Способ мониторинга и система для детектирования скручивания вдоль кабеля, снабженного идентификационными метками

Иллюстрации

Показать все

Настоящее изобретение относится к способу мониторинга скручивания кабеля, содержащему этапы обеспечения кабеля, имеющего внешнюю поверхность и проходящего вдоль продольного направления, причем кабель снабжен, по меньшей мере, одной идентификационной меткой, предпочтительно радиочастотной идентификационной меткой, расположенной на угловом положении метки в плоскости поперечного сечения, выполненного перпендикулярно продольному направлению, и эта, по меньшей мере, одна метка сохраняет идентификационный код метки и способна передавать электромагнитный сигнал метки; опроса, по меньшей мере, одной идентификационной метки для приема электромагнитного сигнала метки; и детектирования электромагнитного сигнала метки; в котором этап детектирования электромагнитного сигнала метки содержит этап считывания идентификационного кода метки и определения углового положения, по меньшей мере, одной идентификационной метки. В другом аспекте настоящее изобретение относится к системе мониторинга скручивания кабеля, содержащего, по меньшей мере, одну идентификационную метку. Кабель предпочтительно снабжен множеством идентификационных меток, причем все метки из множества расположены в соответствующих угловых положениях меток. Технический результат заключается в обеспечении работы кабелей в тяжелых режимах и в увеличении надежности и обеспечении противостояния тяжелым окружающим условиям и сильным механическим напряжениям, таким как усилия растяжения и скручивающие моменты, а также в обеспечении количественной информации относительно величины приложенного к кабелю скручивания. 2 н. и 18 з.п. ф-лы, 12 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к способу мониторинга и к системе для детектирования механического скручивания кабеля.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Кабели, предназначенные для работы в тяжелых режимах и, особенно, для подвижных установок, таких как подвижные портовые краны, контейнерные краны типа "судно-берег", суда-разгрузчики, распределители, шахтное и туннельное оборудование, ветряные установки и ветряные электростанции, специально конструируются таким образом, чтобы они могли противостоять тяжелым окружающим условиям и сильным механическим напряжениям, таким как усилия растяжения и скручивающие моменты. По тексту данного описания, говоря о кабелях для работы в тяжелых условиях и, особенно, но не исключительно, для подвижных установок, мы будем называть их в общем кабелями, предназначенными для работы в тяжелых условиях.

Пример такого электрического кабеля, предназначенного для работы в тяжелых условиях, приведен в патентной заявке DE № 3934718, которая описывает армированный волочащийся кабель для шахтных врубо-навалочных машин.

Публикация WO 01/78086 описывает электрический кабель, специально предназначенный для применения в погрузочных системах, таких как кран, или складских системах. Этот кабель содержит жилу, которая включает в себя первые проводники, полностью окруженные первым механически прочным материалом и встроенные в него. Вокруг первого механически прочного материала расположен, по меньшей мере, один дополнительный слой и в этом дополнительном слое есть, по меньшей мере, один дополнительный проводник, который полностью окружен вторым механически прочным материалом и встроен в него. Говорится, что механически прочные материалы в этом кабеле способствуют распределению механического напряжения по кабелю и, таким образом, значительно уменьшают эффект скручивания.

Патент США 6247359 описывает устройство для идентификации необходимости замены синтетического волоконного троса, образованного из, по меньшей мере, двух уложенных вместе концентрических слоев волокон, выполненных из высокопрочных арамидных жил, содержащих видимое на внешней поверхности троса устройство индикации для детектирования и визуальной индикации вращательного положения троса относительно его продольной оси.

Заявитель заметил, что обычные способы оценки скручивания кабеля на основе визуального детектирования цветных линий или меток, нанесенных вдоль длины кабеля, часто являются ненадежными, поскольку они в значительной степени зависят от состояния внешней поверхности кабеля, например, они подвержены влиянию присутствующих загрязнений и царапин. Кроме того, такие способы обычно не дают количественной информации относительно величины приложенного к кабелю скручивания.

Бесконтактные датчики крутящего момента находят широкое применение при измерении напряжений в валах или иных приводных компонентах транспортных средств во время их работы.

Заявка США 2007/0241890 описывает устройство для измерения, по меньшей мере, одной физической характеристики, например крутящего момента вала или иного приводного компонента транспортного средства. Для облегчения связи с устройством радиочастотного считывания с валом связана радиочастотная метка. Эта радиочастотная метка может хранить физические характеристики приводного компонента, такие как крутящий момент. Устройство радиочастотного считывания включает в себя передатчик, предназначенный для отправки модулированных радиочастотных сообщений, которые и снабжают энергией радиочастотную метку и связанный с ней датчик, и вызывают включение ответной передачи сигнала, указывающего на воспринятый крутящий момент. Устройство считывания радиочастотной метки расположено рядом с приводным компонентом и может считывать сигнал, переданный радиочастотной меткой. Для облегчения непрерывного мониторинга за наблюдаемым объектом радиочастотная метка может срабатывать непрерывно и считываться радиочастотным модулятором/устройством считывания в быстрых циклах.

