Устройство индукционного нагрева поперечным потоком

Иллюстрации

Показать все

Устройство индукционного нагрева поперечным потоком позволяет переменному магнитному полю пересекать грань проводящего листа, который транспортируется в одном направлении, тем самым индуктивно нагревая проводящий лист. Устройство индукционного нагрева поперечным потоком включает в себя нагревательную обмотку, размещенную таким образом, что грань обмотки обращена к грани проводящего листа, сердечник, вокруг которого намотана нагревательная обмотка, и экранирующую пластину, образованную из проводника и размещенную между сердечником и боковым концевым участком в направлении, перпендикулярном к направлению транспортирования проводящего листа, причем экранирующая пластина имеет выступающий участок, и боковая поверхность выступающего участка представляет собой замкнутый контур, если смотреть с направления, перпендикулярного к грани обмотки. Изобретение позволяет исключить перегрев боковых торцов проводящего листа нагреваемого объекта. 9 з.п. ф-лы, 49 ил.

Реферат

Область техники

Настоящее изобретение относится к устройству индукционного нагрева поперечным потоком. В частности, устройство индукционного нагрева поперечным потоком надлежащим образом используется для индуктивного нагрева проводящего листа посредством побуждения переменного магнитного поля приблизительно перпендикулярно пересекать проводящий лист.

Приоритет испрашивается по заявке на патент Японии № 2010-35199, поданной 19 февраля 2010 года, содержание которой включено в настоящее описание путем ссылки.

Описание предшествующего уровня техники

В прошлом нагрев проводящего листа, такого как стальной лист, выполнялся, используя устройство индукционного нагрева. Устройство индукционного нагрева создает джоулево тепло на основе вихревого тока, который индуцируется в проводящем листе переменным магнитным полем (магнитным полем переменного тока), создаваемым от обмотки, в проводящем листе и нагревает проводящий лист посредством джоулева тепла. Устройство индукционного нагрева поперечным потоком представляет собой один тип такого устройства индукционного нагрева. Устройство индукционного нагрева поперечным потоком нагревает проводящий лист нагреваемого объекта посредством побуждения переменного магнитного поля приблизительно перпендикулярно пересекать проводящий лист.

В случае использования такого устройства индукционного нагрева поперечным потоком, в отличие от случая использования устройства индукционного нагрева соленоидального типа, существует проблема, заключающаяся в том, что оба конца в направлении ширины (оба боковых торца) проводящего листа нагреваемого объекта становятся перегретыми.

Технологии, описанные в патентной ссылке 1 и патентной ссылке 2, представляют собой технологии, относящиеся к такой проблеме.

В технологии, описанной в патентной ссылке 1, подвижная ровная экранирующая пластина, выполненная из немагнитного металла, предусмотрена между обмоткой и каждым из обоих боковых торцов проводящего листа объекта нагрева.

Дополнительно в технологии, описанной в патентной ссылке 2, ромбическая обмотка и овальная обмотка, которые имеют разные модели нагрева, размещены вдоль направления транспортирования проводящего листа объекта нагрева, тем самым нагревая проводящий лист с требуемой моделью нагрева относительно направления ширины проводящего листа.

Патентная ссылка

(Патентная ссылка 1) Нерассмотренная заявка на патент Японии, первая публикация № S62-35490

(Патентная ссылка 2) Нерассмотренная заявка на патент Японии, первая публикация № 2003-133037

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Однако посредством только обеспечения ровной экранирующей пластины между обмоткой и каждым из обоих боковых торцов проводящего листа объекта нагрева, как в технологии, описанной в патентной ссылке 1, так как вихревой ток распространяется в область незначительно внутрь обоих боковых торцов проводящего листа, плотность вихревого тока является небольшой, и так как вихревые токи, протекающие в обоих боковых торцах проводящего листа, не могут вытекать из проводящего листа, плотность вихревого тока становится большой на обоих боковых торцах. Следовательно, сложно снизить температуры обоих боковых торцов проводящего листа, и равномерность распределения температуры в направлении ширины проводящего листа также существенно снижена (в частности, градиент распределения температуры на каждом из обоих боковых торцов проводящего листа становится большим).

