Система и узел связи
Иллюстрации
Показать всеИзобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в повышении пропускной способности каналов передачи. Для этого система связи содержит: узлы (1021-102n), выполненные с возможностью обеспечения связи с одним или несколькими устройствами; центральный узел (100); пассивную оптическую сеть (106), содержащую устройство (108) мультиплексора/демультиплексора, выполненное с возможностью разуплотнения первого оптического сигнала, передаваемого из центрального узла (100) в узлы (1021-102n), и уплотнения вторых оптических сигналов, получаемых от одного или нескольких узлов (1021-102n), каждому из которых назначена длина волны, на которой он излучает оптический сигнал; причем для прямой передачи сигналов из одного узла (1021-102n) по меньшей мере в один из других узлов (1021-102n) указанный один узел (1021-102n) выполнен с возможностью излучения на длине волны, назначенной указанному по меньшей мере одному другому узлу (1021-102n), оптического сигнала, содержащего сигнал, который должен передаваться; и устройство (108) мультиплексора/демультиплексора пассивной оптической сети (106) выполнено с возможностью объединения оптического сигнала от указанного одного узла (1021-102n) с первым оптическим сигналом. 5 н. и 10 з.п. ф-лы, 7 ил.
Реферат
Варианты осуществления настоящего изобретения относятся к системам связи, например к системам связи с подвижными объектами, содержащим множество базовых станций, обслуживающих соответствующие мобильные устройства. Более конкретно, варианты осуществления изобретения относятся к системе связи и к способу обеспечения прямого обмена информацией между ее соответствующими узлами, например между соответствующими базовыми станциями, а также между узлом или базовой станцией и оптическим мультиплексором/демультиплексором такой системы связи.
Для обмена информацией между узлами в системе связи множество узлов и центральное коммутационное устройство соединяются через транзитную сеть доступа. Однако в этом случае могут возникать обстоятельства, требующие непосредственного обмена информацией между соответствующими узлами, например между соответствующими базовыми станциями системы связи с подвижными объектами. Для систем связи с подвижными объектами в Проекте партнерства 3-го поколения (3GPP) предлагались, например, схемы скоординированной многоточечной передачи (СоМР) в связи с их потенциалом повышения скорости передачи пользовательских данных за счет возможности участия разных узлов в передаче и приеме пользовательских данных. Примеры таких схем рассмотрены в публикации "Схемы скоординированной многоточечной передачи/приема для усовершенствованных систем LTE", M.Sawahashi, Y.Kishiyama, A.Morimoto, D.Nishikawa и M.Tanno, IEEE wireless communications, том 17, выпуск 3, стр.26-34, 2010. Схемы СоМР требуют осуществлять обмен пользовательскими данными, а также обмен служебными данными соты, например информацией о состоянии канала (CSI), через транзитные сети связи с подвижными объектами, так что достижимое улучшение пропускной способности в значительной степени зависит от возможностей транзитной сети, как это указывается в публикации "Определение требований к полосе пропускания транзитной сети для сетей MIMO", EUSIPCO, Глазго, август, 2009 г. Во многих случаях обмен управляющей информацией и данными для передачи по схеме СоМР необходимо осуществлять между соседними узлами или базовыми станциями, поскольку соседние узлы обычно оказывают наиболее существенное влияние на взаимные помехи и уровень сигнала, принимаемого подвижными пользователями. Для такой связи интерфейс Х2 определяет логический интерфейс между двумя узлами, и он используется для обмена информацией для поддержки передачи в режиме СоМР. Интерфейс Х2, как он определяется в стандарте 3GPP, - это не физический, а логический интерфейс, который зависит от конкретной аппаратной реализации действительного физического интерфейса.