Встроенные в кабель элементы радиочастотной идентификации могут облегчить определение местонахождения и идентификацию кабеля. Элементы радиочастотной идентификации или транспондеры могут сообщать информацию о кабеле, например его идентификационный номер, время укладки, производственную партию - на удаленное устройство считывания радиочастотной идентификации без осуществления прямого доступа к кабелю или контакта с ним. Это может быть особенно полезно, когда кабель уложен в землю, подвешен высоко над землей или уложен в кабельном коробе.

Заявка США 2007/0120684 раскрывает систему идентификации кабеля, используемую в кабеле со встроенной системой радиочастотной идентификации, включающей в себя радиочастотные идентификационные метки, при этом каждая радиочастотная идентификационная метка имеет ответчик, содержащий радиопередатчик/приемник и запоминающее устройство, которое может работать без физического контакта, эта система содержит также внешнее устройство хранения информации, которое предназначено для сохранения всей информации по идентифицирующим данным, сохраненным в запоминающих устройствах, введенных во все радиочастотные идентификационные метки, включенные в кабель со встроенной системой радиочастотной идентификации. Описана антенна, используемая для устройства считывания системы радиочастотной идентификации, с двумя полуцилиндрическими элементами. Утверждается, что при использовании антенны такого типа точное местонахождение каждой радиочастотной идентификационной метки детектировано быть не может, но информация от антенны, встроенной в радиочастотную идентификационную метку, может быть эффективно детектирована независимо от положения этой метки в кабеле.

Заявка США 2008/0204235 описывает оптико-волоконный кабель, содержащий непроводящую ленту, проходящую вдоль длины этого кабеля, и множество радиочастотных идентификационных транспондеров, расположенных через определенные промежутки вдоль длины этой ленты, в котором радиочастотные идентификационные транспондеры сообщают информацию, которая может облегчить определение местонахождения и идентификацию кабеля. Каждый элемент радиочастотной идентификации имеет свой уникальный код, и тем самым обеспечивается запись производственных параметров, характеризующих данный кабель. Этот уникальный код может быть "привязан" к возрастающей длине кабеля.

В некоторых приложениях, например, при работе в тяжелых условиях передача кабеля на катушку оборудования и принудительное направление его на этапах намотки и размотки могут привести к возникновению нежелательного скручивания, которое может изменяться в зависимости от длины кабеля. Хотя обычно рекомендуется предусматривать специальные меры при работе с кабелем и во время его установки в подвижное оборудование, такие как прямая передача кабеля, с исходного барабана на приемную катушку кабеля, избегая изменения направления или инвертирования первоначального направления намотки, условия работы могут создавать относительно большие и резкие моменты его скручивания. Кроме того, задействованные в движении кабеля другие системы, такие как направляющие устройства, системы шкивов, регулировочные устройства могут во время работы создавать скручивание кабеля, особенно, если конкретные условия требуют быстрой работы и/или многократных отклонений кабеля в его русле.

Заявитель рассмотрел проблему детектирования наличия скручивания кабеля во время его использования и обеспечения надежного измерения действительного отклонения кабеля, которое может выполняться в течение его срока службы.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩЕСТВА ИЗОБРЕТЕНИЯ

Вследствие механических напряжений, возникающих во время обычной работы, типичный срок службы кабелей, предназначенных для работы в тяжелых условиях, относительно короткий и в зависимости от приложения может изменяться от нескольких месяцев до нескольких лет. Заявитель заметил, что было бы благоприятно предложить систему мониторинга, которая позволила бы во время работы управлять возникающим в электрическом кабеле скручиванием, особенно в кабеле, предназначенном для работы в тяжелых условиях. Зная временное развитие скручивающих усилий кабеля, можно было бы расписать и проводить без каких-либо неудобств периодическое эффективное техническое обслуживание этого кабеля.

В частности, заявитель понял, что было бы полезно контролировать текущее развертывание кабеля на месте проведения работ, разместив систему мониторинга в соответствии с частями подвижного оборудования, где, как ожидается, кабель будет подвергаться значительным скручивающим напряжениям.

Во многих приложениях, особенно, в тяжелых условиях работы, один конец кабеля закреплен на катушке подвижного оборудования, такого как кран, для подъема контейнеров или груза, или шахтного оборудования, а другой конец прикреплен к блоку питания, подающему питание в кабель и/или передающему данные и сигналы управления. Блок питания обычно расположен на фиксированной позиции, в то время как подвижное оборудование перемещается в выбранной области перемещения товаров или материалов.