Дополнительно в технологии, описанной в патентной ссылке 2, является возможным подавить снижение равномерности распределения температуры в направлении ширины проводящего листа. Однако, если ширина проводящего листа меняется, необходимо переустанавливать обмотку в зависимости от ширины листа. Следовательно, требуется механизм для перемещения обмотки, и является трудным легко и быстро реагировать на изменение ширины листа.

Кроме того, в технологиях, описанных в патентной ссылке 1 и патентной ссылке 2, если проводящий лист перемещается в некотором смысле по извилистой траектории, равномерность распределения температуры в направлении ширины проводящего листа снижена.

Настоящее изобретение было выполнено с учетом таких проблем и имеет целью обеспечение устройства индукционного нагрева поперечным потоком, которое позволяет уменьшить неравномерность распределения температуры в направлении ширины проводящего листа нагреваемого объекта и позволяет уменьшить изменения распределения температуры в направлении ширины проводящего листа нагреваемого объекта вследствие движения проводящего листа по извилистой траектории.

Способы решения проблемы

(1) Устройство индукционного нагрева поперечным потоком в соответствии с одним аспектом настоящего изобретения позволяет переменному магнитному полю пересекать грань проводящего листа, который транспортируется в одном направлении, тем самым индуктивно нагревая проводящий лист. Устройство индукционного нагрева поперечным потоком включает в себя: нагревательную обмотку, размещенную таким образом, что грань обмотки обращена к грани проводящего листа; сердечник, вокруг которого намотана нагревательная обмотка; и экранирующую пластину, образованную из проводника и размещенную между сердечником и боковым концевым участком в направлении, перпендикулярном к направлению транспортирования проводящего листа, причем экранирующая пластина имеет выступающий участок, и боковая поверхность выступающего участка представляет собой замкнутый контур, если смотреть с направления, перпендикулярного к грани обмотки.

(2) Устройство индукционного нагрева поперечным потоком в соответствии с вышеприведенным (1) может дополнительно включать в себя непроводящий магнитно-мягкий материал, который прикреплен к экранирующей пластине, причем экранирующая пластина помещена между сердечником и непроводящим магнитно-мягким материалом.

(3) Устройство индукционного нагрева поперечным потоком в соответствии с вышеприведенным (2) может дополнительно включать в себя теплостойкий материал, который прикреплен к непроводящему магнитно-мягкому материалу, причем теплостойкий материал размещен ближе к проводящему листу, чем непроводящий магнитно-мягкий материал.

(4) В устройстве индукционного нагрева поперечным потоком в соответствии с вышеприведенным (2) экранирующая пластина может иметь поперечное сечение, параллельное относительно грани обмотки, и поперечное сечение может включать в себя непроводящий магнитно-мягкий материал.

(5) В устройстве индукционного нагрева поперечным потоком в соответствии с вышеприведенными (1) или (2) выступающий участок может быть частично изолирован в направлении, перпендикулярном к грани обмотки.

(6) В устройстве индукционного нагрева поперечным потоком в соответствии с вышеприведенными (1) или (2) углубленный участок, который обращен к боковому концевому участку в направлении, перпендикулярном к направлению транспортирования проводящего листа, может быть образован в поверхности, обращенной к проводящему листу, экранирующей пластины.

(7) В устройстве индукционного нагрева поперечным потоком в соответствии с вышеприведенным (6) выступающий участок может быть образован на боковой поверхности углубленного участка вдоль окружного направления боковой поверхности углубленного участка таким образом, чтобы выступать по направлению к внутренней части углубленного участка от боковой поверхности углубленного участка.