На фигуре 1 иллюстрируется пример физических и логических интерфейсов Х2 в транзитной сети доступа для подвижных объектов. Сеть содержит центральное коммутационное устройство 100 и множество базовых станций 102а, 102b, обслуживающих соответствующие мобильные устройства, например мобильное устройство 104. На фиг.1 представлена схема системы связи, которая в действительности содержит множество мобильных устройств, а также множество базовых станций, то есть количество базовых станций превышает 2. Центральное коммутационное устройство 100 и соответствующие базовые станции 102а и 102b связаны через транзитную сеть 106 доступа для подвижных объектов. Сеть 106 может быть оптической сетью, содержащей устройство 108 оптического мультиплексора/демультиплексора для уплотнения/разуплотнения сигналов, передаваемых через сеть 106. Сеть 106 содержит линию связи 110 (например, волоконно-оптический кабель) между центральным коммутационным устройством 100, устройством 108 оптического мультиплексора/демультиплексора и множеством ветвей 1121-112n (например, волоконно-оптическими кабелями). Базовая станция 102а соединена с центральным коммутационным устройством 100 по линии 110 связи и ветви 1124, и базовая станция 112b соединяется с центральным коммутационным устройством 100 по линии 110 связи и ветви 1123. Мобильное устройство 104 участвует в передаче по схеме СоМР, то есть устройство 104 осуществляет связь с базовой станцией 102а по первому каналу 114а и с базовой станцией 102b по второму каналу 114b. При этом должен осуществляться обмен информацией, например обмен управляющей информацией и данными, между соседними базовыми станциями 102а и 102b. Допустим, что базовая станция 102а является обслуживающей базовой станцией, а базовая станция 102b является взаимодействующей базовой станцией. Для обмена информацией между базовыми станциями 102а и 102b необходимо использовать вышеупомянутый интерфейс Х2, который является логическим интерфейсом, схематически показанным на фигуре 1 и обозначенным ссылочным номером 116. Логический интерфейс Х2 реализуется через физический интерфейс Х2, указанный на фигуре 1 ссылочными номерами 118а и 118b. Физический интерфейс Х2 содержит первый компонент 118а между обслуживающим узлом 102а и центральным коммутационным устройством 100, и второй компонент 118b между центральным коммутационным устройством 100 и взаимодействующим узлом 102b. Для передачи данных между узлами 102а и 102b, использующими логический интерфейс Х2 для поддержки передачи информации мобильным устройством 104 в режиме СоМР, необходимо передавать фактические данные из обслуживающего узла 102а через первый компонент 118а физического интерфейса Х2 в центральное коммутационное устройство 110 и из центрального коммутационного устройства 100 во взаимодействующий узел 102b через второй компонент 118b физического интерфейса Х2.
Компоненты 118а, 118b физического интерфейса Х2 реализуются с использованием сети 106, и для графиков S1 и Х2 используются совместно ресурсы сети 106. Хотя в этом случае могут минимизироваться или снижаться затраты на оборудование, однако возникает проблема, заключающаяся в том, что время ожидания и пропускная способность интерфейса Х2 может не соответствовать требованиям для обмена информацией в соответствии со схемой СоМР. Реализация логического интерфейса Х2 по схеме, показанной на фигуре 1, включает большую задержку, связанную с преобразованием ОЕО (оптический-электронный-оптический), с обработкой пакетов и с передачей по длинным волоконно-оптическим кабелям на соединениях 118а и 118b. Кроме того, на центральный шлюз (центральное коммутационное устройство 100) ложится большая нагрузка по обработке информации, связанной с преобразованием ОБО. Далее, поскольку интерфейс Х2 использует физическое соединение совместно с интерфейсом S1-U, пропускная способность ограничивается.
На настоящее время реализация интерфейса Х2, как это показано на фигуре 1, считается приемлемой, поскольку LTE, выпуск 8 (LTE - стандарты долговременного развития), требует только, чтобы время ожидания интерфейса Х2 не превышало 20 мс со средней величиной порядка 10 мс, что не является проблемой для схемы фигуры 1. Причина этого заключается в том, что при практической реализации связи между соответствующими узлами по интерфейсу Х2 обмен информацией между базовыми станциями ограничивался, например данными, передаваемыми для передачи соединения и для поддержки уровня управления при организации и управлении радиоресурсами. При такой реализации нет необходимости в малом времени ожидания, в диапазоне нескольких мс, как это требуется при передаче информации по схеме СоМР. Однако при реализации передачи информации по схеме СоМР время ожидания и ограниченная пропускная способность интерфейса Х2, реализованного по схеме фигуры 1, являются узким местом для СоМР, поскольку в общем случае схема СоМР требует обеспечения времени ожидания порядка нескольких мс и реального трафика порядка Гбит/с для обмена информацией между соответствующими базовыми станциями. Точные величины зависят от конкретно реализованной технологии СоМР (см., например, публикацию "Определение требований к полосе пропускания транзитной сети для сетей MIMO", EUSIPCO, Глазго, август, 2009 г., и "Конвергентные гетерогенные городские оптические сети", Т.Pfeiffer, ECOC 2010, Турин, сентябрь, 2010).
