем первой реакционной камеры меньше объема второй реакционной камеры.
Применение такого реактора обеспечивает возможность регулирования давления подачи сырья, температуры сырья, давления и температуры перегретого пара с обеспечения давления и температуры во второй реакционной камере, при которых протекание реакций термического крекинга является маловероятным, что на практике означает практически полную и моментальную остановку реакции термического крекинга сырья и, соответственно, возможность обеспечения низкого газообразования и низкого коксообразования при высокой степени конверсии сырья.
Предпочтительно обеспечивают среднее время пребывания реакционной смеси в первой реакционной камере менее 0,1 секунды. В данном случае обеспечивается необходимая степень конверсии сырья при ограничении образования короткоцепочных углеводородов и твердых остатков, соответственно, низкое газообразование и коксообразование.
Также предпочтительно обеспечивают среднее время пребывания реакционной смеси во второй реакционной камере не менее 10 секунд. В данном случае обеспечивается стабилизация продуктов реакции.
Также задача, положенная в основу настоящего изобретения, решается с помощью способа «Способ переработки углеводородного сырья», заключающегося в том, что сырью передается первое количество энергии путем нагрева перерабатываемого сырья до температуры в интервале от на 30°C меньше до на 15°C больше температуры начала термического крекинга углеводородного сырья с использованием поверхностного теплообмена, параллельно готовят перегретый водяной пар с температурой от 500°C до 800°C, передают сырью второе количество энергии путем смешения нагретого сырья и перегретого водяного пара в реакторе, при этом смешение сырья и перегретого водяного пара осуществляют с обеспечением передачи сырью третьего количества энергии путем механического воздействия потока перегретого пара на поток нагретого сырья в реакторе, при этом суммарное количество подводимой энергии регулируется с целью повышения скорости реакций крекинга по наиболее слабым связям молекул в составе сырья при минимальной скорости образования короткоцепочных радикалов, выдерживают оптимальное время пребывания реакционной смеси в полости реактора для обеспечения протекания реакций термического крекинга сырья, выводят продукты реакции из реактора.
В соответствии с указанным способом основная масса сырья после передачи ему первого количества энергии находится в предкритическом по отношении к реакции термического крекинга состоянии. В результате при передачи сырью второго и третьего количества энергии происходит очень быстрый нагрев сырья до температур, при которых начинаются реакции термического крекинга сырья. На практике можно сказать о том, что происходит практически мгновенная инициализация реакции термического крекинга. При этом благодаря способу подвода энергии, а именно подводу энергии путем смешения потоков сырья и перегретого пара, инициализация реакции происходит в отношении всего объема сырья в один момент времени.
Таким образом исключается чрезмерный перегрев части сырья и наличие недостаточно нагретой части сырья, как в случае в висбрекингом или другими известными способами крекинга, основанных на передаче тепловой энергии через поверхность теплообмена, например, стенки трубок. Часть сырья, которая ближе к стенке, получает больше энергии, чем часть сырья, расположенная в центре трубки. Кроме того, в случае передачи энергии через поверхность теплообмена, из-за неравномерного нагрева сырья, необходимо подавать большее, чем необходимо для реакции крекинга количество энергии. Это означает, что, в соответствии с заявленным способом, общее количество затрачиваемой процессом энергии ниже.
Кроме того, отсутствие чрезмерного перегрева части сырья снижает образование короткоцепочных углеводородов, а значит снижает газообразование и коксообразование.
Как отмечалось выше, данный способ является менее энергоемким, по сравнению с известными способами, при достижении одной степени конверсии сырья. Соответственно снижаются энергетические и операционные расходы на переработку сырья, что означает снижение порога рентабельной мощности.
При передаче сырью третьего количества энергии путем механического воздействия потока перегретого пара на поток нагретого сырья осуществляется разрушение надмолекулярных структур в составе сырья, например, асфальтеновых агломератов, что обеспечивает вовлечение этих углеводородов в реакции крекинга и, соответственно, увеличивается степень конверсии сырья и увеличивается выход светлых углеводородов.
Для осуществления данного способа используется стандартная аппаратура. Соответственно, для воплощения данного способа требуются низкие затраты, что означает низкий порог рентабельной мощности. Данный способ может быть использован при низкой мощности по сырью, что позволяет его применение даже в промысловых условиях.
При переработке тяжелого углеводородного сырья, такого как тяжелые и сверхтяжелые нефти, сверхвязкие нефти, природные битумы, и нефтяные остатки, таких как остатки атмосферной перегонки и продукты на их основе или с их содержанием, остатки вакуумной перегонки и продукты на их основе или с их содержанием, остатки процесса висбрекинга, достигается максимальная эффективность способа, так как достигается высокая степень переработки сырья, а именно, высокая степень снижения средней молекулярной массы сырья.
Предпочтительно реакцию термического крекинга сырья проводят в реакторе, имеющем две последовательно расположенные и сообщающиеся между собой реакционные камеры, при этом реакции крекинга протекают преимущественно в первой реакционной камере, объем которой меньше объема второй реакционной камеры и давление подачи сырья, температуру сырья, давление и температуру перегретого пара устанавливают с обеспечением давления и температуры во второй реакционной камере, при которых протекание реакций термического крекинга является маловероятным.