(8) В устройстве индукционного нагрева поперечным потоком в соответствии с вышеприведенным (6) участок, который сужается по направлению к стороне вблизи с центральным участком в направлении, перпендикулярном к направлению транспортирования проводящего листа, от стороны, удаленной от центрального участка в направлении, перпендикулярном к направлению транспортирования проводящего листа, может быть включен в углубленный участок.

(9) В устройстве индукционного нагрева поперечным потоком в соответствии с вышеприведенным (6) первый участок, который сужается по направлению к стороне дальше по ходу от стороны ближе по ходу в направлении транспортирования проводящего листа, и второй участок, который сужается по направлению к стороне ближе по ходу от стороны дальше по ходу в направлении транспортирования проводящего листа, могут быть включены в углубленный участок, и первый участок и второй участок могут быть обращены друг к другу в направлении транспортирования проводящего листа.

(10) В устройстве индукционного нагрева поперечным потоком в соответствии с вышеприведенным (9) первый участок может быть скругленным по направлению к стороне дальше по ходу, и второй участок может быть скругленным по направлению к стороне ближе по ходу.

Преимущества изобретения

В соответствии с настоящим изобретением, выступающий участок образован или размещен на экранирующей пластине, которая размещена между сердечником, вокруг которого намотана обмотка, и торцевым участком в направлении ширины проводящего листа таким образом, что боковая поверхность выступающего участка представляет собой замкнутый контур, если смотреть с направления толщины экранирующей пластины. Благодаря этому выступающему участку является возможным обеспечить вихревой ток, протекающий рядом с выступающим участком. То есть является возможным надежно обеспечить протекание вихревого тока таким образом, чтобы следовать по замкнутому контуру, который представляет собой выступающий участок. Следовательно, неравномерность распределения температуры в направлении ширины проводящего листа нагреваемого объекта может быть уменьшена, и изменения распределения температуры в направлении ширины проводящего листа нагреваемого объекта вследствие движения проводящего листа по извилистой траектории могут быть уменьшены.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи.

Фиг.1 представляет собой вид сбоку, показывающий один пример схематичной конфигурации непрерывной линии отжига для стального листа, в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.2A представляет собой вертикальный разрез, показывающий один пример конфигурации устройства индукционного нагрева, в соответствии с первым вариантом осуществления.

Фиг.2B представляет собой вертикальный разрез, показывающий один пример конфигурации устройства индукционного нагрева, в соответствии с первым вариантом осуществления.

Фиг.2C представляет собой местный общий вид, показывающий один пример конфигурации устройства индукционного нагрева, в соответствии с первым вариантом осуществления.

Фиг.3 представляет собой схему, показывающую один пример конфигураций нагревательной обмотки верхней стороны и нагревательной обмотки нижней стороны, в соответствии с первым вариантом осуществления.

Фиг.4A представляет собой вид сверху, показывающий один пример конфигурации экранирующей пластины, в соответствии с первым вариантом осуществления.

Фиг.4B представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с первым вариантом осуществления.

Фиг.4C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с первым вариантом осуществления.

Фиг.4D представляет собой местный вид, когда область, включающая экранирующую пластину 31d, в соответствии с первым вариантом осуществления, рассматривается непосредственно сверху стальной полосы 10.

Фиг.5A представляет собой вид сверху, показывающий один пример конфигурации экранирующей пластины в соответствии с первым модифицированным примером первого варианта осуществления.

Фиг.5B представляет собой вид сверху, показывающий один пример конфигурации экранирующей пластины, в соответствии со вторым модифицированным примером первого варианта осуществления.

Фиг.5C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с третьим модифицированным примером первого варианта осуществления.

Фиг.5D представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с четвертым модифицированным примером первого варианта осуществления.

Фиг.6A представляет собой вид сверху, показывающий один пример конфигурации экранирующей пластины, в соответствии со вторым вариантом осуществления настоящего изобретения.

Фиг.6B представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии со вторым вариантом осуществления.

Фиг.6C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии со вторым вариантом осуществления.