Кроме схем СоМР, также и другие возможности сетей связи с подвижными объектами выигрывают при прямой связи между соответствующими базовыми станциями. Например, увеличение числа передач соединений в сети с уменьшенными размерами сот в соответствии с усовершенствованным стандартом LTE потребует передачи по интерфейсу Х2 большего объема информации. При таком обмене увеличенными количествами информации непосредственное соединение, то есть прямой физический интерфейс Х2, между соответствующими базовыми станциями также может представлять интерес. Таким образом, непосредственное соединение для интерфейса Х2 может представлять интерес не только для работы в режиме СоМР, но также для передачи и других данных между соответствующими, например, соседними узлами или базовыми станциями.
Известны традиционные подходы к решению вышеуказанных проблем, в которых обеспечивается непосредственное соединение между базовыми станциями для реализации физического интерфейса Х2 вместо интерфейса, использующего сеть доступа для подвижных объектов, как это показано на фигуре 1. В одном из таких традиционных подходов обеспечиваются дополнительные линии связи, соединяющие напрямую базовые станции, например дополнительные волоконно-оптические линии между базовыми станциями, показанными на фигуре 1. Однако развертывание дополнительных волоконно-оптических линий для интерфейса Х2 непрактично по причине повышения стоимости системы.
В другом традиционном подходе, схема которого приведена на фигуре 2, обеспечивается непосредственное соединение между соответствующими базовыми станциями по линиям беспроводной связи, например, используя транзитные линии СВЧ-радиосвязи. Базовые станции 102а и 102b снабжены соответственно приемопередатчиками 120а, 120b СВЧ-радиосвязи, которые обеспечивают беспроводную связь между соответствующими базовыми станциями 102а и 102b, например, по линиям СВЧ-радиосвязи, работающим на частоте 7, 10, 13, 28 или 38 ГГц. Непосредственное соединение 122 между базовыми станциями 102а и 102b обеспечивает физический интерфейс Х2 для прямого обмена информацией в соответствии с логическим интерфейсом Х2. Непосредственное соединение 122 обеспечивает полосу пропускания больше 400 Мбит/с и время ожидания порядка 0,5 мс. Однако обеспечение физического интерфейса Х2 путем использования средств СВЧ-радиосвязи "точка-точка" между двумя базовыми станциями является очень затратным техническим решением, поскольку в этом случае необходимо использовать большое количество дополнительного оборудования для обеспечения беспроводной связи между всеми узлами. Кроме того, требуется дополнительное лицензирование используемого частотного диапазона. Следует также отметить, что такое решение не обеспечивает такого уровня качества, как волоконно-оптические линии, из-за зависимости качества радиосвязи от условий внешней среды, например от погоды.
Еще один известный подход заключается в использовании сетей TDM-PON (TDM - мультиплексирование с разделением времени; PON - пассивная оптическая сеть), имеющих физические линии Х2, как это описывается в публикации "Конвергентные гетерогенные городские оптические сети", Т.Pfeiffer, ECOC 2010, Турин, сентябрь, 2010. Пассивная оптическая сеть, в которой используется мультиплексирование с разделением времени (TDM-PON) и в состав которой входят сплиттеры, используется для обеспечения физических линий Х2 между соответствующими узлами. Таким образом, устраняется недостаток варианта, представленного на фигуре 1, в котором передача осуществляется через шлюз доступа. Однако в этом случае возможна только широковещательная передача информации, то есть невозможна связь по схеме "точка-точка", которая необходима для обеспечения прямой линии связи между соответствующими базовыми станциями или узлами (например, требуется для интерфейса Х2). Кроме того, использование сплиттеров увеличивает затраты и снижает величину отношения сигнал/шум, что критично при скоростях передачи информации в диапазоне нескольких Гбит/с. Далее, поскольку в этом случае нельзя предотвратить существенное снижение отношения сигнал/шум, скорость передачи данных на интерфейсе Х2 ограничивается, так что сети TDM-PON не могут поддерживать пропускную способность, превышающую 1 Гбит/с на один узел. Кроме того, требуется использовать множество сплиттеров для всех сетевых устройств в одной системе пассивной оптической сети, а также точную передачу сигналов для предотвращения конфликтов между различными передачами Х2.