Заявитель понял, что было бы особенно полезно регистрировать временное изменение скручивания кабеля, по меньшей мере, для одной продольной секции кабеля, то есть изменение вращательного состояния секций кабеля вдоль его длины, которое может повредить кабель вследствие его усталости и сократить срок его службы.

В частности, поставкой кабеля, по меньшей мере, с одной считываемой посредством устройства считывания идентификационной меткой, меткой, которая расположена в радиальном направлении с детектируемым угловым положением, можно измерять изменение углового положения этой метки и, таким образом, судить о локальном состоянии скручивания кабеля. Из этого - если один из концов кабеля зафиксирован или неподвижен - можно сделать заключение относительно того, испытывает ли этот кабель в каком-либо месте вдоль своей длины скручивание (то есть, крутящий момент).

В тексте настоящего описания и в приложенных пунктах формулы изобретения под термином "скручивание" имеется в виду состояние напряжения и деформации, появляющееся тогда, когда один конец кабеля повернут (скручен) в одном направлении, а противоположный конец зафиксирован (или неподвижен) или скручен в противоположном направлении. Скручивание может также появиться тогда, когда первая продольная секция длины кабеля скручена, а вторая продольная секция длины кабеля фиксирована или скручена в противоположном направлении.

В одном аспекте настоящее изобретение относится к способу мониторинга скручивания кабеля, содержащему этапы, на которых: обеспечивают кабель, имеющий внешнюю поверхность и проходящий вдоль продольного направления, причем кабель снабжен, по меньшей мере, одной идентификационной меткой, расположенной на угловом положении метки в плоскости поперечного сечения, выполненного в направлении, поперечном продольному направлению, причем эта, по меньшей мере, одна метка хранит идентификационный код метки и способна передавать электромагнитный сигнал метки; опрашивают, по меньшей мере, одну идентификационную метку для приема электромагнитного сигнала метки и детектируют электромагнитный сигнал метки, причем этап, на котором детектируют электромагнитный сигнал метки, содержит этап, на котором считывают идентификационный код метки и определяют угловое положение, по меньшей мере, одной идентификационной метки.

В другом аспекте настоящее изобретение относится к системе мониторинга скручивания кабеля, содержащей: кабель, имеющий внешнюю поверхность и проходящий вдоль продольного направления, причем кабель снабжен, по меньшей мере, одной идентификационной меткой, расположенной на угловом положении метки в плоскости поперечного сечения, выполненного поперек продольного направления, причем эта, по меньшей мере, одна метка хранит идентификационный код метки и способна передавать электромагнитный сигнал метки; и, по меньшей мере, одно считывающее устройство, расположенное вокруг, по меньшей мере, одного участка внешней поверхности кабеля и способное опрашивать, по меньшей мере, одну метку для считывания ее идентификационного кода и детектирования ее углового положения метки.

В предпочтительных вариантах осуществления считывающее устройство расположено относительно кабеля таким образом, чтобы окружать внешнюю поверхность кабеля, которая, предпочтительно, является круговой, и позволяет кабелю быть подвижным относительно считывающего устройства.

В одном варианте осуществления система мониторинга содержит первое и второе считывающие устройства, расположенные на предварительно определенном расстоянии одно от другого, а кабель является подвижным относительно обоих считывающих устройств. Локальное вращательное состояние продольной секции кабеля оценивается посредством измерения первого углового положения, по меньшей мере, одной метки первым считывающим устройством и второго углового положения этой же метки вторым считывающим устройством и определения разности между первым и вторым угловыми положениями.

В некоторых предпочтительных вариантах осуществления кабель содержит множество идентификационных меток, расположенных вдоль длины кабеля, причем каждая метка из этого множества сохраняет соответствующий идентификационный код метки и способна передавать электромагнитный сигнал. Продольное расстояние между соседними метками может быть выбрано, исходя из типа контролируемого кабеля и требуемых характеристик, предписанных им на основании опыта производителя кабеля. Каждая метка распределена радиально по соответствующим угловым положениям. Определением изменения углового положения множества меток можно делать заключение относительно локального вращательного состояния кабеля во множестве его продольных секций.

В частности, угловая разность двух соседних меток из множества идентификационных меток может дать картину состояния скрученности кабеля по его длине.

В предпочтительных вариантах осуществления, по меньшей мере, одна идентификационная метка является радиочастотной (РЧ) идентификационной меткой, а именно радиочастотной идентификационной меткой, способной излучать РЧ сигнал, и, по меньшей мере, одно считывающее устройство способно считывать РЧ сигналы, переданные этими РЧ метками.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения изобретения со ссылками на сопроводительные чертежи, на которых:

Фиг. 1 изображает общий вид части электрического кабеля в варианте осуществления настоящего изобретения.