Фиг.6D представляет собой местный вид, когда область, включающая экранирующую пластину 101, в соответствии со вторым вариантом осуществления, рассматривается непосредственно сверху стальной полосы 10.

Фиг.7 представляет собой схему, показывающую один пример зависимости между величиной вставки экранирующей пластины и коэффициентом отклонения температуры по ширине в примерах, использующих второй вариант осуществления.

Фиг.8A представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с пятым модифицированным примером первого варианта осуществления.

Фиг.8B представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с шестым модифицированным примером первого варианта осуществления.

Фиг.8C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с седьмым модифицированным примером первого варианта осуществления.

Фиг.8D представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с восьмым модифицированным примером первого варианта осуществления.

Фиг.8E представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с девятым модифицированным примером первого варианта осуществления.

Фиг.8F представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с десятым модифицированным примером первого варианта осуществления.

Фиг.8G представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с одиннадцатым модифицированным примером первого варианта осуществления.

Фиг.8H представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двенадцатым модифицированным примером первого варианта осуществления.

Фиг.9A представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с тринадцатым модифицированным примером первого варианта осуществления.

Фиг.9B представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с четырнадцатым модифицированным примером первого варианта осуществления.

Фиг.9C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с пятнадцатым модифицированным примером первого варианта осуществления.

Фиг.9D представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с шестнадцатым модифицированным примером первого варианта осуществления.

Фиг.9E представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с семнадцатым модифицированным примером первого варианта осуществления.

Фиг.10A представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с восемнадцатым модифицированным примером первого варианта осуществления.

Фиг.10B представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с девятнадцатым модифицированным примером первого варианта осуществления.

Фиг.10C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцатым модифицированным примером первого варианта осуществления.

Фиг.10D представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать первым модифицированным примером первого варианта осуществления.

Фиг.11A представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать вторым модифицированным примером первого варианта осуществления.

Фиг.11B представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать третьим модифицированным примером первого варианта осуществления.

Фиг.11C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать четвертым модифицированным примером первого варианта осуществления.

Фиг.11D представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать пятым модифицированным примером первого варианта осуществления.

Фиг.11E представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать шестым модифицированным примером первого варианта осуществления.

Фиг.11F представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать седьмым модифицированным примером первого варианта осуществления.

Фиг.11G представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать восьмым модифицированным примером первого варианта осуществления.

Фиг.11H представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с двадцать девятым модифицированным примером первого варианта осуществления.

Фиг.11I представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с тридцатым модифицированным примером первого варианта осуществления.

Фиг.12A представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с тридцать первым модифицированным примером первого варианта осуществления.

Фиг.12B представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с тридцать вторым модифицированным примером первого варианта осуществления.

Фиг.12C представляет собой вертикальный разрез, показывающий один пример конфигурации экранирующей пластины, в соответствии с тридцать третьим модифицированным примером первого варианта осуществления.

Фиг.13A представляет собой перспективный вид, показывающий один пример конфигурации экранирующей пластины, в тридцать четвертом модифицированном примере первого варианта осуществления.

Фиг.13B представляет собой перспективный вид, показывающий один пример конфигурации экранирующей пластины, в соответствии с тридцать пятым модифицированным примером первого варианта осуществления.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ВОПЛОЩЕНИЯ ИЗОБРЕТЕНИЯ

В дальнейшем варианты осуществления настоящего изобретения будут описаны со ссылкой на чертежи. В каждом варианте осуществления, описанном ниже, случай, где устройство индукционного нагрева поперечным потоком применяется для непрерывной линии отжига для стального листа, описан в качестве примера. Кроме того, в нижеследующем описании "устройство индукционного нагрева поперечным потоком" называется "устройством индукционного нагрева" для краткости, если необходимо.

Первый вариант осуществления

Сначала будет описан первый вариант осуществления.

Конфигурация непрерывной линии отжига

Фиг.1 представляет собой вид сбоку, показывающий один пример схематичной конфигурации непрерывной линии отжига для стального листа. Кроме того, в каждом чертеже для удобства объяснения только необходимая конфигурация упрощена и показана.