Целью настоящего изобретения является улучшенное техническое решение для обеспечения прямой связи между узлами в системе связи, в которой предотвращаются вышеописанные проблемы известных решений и обеспечиваются достаточно высокая пропускная способность и достаточно малое время ожидания.
Эта цель достигается с использованием системы связи по п.1, узла по п.9, устройства оптического мультиплексора/демультиплексора по п.12 и способа по п.14.
В некоторых вариантах осуществления изобретения обеспечивается система связи, содержащая:
узлы, выполненные с возможностью обеспечения связи с одним или несколькими устройствами;
центральный узел;
пассивную оптическую сеть, содержащую устройство мультиплексора/демультиплексора, выполненное с возможностью разуплотнения первого оптического сигнала, передаваемого в узлы из центрального узла, и уплотнения вторых оптических сигналов, получаемых от одного или нескольких узлов, каждому из которых назначена длина волны, на которой он генерирует оптический сигнал;
причем для прямой передачи сигналов из одного узла по меньшей мере в один из других узлов указанный один узел выполнен с возможностью излучения на длине волны, назначенной указанному по меньшей мере одному другому узлу, оптического сигнала, содержащего сигнал, который должен передаваться; и
устройство мультиплексора/демультиплексора пассивной оптической сети выполнено с возможностью объединения оптического сигнала от указанного одного узла с первым оптическим сигналом.
В некоторых вариантах обеспечивается узел, выполненный с возможностью соединения через пассивную оптическую сеть с центральным узлом и с другими узлами системы связи,
причем узлу назначена длина волны для передачи оптического сигнала, которая отличается от длин волн, назначенных другим узлам,
узел содержит оптический источник, выполненный с возможностью формирования выходного сигнала по меньшей мере с одной из длин волн, назначенных другим узлам, и
для прямой передачи сигнала из узла по меньшей мере в один из других узлов узел выполнен с возможностью формирования оптического сигнала с требуемой одной или несколькими длинами волн, который содержит сигнал, подлежащий передаче.
В некоторых вариантах обеспечивается устройство оптического мультиплексора/демультиплексора для системы связи, которая содержит узлы и центральный узел, соединенные с помощью пассивной оптической сети, причем устройство оптического мультиплексора/демультиплексора содержит:
первый порт ввода/вывода, выполненный с возможностью соединения с центральным узлом;
группу вторых портов ввода/вывода, выполненных с возможностью соединения с соответствующими узлами, причем устройство мультиплексора/демультиплексора выполнено с возможностью разуплотнения первого оптического сигнала, передаваемого в узлы из центрального узла, и для уплотнения вторых оптических сигналов, получаемых от одного или нескольких узлов; и
пассивный оптрон, расположенный между группой вторых портов ввода/вывода и первым портом ввода/вывода, причем пассивный оптрон выполнен с возможностью направления одного или нескольких вторых сигналов, принимаемых группой вторых портов ввода/вывода, в первый порт ввода/вывода.
В некоторых вариантах обеспечивается способ прямой передачи сигналов между узлами системы связи, которая содержит: узлы, обеспечивающие беспроводную связь с одним или несколькими беспроводными устройствами; центральный узел и пассивную оптическую сеть, содержащую устройство мультиплексора/демультиплексора для разуплотнения первого оптического сигнала, передаваемого в узлы из центрального узла, и для уплотнения вторых оптических сигналов, получаемых от одного или нескольких узлов, каждому из которых назначена длина волны, на которой он излучает оптический сигнал; причем способ включает:
для прямой передачи сигналов из одного узла по меньшей мере в один из других узлов излучение указанным одним узлом на длине волны, назначенной указанному по меньшей мере одному другому узлу, оптического сигнала, содержащего сигнал, который должен передаваться; и
объединение оптического сигнала от указанного одного узла с первым оптическим сигналом на устройстве мультиплексора/демультиплексора.
В других вариантах обеспечивается компьютерный программный продукт, содержащий команды, записанные на машиночитаемом носителе, для осуществления способа в соответствии с вариантами осуществления изобретения при выполнении команд компьютером.
В соответствии с некоторыми вариантами для обеспечения связи по схеме "точка-точка" между двумя узлами один узел выполнен с возможностью выбора длины волны, назначенной другому узлу, и излучения оптического сигнала с выбранной длиной волны. В таких вариантах указанный один узел может содержать оптический источник с узким спектром излучения и может быть выполнен с возможностью задания излучения оптическим источником оптического сигнала с выбранной длиной волны, который модулируется сигналом, подлежащим передаче, для формирования оптического сигнала и передачи его в устройство мультиплексора/демультиплексора.