Применение такого реактора и регулирование давления подачи сырья, температуры сырья, давления и температуры перегретого пара с обеспечением давления и температуры во второй реакционной камере, при которых протекание реакций термического крекинга является маловероятным, на практике означает практически полную и моментальную остановку реакции термического крекинга сырья и, соответственно, возможность обеспечения низкого газообразования и низкого коксообразования при высокой степени конверсии сырья.
Предпочтительно обеспечивают среднее время пребывания реакционной смеси в первой реакционной камере менее 0,1 секунды. В данном случае обеспечивается необходимая степень конверсии сырья при ограничении образования короткоцепочных углеводородов и твердых остатков, соответственно, низкое газообразование и коксообразование.
Также предпочтительно обеспечивают среднее время пребывания реакционной смеси во второй реакционной камере не менее 10 секунд. В данном случае обеспечивается стабилизация продуктов реакции.
Далее приводится описание предпочтительных вариантов осуществления настоящего изобретения со ссылкой на прилагаемые чертежи, на которых:
фиг.1 изображает реактор переработки углеводородного сырья, согласно настоящему изобретению;
фиг.2 - технологическая схема установки переработки углеводородного сырья, согласно настоящему изобретению.
Как показано на фиг.1, реактор 1 переработки углеводородного сырья, согласно настоящему изобретению, состоит из двух соединенных между собой реакционных камер: первой реакционной камеры 2 и второй реакционной камеры 3.
В первую реакционную камеру вводят сырье и перегретый водяной пар. Процесс в первой реакционной камере ведут при давлении P1 и температуре T1.
Предпочтительно давление процесса в первой реакционной камере Pi устанавливают в интервале от 15 до 45 кгс/см2
Предпочтительно температуру процесса в первой реакционной камере T1 устанавливают в интервале от 400°C до 500°C.
Конкретные значения давления P1 и температуры T1 выбирают в первую очередь в зависимости от состава перерабатываемого углеводородного сырья. Также на данные значения влияет желаемый состав получаемых продуктов.
Так для сырья, представленного в таблице 1, при экспериментальном испытании способа, согласно настоящему изобретению, было установлено P1=32 кгс/см2 и Т1=470°C.
При давлении P1 и температуре T1 процесса происходит термический крекинг (разложение) углеводородов. При этом реакции крекинга углеводородов протекают с преимущественным образованием длинноцепочных радикалов. Давление P1 и температура T1 процесса регулируются с целью снижения скорости реакций крекинга, ведущих к образованию легких углеводородов C1-С4, которые образуют газовую фракцию и являются нежелательными.
В результате после прохождения реакции в первой реакционной камере 2, средняя молекулярная масса молекул углеводородов получаемого продукта становится ниже средней молекулярной массы углеводородного сырья. Таким образом получается более легкий продукт.
В известных способах разложения тяжелого нефтяного сырья, для повышения степени переработки сырья применяют более жесткие условия, что приводит в увеличению газообразования и, соответственно, к ухудшению материального баланса процесса и к необходимости применения системы газоразделения большой мощности, а также к необходимости транспортировки или утилизации газообразных продуктов, что бывает затруднительно в промысловых условиях.
На состав конечного получаемого продукта влияет способ и количество энергии, подводимой к молекулам углеводородов для проведения реакции крекинга.
При использовании подвода энергии только через поверхность теплообменного оборудования часть молекул сырья, находящаяся непосредственно у поверхности теплообменного оборудования, получает энергию, значительно превосходящую энергию, необходимую для крекинга молекул с образованием крупных радикалов, это вызывает излишнее дробление молекул с образованием короткоцепочных радикалов. Данные короткоцепочные радикалы далее участвуют в различных реакциях, проходящих преимущественно по радикально-цепному механизму, и приводят к образованию низкомолекулярных углеводородов.
Такой принцип крекинга лежит в основе процесса висбрекинга, где основной целью является снижение вязкости остаточного нефтепродукта. Вязкость является мерой внутреннего сопротивления жидкости течению и она, как правило, возрастает при наличии у молекул в составе жидкости короткоцепочных боковых ответвлений. В процессе висбрекинга преимущественно происходит крекинг боковых цепей, это снижает вязкость основной части нефтяного остатка, при этом образуется до 5-6% масс. углеводородных газов и около 10-15% масс. бензиновой фракции.
Согласно настоящему изобретению используется комбинированный способ подвода энергии к сырью для проведения реакции крекинга.
Углеводородное сырье нагревается любым известным способом до температуры Т0, находящейся в диапазоне от температуры на 30°C ниже температуры начала термического разложения сырья при давлении процесса P1 до температуры на 15°C выше температуры начала термического разложения сырья при давлении процесса Р^
Фактическое значение температуры начала термического разложения сырья может быть определено расчетным методом, но на практике более точным является экспериментальное определение в лабораторных условиях. Здесь под температурой начала термического разложения сырья понимается температура, при которой начинаются процессы разложения, заметные при наблюдении невооруженным глазом, т.е. над поверхностью тяжелого нефтяного сырья становятся видны газы разложения в виде восходящих потоков.
Таким образом, на данном этапе, в случае если температура Т0 ниже температуры начала термического разложения сырья, углеводородному сырью сообщается энергия близкая к необходимой для крек