На фиг.1 непрерывная линия 1 отжига включает в себя первый контейнер 11, второй контейнер 12, третий контейнер 13, сборку 14 первого уплотняющего ролика, транспортирующий блок 15, сборку 16 второго уплотняющего ролика, блок 17 подачи газа, блок 18 питания переменного тока, ролики 19a-19u (19) и устройство 20 индукционного нагрева.

Сборка 14 первого уплотняющего ролика перемещает стальную полосу (полосообразный лист) 10 в первый контейнер 11, при этом экранируя первый контейнер 11 от внешнего воздуха. Стальная полоса 10, транспортированная в первый контейнер 11 посредством сборки 14 первого уплотняющего ролика, транспортируется во второй контейнер 12 посредством роликов 19a и 19b в первом контейнере 11. Стальная полоса 10, транспортированная во второй контейнер 12, снова транспортируется в первый контейнер 11 посредством роликов 19g и 19h, при этом нагреваясь посредством устройства 20 индукционного нагрева, размещенного сверху и снизу горизонтального участка второго контейнера 12 (стальной полосы 10, которая транспортируется). Здесь устройство 20 индукционного нагрева электрически соединено с блоком 18 питания переменного тока и получает питание переменного тока от блока 18 питания переменного тока, тем самым создавая переменное магнитное поле, которое пересекается приблизительно перпендикулярно с листовой гранью стальной полосы 10, и индуктивно нагревая стальную полосу 10. Кроме того, подробности конфигурации устройства 20 индукционного нагрева будут описаны позже. Более того, в нижеследующем объяснении "электрическое соединение" называется "соединением" для краткости, если необходимо.

Стальная полоса 10, вернувшаяся в первый контейнер 11, транспортируется к транспортирующему блоку 15 в ходе стадии выдержки и медленного охлаждения посредством роликов 19c-19f. Стальная полоса 10, транспортированная к транспортирующему узлу 15, транспортируется в третий контейнер 13 посредством роликов 19i и 19j. Стальная полоса 10, транспортированная в третий контейнер 13, транспортируется, при этом перемещаясь вертикальным образом вверх и вниз, посредством роликов 19k-19u и быстро охлаждается в третьем контейнере 13.

Сборка 16 второго уплотняющего ролика направляет стальную полосу 10, быстро охлажденную таким образом, на последующую обработку, при этом блокируя третий контейнер 13 от внешнего воздуха.

В "первый контейнер 11, второй контейнер 12, третий контейнер 13 и транспортирующий блок 15", которые становятся "путем перемещения стальной полосы 10", как описано выше, неокислительный газ подается посредством узла 17 подачи газа. Затем посредством "сборки 14 первого уплотняющего ролика и сборки 16 второго уплотняющего ролика", которые блокируют внутреннюю часть (внутреннюю часть непрерывной линии 1 отжига) от внешней части (внешнего воздуха), неокислительная газовая атмосфера поддерживается в первом контейнере 11, втором контейнере 12, третьем контейнере 13 и транспортирующем блоке 15.

Конфигурация устройства индукционного нагрева

Фиг.2A-2C представляют собой схемы, показывающие один пример конфигурации устройства индукционного нагрева.

Конкретно фиг.2A представляет собой схему, показывающую один пример устройства 20 индукционного нагрева в этом варианте осуществления, как видно сбоку непрерывной линии отжига, и представляет собой вертикальный вид, разрезанный (в направлении вверх и вниз на фиг.1) вдоль продольного направления стальной полосы 10. На фиг.2A стальная полоса 10 транспортируется по направлению влево (см. стрелку, указывающую справа налево на фиг.2A). Более того, фиг.2B представляет собой вертикальный разрез, показывающий один пример устройства 20 индукционного нагрева в этом варианте осуществления, как видно в направлении A-A' на фиг.1 (т.е. схему, как видно со стороны дальше по ходу в направлении транспортирования листа). На фиг.2B стальная полоса 10 транспортируется по направлению от задней стороны чертежа вперед. Более того, фиг.2C представляет собой местный общий вид, частично показывающий один пример устройства 20 индукционного нагрева в этом варианте осуществления. На фиг.2C нижняя правая область, показанная на фиг.2B, рассматривается сверху вниз относительно стальной полосы 10.