В соответствии с другими вариантами может потребоваться широковещательная передача из одного узла в другие узлы, и в этом случае указанный один узел выполняют с возможностью излучения оптического сигнала с длиной волны, назначенной другому узлу. Необходимо отметить, что такие варианты могут быть реализованы вместе с вариантами, обеспечивающими связь по схеме "точка-точка", или же могут быть реализованы отдельно от них. В соответствии с такими вариантами указанный один узел может содержать оптический источник с широким спектром излучения, включающим длины волн, назначенные узлам, и указанный один узел может быть выполнен с возможностью модуляции сигналом, который должен передаваться в режиме широковещательной передачи, выходного сигнала оптического источника с широким спектром излучения для формирования оптического сигнала и передачи его в устройство мультиплексора/демультиплексора.
В соответствии с некоторыми вариантами узел может содержать оптический датчик, выполненный с возможностью измерения оптического сигнала с длиной волны, назначенной узлу, а также оптический источник, выполненный с возможностью обеспечения сигнала с длиной волны, назначенной узлу, на основе которого формируется второй сигнал, который должен передаваться из узла в центральный узел.
В соответствии с некоторыми вариантами устройство мультиплексора/демультиплексора пассивной оптической сети включает первый порт ввода/вывода, выполненный с возможностью соединения с центральным узлом, и группу вторых портов ввода/вывода, выполненных с возможностью соединения с соответствующими узлами. Кроме того, может использоваться пассивный оптрон, расположенный между группой вторых портов ввода/вывода и первым портом ввода/вывода для направления одного или нескольких вторых сигналов, принимаемых группой вторых портов ввода/вывода, в первый порт ввода/вывода.
В соответствии с некоторыми вариантами система связи может быть системой беспроводной связи, в которой обеспечиваются узлы для беспроводной связи с одним или несколькими беспроводными устройствами, центральный узел представляет собой центральный коммутационный узел, и пассивная оптическая сеть формирует транзитные линии связи между центральным коммутационным узлом и узлами. Информация, которая должна передаваться между узлами, может быть информацией, содержащей данные Х2.
Узел в соответствии с вариантами осуществления изобретения может содержать оптический источник с узким спектром излучения, выполненный с возможностью перестройки на одну из длин волн, назначенных другим узлам, и/или оптический источник с широким спектром, содержащим длины волн, назначенные другим узлам. Оптический источник с узким спектром излучения может быть лазером с перестройкой частоты, и оптический источник с широким спектром может быть светодиодом.
В соответствии с некоторыми вариантами в качестве устройства мультиплексора/демультиплексора может использоваться дифракционная решетка на массиве волноводов.
В соответствии с некоторыми вариантами обеспечиваются технические решения, которые обеспечивают прием/передачу с использованием схемы скоординированного многоточечного доступа (СоМР), например, для усовершенствованных приложений LTE, благодаря возможности обеспечения повышенной скорости передачи пользовательских данных путем взаимодействия с несколькими базовыми станциями. Характеристики в значительной степени зависят от пропускной способности, времени ожидания и других особенностей транзитной сети доступа для подвижных объектов, в особенности интерфейса Х2. Поскольку интерфейс Х2 является логическим интерфейсом, он не в состоянии осуществлять полную поддержку схем СоМР, если не используется физическая линия Х2. В соответствии с некоторыми вариантами осуществления изобретения обеспечивается физический интерфейс Х2 для связи по схемам "точка-точка" и для широковещательной передачи в сетях доступа на волоконно-оптических линиях с использованием мультиплексирования с разделением по длинам волн, причем обеспечиваются более высокие скорости передачи и уменьшенное время ожидания по сравнению с традиционными логическими интерфейсами Х2. Таким образом предлагаемое техническое решение имеет положительный эффект и полностью поддерживает схемы СоМР с повышенной скоростью передачи пользовательских данных. По сравнению с транзитными радиолиниями СВЧ/миллиметрового диапазонов, используемыми в настоящее время для реализации физических линий интерфейса Х2, предлагаемое в изобретении техническое решение обеспечивает более высокую пропускную способность, лучшее качество линий и меньше подвержено действию помех внешней среды. Поскольку в предложенном решении используются ранее развернутые волоконно-оптические линии с низкими потерями, то это решение является более экономичным по сравнению с транзитными линями радиосвязи, которые требуют использования дополнительного оборудования и дополнительного лицензирования частотного диапазона.
Таким образом, варианты осуществления изобретения эффективны, поскольку они обеспечивают высокую пропускную способность и низкое время ожидания для физического интерфейса Х2, что позволяет получить высокую скорость передачи пользовательских данных за счет полного использования возможностей схем СоМР и повысить эффективность процесса передачи соединения, а также улучшить обмен информацией управления с использованием интерфейса Х2, вместе со схемами СоМР или независимо от них. Кроме того, реализация физического интерфейса Х2 по настоящему изобретению более эффективна с экономической точки зрения по сравнению с известными техническими решениями, особенно с беспроводными транзитными линями, в результате чего снижаются затраты на реализацию интерфейса Х2.
В вариантах осуществления изобретения для обеспечения транзитных линий связи с подвижными объектами используется сеть доступа с разделением по длинам волн (WDM), имеющая физический интерфейс Х2 для приложений СоМР (схемы "точка-точка"). Ниже описывается дальнейшее развитие транзитного соединения сети связи на основе сети доступа WDM-PON (пассивной оптической сети, использующей мультиплексирование с разделением по длинам волн). Это представляет ценность для мобильных сетей нового поколения, в которых требуется "прямой" обмен информацией между базовыми станциями с достаточно высокой скоростью передачи данных и малым временем ожидания, например, используя интерфейс Х2. В соответствии с техническим решением по настоящему изобретению используются подходящие возможности сети доступа WDM-PON, в результате чего исключаются лишние затраты на реализацию прямых каналов передачи информации между базовыми станциями и обеспечивается требуемая пропускная способность и другие характеристики передачи информации. Требуются лишь минимальные изменения соответствующих базовых станций или узлов и мультиплексора/демультиплексора сети WDM-PON. Устройство мультиплексора/демультиплексора обеспечивается дополнительным пассивным оптроном, обеспечивающим возврат сигналов, получаемых от множества узлов на вход устройства мультиплексора/демультиплексора для перераспределения сигнала по узлам. Узлы или базовые станции снабжаются дополнительным оптическим источником, который может быть оптическим источником с возможностью настройки на длину волны, используемую получающим узлом, или же это может быть оптический источник с широким спектром, излучающий оптический сигнал, содержащий все длины волн, используемые узлами в системе. В случае необходимости обмена информацией между соответствующими узлами инициируется широковещательная передача или передача по схеме "точка-точка".
Для широковещательной передачи в вариантах осуществления изобретения используется светодиод, и выходной сигнал такого светодиода содержит все длины волн, используемые узлами системы связи или некоторой ее части, соединенными сетью доступа WDM-PON. Сигналом, подлежащим передаче, модулируется выходной сигнал светодиода и передается в устройство мультиплексора/демультиплексора, которое подает этот сигнал на свой вход, в результате чего обеспечивается передача на все узлы. Поскольку сигнал содержит все длины волн, то все узлы получают информацию широковещательной передачи, которая может быть принята соответствующими фотодатчиками узлов. В случае передачи по схеме "точка-точка" в вариантах осуществления изобретения обеспечивается лазер с перестройкой частоты, который используется для выбора одной из множества длин волн, используемых узлами, подсоединенными к пассивной оптической сети. Лазер с перестройкой частоты генерирует оптический сигнал, который модулируется информацией, подлежащей передаче, и затем передается в устройство мультиплексора/демультиплексора, более конкретно, через оптрон на его вход, так что он снова передается в сеть и направляется в нужный узел.
Таким образом, в вариантах осуществления изобретения обеспечивается физический интерфейс Х2, позволяющий осуществлять не только связь по схеме "точка-точка", но также и широковещательную передачу в сети доступа WDM для связи с подвижными объектами. Варианты осуществления изобретения позволяют обеспечить очень малое время ожидания и высокую скорость передачи данных интерфейса Х2, что очень ценно для передач по схемам СоМР. Кроме того, исключаются дополнительные затраты на развертывание дополнительных оптических линий или СВЧ-радиолиний, необходимых только для интерфейса Х2, в результате чего снижаются затраты на построение системы. Таким образом, варианты осуществления изобретения обеспечивают новую систему WDM-PON с физическими линиями Х2, которая поддерживает не только связь по схеме "точка-точка", то также и широковещательную передачу информации между узлами.