На фиг.2A-2C устройство 20 индукционного нагрева включает в себя индуктор 21 верхней стороны и индуктор 22 нижней стороны.

Индуктор 21 верхней стороны включает в себя сердечник 23, нагревательную обмотку 24 верхней стороны (нагревательную обмотку 24) и экранирующие пластины 31a и 31c.

Нагревательная обмотка 24 верхней стороны представляет собой проводник, намотанный вокруг сердечника 23 по пазу сердечника 23 (здесь углубленный участок сердечника 23), и представляет собой обмотку (так называемую одновитковую), в которой количество витков составляет "1". Более того, как показано на фиг.2A, нагревательная обмотка 24 верхней стороны имеет участок, форма вертикального поперечного сечения которого представляет собой полый прямоугольник. Труба водяного охлаждения соединена с торцевой гранью полого участка полого прямоугольника. Охлаждающая вода, которая подается от трубы водяного охлаждения, протекает в полый участок (внутреннюю часть нагревательной обмотки 24 верхней стороны) полого прямоугольника, таким образом, индуктор 21 верхней стороны охлаждается. Более того, экранирующие пластины 31a и 31c смонтированы на нижней поверхности (сторона паза) сердечника 23.

Кроме того, на фиг.2A длина l1 в индукторе 21 верхней стороны составляет 45 (мм), длина l2 составляет 180 (мм), длина l3 составляет 80 (мм), длина l4 составляет 180 (мм), длина l5 составляет 45 (мм), длина l6 составляет 45 (мм) и длина l7 составляет 45 (мм). Более того, ширина W стальной полосы 10 составляет 900 (мм), и толщина ds составляет 0,3 (мм). Однако эти размеры не ограничены значениями, описанными выше.

Индуктор 22 нижней стороны включает в себя сердечник 27, нагревательную обмотку 28 нижней стороны (нагревательную обмотку) и экранирующие пластины 31b и 31d аналогично индуктору 21 верхней стороны.

Нагревательная обмотка 28 нижней стороны также представляет собой проводник, намотанный вокруг сердечника 27 по пазу сердечника 27, и представляет собой обмотку (так называемую одновитковую), в которой количество витков составляет "1" аналогично нагревательной обмотке 24 верхней стороны. Более того, нагревательная обмотка 28 нижней стороны имеет участок, форма вертикального поперечного сечения которого представляет собой полый прямоугольник, аналогично нагревательной обмотке 24 верхней стороны. Труба водяного охлаждения соединена с торцевой гранью полого участка полого прямоугольника и может обеспечивать протекание охлаждающей воды в полый участок полого прямоугольника.

Дополнительно грань (грань, в которой образован контур, грань, в которой проходит силовая линия магнитного поля) нагревательной обмотки 24 верхней стороны индуктора 21 верхней стороны и грань нагревательной обмотки 28 нижней стороны индуктора 22 нижней стороны обращены друг к другу со стальной полосой 10, помещенной между ними. Кроме того, грани экранирующих пластин 31a-31d (31) обращены к боковым торцевым участкам (краям) в направлении ширины листа стальной полосы 10. Для того чтобы соответствовать такому взаимному расположению, индуктор 21 верхней стороны предусмотрен дальше на верхней стороне (рядом с верхней поверхностью горизонтального участка второго контейнера 12), чем стальная полоса 10, и индуктор 22 нижней стороны предусмотрен дальше на нижней стороне (рядом с нижней поверхностью горизонтального участка второго контейнера 12), чем стальная полоса 10.

Как описано выше, индуктор 21 верхней стороны и индуктор 22 нижней стороны отличаются положением для размещения, но имеют одинаковую конфигурацию.

Дополнительно в этом варианте осуществления экранирующие пластины 31a-31d могут отдельно перемещаться в направлении ширины (направлении двунаправленной стрелки, показанной на фиг.2B) стальной полосы 10 на основе работы приводного устройства (не показано).

Дополнительно в этом варианте осуществления расстояние d между нагревательной обмоткой 24 верхней стороны и нагревательной обмоткой 28 нижней стороны, ширины l2 и l4 нагревательной обмотки в нагревательной обмотке 24 верхней стороны и ширины l2 и l4 нагревательной обмотки в нагревательной обмотке 28 нижней стороны являются одинаковыми. Дополнительно положение, где "длина R наложения в направлении ширины стальной полосы 10" между каждым из обоих боковых концевых участков стальной полосы 10 и каждой из экранирующих пластин 31a-31d составляет 90 (мм), задано в качестве исходного положения.

Здесь ширина нагревательной обмотки представляет собой длину в направлении ширины нагревательной обмотки 24 верхней стороны (нагревательной обмотки 28 нижней стороны), которая находится в пазу. В примере, показанном на фиг.2A, ширина нагревательной обмотки равна длине в направлении ширины каждой из медных труб 41a-41d, показанных на фиг.3, которые будут описаны позже, и представляет собой приблизительно такую же длину, что и ширина паза каждого из сердечников 23 и 27.

Кроме того, в нижеследующем объяснении каждая из ширины нагревательной обмотки 24 верхней стороны и ширины нагревательной обмотки 28 нижней стороны просто называется шириной нагревательной обмотки, если необходимо, и расстояние между нагревательной обмоткой 24 верхней стороны и нагревательной обмоткой 28 нижней стороны называется зазором, если необходимо.

Конфигурация нагревательной обмотки

Фиг.3 представляет собой схему, показывающую один пример конфигураций нагревательной обмотки 24 верхней стороны и нагревательной обмотки 28 нижней стороны. Кроме того, стрелка, показанная на фиг.3, представляет собой один пример направления, в котором электрический ток протекает в определенное время.

Как показано на фиг.3, нагревательная обмотка 24 верхней стороны имеет медные трубы 41a и 41b и медную токопроводящую шину (соединительную пластину) 42b, которая соединена со сторонами концов основания медных труб 41a и 41b. Более того, нагревательная обмотка 28 нижней стороны имеет медные трубы 41c и 41d и медную токопроводящую шину 42f, которая соединена со сторонами концов основания медных труб 41c и 41d.

Один торец (сторона переднего конца медной трубы 41a) нагревательной обмотки 24 верхней стороны и выходная клемма на одной стороне блока 18 питания переменного тока взаимно соединены посредством медной токопроводящей шины 42a. С другой стороны, другой торец (сторона переднего конца медной трубы 41b) нагревательной обмотки 24 верхней стороны и один торец (сторона переднего конца медной трубы 41c) нагревательной обмотки 28 нижней стороны взаимно соединены посредством медных токопроводящих шин 42c-42e. Более того, другой торец (сторона переднего конца медной трубы 41d) нагревательной обмотки 28 нижней стороны взаимно соединен с выходной клеммой на другой стороне блока 18 питания переменного тока посредством медных токопроводящих шин 42i, 42h и 42g.

Как описано выше, нагревательная обмотка 24 верхней стороны и нагревательная обмотка 28 нижней стороны соединены последовательно относительно блока 18 питания переменного тока посредством комбинации медных труб 41a-41d (41) и медных токопроводящих шин 42a-42i (42) и образуют обмотки, количество витков каждой из которых составляет "1". На фиг.3 большой магнитный поток создается по направлению к нижней части от верхней части центрального участка, окруженного медными трубами 41 и медными токопроводящими шинами 42, и магнитный поток проходит через стальную полосу 10, посредством чего джоулево тепло создается в стальной полосе 10, таким образом, стальная полоса 10 нагревается.