В соответствии с некоторыми вариантами осуществления изобретения физический интерфейс Х2 реализуется с использованием архитектуры системы WDM-PON, и все компоненты, используемые в соответствии с предлагаемым техническим решением, полностью соответствуют известной системе WDM-PON, так что предлагаемое решение является экономически эффективным.
Варианты осуществления изобретения описываются ниже со ссылками на прилагаемые чертежи, на которых показано:
фигура 1 - блок-схема физического и логического интерфейсов Х2 в транзитной сети доступа для подвижных объектов;
фигура 2 - блок-схема транзитной линии радиосвязи СВЧ-диапазона для непосредственной связи между соответствующими базовыми станциями;
Фиг.3А - блок-схема пассивной оптической сети, использующей мультиплексирование с разделением времени (TDM-PON);
Фиг.3В - блок-схема пассивной оптической сети, использующей мультиплексирование с разделением по длинам волн (WDM-PON);
фигура 4 - более подробная схема традиционной сети доступа WDM-PON;
фигура 5 - архитектура сети WDM-PON с физическим интерфейсом Х2 в соответствии с вариантами осуществления изобретения;
фигура 6 - схема одного из вариантов осуществления изобретения, включающая сеть доступа WDM с физическим соединением Х2 по схеме "точка-точка";
фигура 7 - схема, иллюстрирующая принципы широковещательной передачи по интерфейсу Х2 в соответствии с настоящим изобретением.
На примерах схем фигур 3 рассматриваются отличия между сетями TDM-PON и WDM-PON. На фигуре 3А приведена блок-схема пассивной оптической сети, использующей мультиплексирование с разделением времени (TDM-PON). Сеть TDM-PON включает центральное коммутационное устройство 100 (OLT - терминал оптической линии) и сплиттер 108, соединенный с OLT 100 по линии 110, которая является оптической линией. Сплиттер 108 соединен также с базовыми станциями (ONU - устройство оптической сети) 1021-102n. Каждое из устройств 1021-102n оптической сети подсоединено к сплиттеру 108 через соответствующее ответвление 1121-112n, сформированное соответствующей волоконно-оптической линией. В качестве сплиттера 108 может использоваться сплиттер 1:32, обеспечивающий возможность обслуживания 32 различных устройств 1021-102n оптической сети, то есть n=32. Сеть TDM-PON работает в диапазоне длин волн 1260-1280 нм для линии восходящей связи, то есть для передачи данных от одного или нескольких устройств 1021-102n оптической сети в терминал 100 оптической линии. Для линии нисходящей связи, от устройства 100 на соответствующие устройства 1021-102n оптической сети, используется длина волны в диапазоне от 1575 нм до 1580 нм. Информационные пакеты распределяются в линиях восходящей и нисходящей связи в соответствии с принципом мультиплексирования с разделением времени, как показано на схеме фигуры 3А.
На фигуре 3В приведена блок-схема пассивной оптической сети, использующей мультиплексирование с разделением по длинам волн (WDM-PON). Сеть WDM-PON содержит терминал 100 оптической линии и множество блоков 1021-1023 оптической сети. Сплиттер 108 содержит дифракционную решетку на массиве волноводов, обеспечивающую 32 канала, так что сеть PON может обслуживать 32 блока оптической сети. Также показаны соответствующие волоконно-оптические линии 110 и 1121-1123 между терминалом 100 оптической линии и блоками 1021-1023. Блокам оптической сети или базовым станциям 1021-1023 назначаются длины волн λD1-λD3, соответственно, для линии нисходящей связи. Первые длины волн находятся в L-диапазоне, так что сигналы, передаваемые из терминала 100 оптической линии в соответствующие блоки 1021-1023 оптической сети, передаются на одной из первых длин волн или длин волн линии нисходящей связи. Сигналы автоматически направляются в нужный блок оптической сети через дифракционную решетку 108 на массиве волноводов. Кроме того, для блоков 1021-1023 оптической сети используются длины волн λU1-λU3 (в С-диапазоне), соответственно, в линии восходящей связи для передачи данных из блоков 1021-1023 оптической сети в центральное коммутационное устройство 100.
На фигуре 4 показана более подробная схема традиционной сети WDM-PON доступа, на которой показаны некоторые детали дифракционной решетки 108 на массиве волноводов и блока оптической сети или базовой станции 1021. Дифракционная решетка 108 на массиве волноводов имеет порты 1301-1305 ввода и порты 1321-1325 вывода. Из портов 1301-1305 ввода только порт 1305 ввода соединен с волоконно-оптической линией 110 для подсоединения дифракционной решетки 108 на массиве волноводов (AWG) к терминалу оптической линии или к центральному узлу 100 (на фигуре 4 не показан). Остальные порты 1301-1304 ввода не используются. Порты 1321-1325 вывода устройства AWG 108 соединяются через соответствующие волоконно-оптические кабели 1121-1125 с соответствующими блоками оптической сети или базовыми станциями. На фигуре 4 показан только блок 1021. Устройство AWG 108 распределяет оптические сигналы, полученные на его входе 1305, в зависимости от длины волны полученного сигнала по соответствующим портам 1321-1325 вывода, как это показано стрелками, указывающими соответствующие сигналы S1-S5, переданные между портом 1305 ввода и соответствующими портами 1321-1325 вывода. Между портом ввода и каждым из портов вывода возможна двухсторонняя передача сигналов S1-S5 для передачи данных из центрального блока 100 в соответствующие блоки оптической сети и для передачи данных от одного или нескольких блоков оптической сети в центральное устройство 100. Соответствующие оптические сигналы имеют заданную длину волны, связанную с каждым блоком оптической сети, для линии нисходящей связи и для линии восходящей связи. Блок оптической линии содержит также лазер 1341, который обеспечивает выходной сигнал на длине волны λU1, который модулируется информацией, подлежащей передаче в канал восходящей связи из блока 1021 в центральный узел 100. Блок 1021 содержит также фотодатчик 1361 для измерения оптического сигнала на длине волны λD1 в линии нисходящей связи, связанной с блоком 1021 оптической сети, для измерения оптических сигналов, переданных из OLT 100 в блок 1021 по линии нисходящей связи.
Варианты осуществления изобретения основываются на традиционных системах WDM-PON, описанных, например, на фигурах 3В и 4. На основе этой известной архитектуры реализуется физический интерфейс Х2. На фигура 5 показана архитектура сети WDM-PON, имеющей физический интерфейс Х2 в соответствии с вариантами осуществления изобретения. Каждый узел модифицируется путем добавления к лазеру 134 и фотодатчику 136 вспомогательного оптического источника 1401 и вспомогательного фотодатчика 1421. Источник 140i и фотодатчик 1421 обеспечивают передачу/прием данных Х2. Вспомогательный оптический источник 1401 может иметь форму лазера 140а с перестройкой частоты или светодиода 114b. В соответствии с различными вариантами в узле 1021 может быть реализован лазер 140а с перестройкой частоты или светодиод 140b. В альтернативных вариантах, если необходима связь по схеме "точка-точка" и широковещательная передача, в блоке 102 могут быть обеспечены и лазер 140а с перестройкой частоты, и светодиод 140b. Кроме того, дифракционная решетка 108 на массиве волноводов снабжается пассивным оптроном 144 для передачи сигналов в портах 1301-1304 обратно в порт 1305 ввода. Таким образом, в соответствии с вариантами осуществления изобретения для изменения маршрутизации сигналов Х2 обеспечивается дополнительный лазер 140а с перестройкой частоты и/или оптический источник 140b с широким спектром для передачи сигналов Х2, а также пассивный оптрон 144 в дифракционной решетке 108 на массиве волноводов.
Для обеспечения обмена информацией по интерфейсу Х2 в схеме "точка-точка" источник, базовая станция eNB 1021 формирует сигнал с длиной волны, назначенной получающей базовой станции eNB, с использованием лазера 140а с перестройкой частоты, модулирует этот сигнал сигналами Х2 и передает модулированный сигнал по волоконно-оптическому кабелю 1121 в порт 1321 устройства AWG 108, которое направляет сигнал, например, в порт 1303. Поскольку порт 1303 устройства AWG 108 объединяется и подается на основной порт 1305 ввода через пассивный оптрон 144, то оптические сигналы Х2, формируемые на узле-источнике, автоматически маршрутизируются на узел-получатель, то есть с порта 1305 ввода в порт, связанный с длиной волны, например в порт 1323. Эта маршрутизация осуществляется в пассивном устройстве AWG 108, так что нет необходимости