Кроме того, здесь, для того чтобы четко показать конфигурации нагревательной обмотки 24 верхней стороны и нагревательной обмотки 28 нижней стороны, как показано на фиг.3, медные трубы 41a-41d и медные токопроводящие шины 42a-42g соединены друг с другом. Однако, когда нагревательная обмотка 24 верхней стороны и нагревательная обмотка 28 нижней стороны наматываются вокруг сердечников 23 и 27, существует необходимость прохождения (прикрепления) медных труб 41a-41d через пазы сердечников 23 и 27. Следовательно, в действительности медные токопроводящие шины 42 прикреплены к медным трубам 41a-41d так, чтобы избежать участков, где медные трубы 41 устанавливаются в сердечники 23 и 27.

Конфигурация экранирующей пластины

Фиг.4A-4D представляют собой схемы, показывающие один пример конфигурации экранирующей пластины 31.

Конкретно фиг.4A представляет собой вид сверху экранирующей пластины 31, если смотреть непосредственно сверху (со стороны стальной полосы 10). Более того, фиг.4B представляет собой вертикальный разрез, если смотреть с направления A-A' на фиг.4A. Фиг.4C представляет собой вертикальный разрез, если смотреть с направления B-B' на фиг.4A. Фиг.4D представляет собой местный вид, когда область, включающая экранирующую пластину 31d, показанная на фиг.2C, рассматривается непосредственно сверху стальной полосы 10. Кроме того, на фиг.4D показан только участок, который требуется для объяснения взаимного расположения между стальной полосой 10 и экранирующей пластиной 31d. Более того, на фиг.4D вихревые токи Ie, Ih1 и Ih2, которые протекают в экранирующей пластине 31d, показаны концептуально. Кроме того, стальная полоса 10 транспортируется по направлению стрелки, показанной в правом конце на фиг.4A и 4D.

Кроме того, направление транспортирования стальной полосы 10 приблизительно соответствует направлению глубины экранирующей пластины 31, и направление (направление ширины стальной полосы 10), перпендикулярное к направлению транспортирования стальной полосы 10 на листовой грани, приблизительно соответствует направлению ширины экранирующей пластины. Более того, направление толщины пластины (толщины) экранирующей пластины 31 приблизительно соответствует направлению (направлению толщины листа стальной полосы 10), перпендикулярному к грани нагревательной обмотки (например, нагревательной обмотки 24 верхней стороны).

На фиг.4A-4C экранирующая пластина 31 выполнена из меди и имеет углубленные участки 51a и 51b (51), имеющие одинаковый размер и форму. Углубленные участки 51a и 51b размещены таким образом, чтобы иметь некоторое расстояние между ними в направлении транспортирования стальной полосы 10.

Как показано на фиг.4A, форма (форма отверстия) в направлении грани пластины (направлении толщины экранирующей пластины 31) каждого из углубленных участков 51a и 51b представляет собой ромб, в котором каждый из угловых участков 53a-53h (53) является скругленным. Кроме того, как показано на фиг.4A-4C, на верхних концах боковых поверхностей углубленных участков 51a и 51b, кромки (выступающие участки) 52a и 52b (52), которые выступают по направлению к внутренним частям (сторонам противостоящих боковых поверхностей) углубленных участков 51a и 51b от верхних концов боковых поверхностей, образованы вдоль окружных направлений боковых поверхностей.

На фиг.4A расстояние P между угловым участком, который представляет собой торцевой участок углубленного участка 51a и находится на стороне ближе по ходу в направлении транспортирования стальной полосы 10, и угловым участком, который представляет собой торцевой участок углубленного участка 51b и находится на стороне дальше по ходу в направлении транспортирования стальной полосы 10, составляет 150 (мм). Более того, расстояние Q между угловым участком, который представляет собой торцевой участок углубленного участка 51a и расположен в центре в направлени