Фиг. 2 изображает схематичный вид поперечного сечения, выполненного по линии А-А на фиг. 1, показывающий несколько более подробно внутреннюю структуру кабеля, чем фиг. 1.

Фиг. 3 изображает вид кабеля сверху, иллюстрирующий распределение идентификационных меток по длине кабеля после того, как этот кабель подвергся скручиванию.

Фиг. 4 изображает поперечное сечение кабеля по фиг. 3, выполненное по линии В-В.

Фиг. 5 изображает условную иллюстрацию системы мониторинга скручивания кабеля в соответствии с вариантом осуществления настоящего изобретения.

Фиг. 6 изображает схематичный общий вид устройства считывания в варианте осуществления настоящего изобретения.

Фиг. 7 изображает схематичную иллюстрацию системы мониторинга скручивания кабеля в соответствии с другим вариантом осуществления настоящего изобретения.

Фиг. 8 изображает схематичный общий вид подвижного оборудования для работы в тяжелых условиях, которое снабжается энергией кабелем, предназначенным для работы в тяжелых условиях, содержащего систему мониторинга скручивания кабеля в соответствии с вариантом осуществления изобретения.

Фиг. 9 и 10 изображают виды сбоку подвижного оборудования по фиг. 8, показывающие, соответственно, подвижное оборудование, перемещающееся в направлении, противоположном направлению вперед относительно блока питания кабеля.

Фиг. 11 изображает схематичный общий вид подвижного оборудования для работы в тяжелых условиях, которое снабжается энергией кабелем, предназначенным для работы в тяжелых условиях, содержащего систему мониторинга скручивания кабеля в соответствии с другим вариантом осуществления изобретения.

Фиг. 12 изображает условный вид ветряной установки, содержащей систему мониторинга скручивания кабеля в соответствии с еще одним вариантом осуществления изобретения.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Фиг. 1 изображает общий вид электрического кабеля, в частности кабеля, предназначенного для тяжелых условий работы, в соответствии с вариантом осуществления настоящего изобретения. Фиг. 2 изображает схематичный вид поперечного сечения электрического кабеля по фиг. 1, выполненного по линии А-А. Для увеличения ясности последней иллюстрации не все показанные на фиг. 2 элементы внутренней структуры кабеля присутствуют на фиг. 1. Кабель 1 проходит вдоль центральной продольной оси Z и содержит три жилы 2, радиально расположенные относительно центральной продольной оси Z. Жилы 2, например, обеспечивают передачу трехфазного питания. Каждая жила 2 имеет обычную структуру, например, она содержит электрический проводник 12, такой как медный проводник, образованный связкой луженых витых медных электрических проводов, скрученных вместе в соответствии с обычными способами. Изолирующий слой 17 обеспечивается в радиально внешней позиции относительно каждого электрического проводника 12. В некоторых конструкциях кабеля электрический проводник может быть окружен множеством слоев. Например, изолирующий слой может быть помещен между двумя слоями полупроводящего материала, причем эти слои выполнены из материалов на полимерной основе, которые могут быть экструдированы внешне относительно проводника 12 один по поверхности другого. Кабель 1 может быть силовым кабелем низкого или среднего напряжения, при этом низким напряжением считается напряжение величиной до 1 кВ, а средним напряжением считается напряжение величиной от 1 до 60 кВ.

Центральный жильный элемент 19 расположен вдоль центральной продольной оси Z. В показанном на фиг. 2 варианте осуществления кабель содержит два проводника 7 заземления, например, в виде связки луженых витых медных электрических проводов. Специально для работы с напряжениями средней величины связка электрических проводов проводников заземления может быть окружена полупроводниковым слоем. Проводники 7 заземления расположены радиально внешне относительно центрального жильного элемента 19 и скручены вместе с жилами 2 вдоль продольного направления кабеля. В частности, жилы 2 и проводники 7 заземления намотаны по винтовой линии вокруг центрального жильного элемента 19 в соответствии с обычными способами.

Количество жил и/или проводников заземления здесь примерное, просто для того, чтобы привести пример электрического кабеля и особенно кабеля, предназначенного для работы в тяжелых условиях.

Кабель 1 предпочтительно включает в себя оптико-волоконный элемент 3, содержащий множество оптических волокон, например от 6 до 18 волокон, предназначенных для передачи сигналов управления, голосовых, видео и других информационных сигналов. Оптико-волоконный элемент 3 может быть скручен вместе с жилами 2 и проводниками 7 заземления.

Жилы 2 и, если присутствуют, проводники 7 заземления и/или оптико-волоконный элемент 3 вместе по тексту называются продольными структурными элементами электрического кабеля. Электрические кабели для использования в тяжелых условиях обычно выполнены таким образом, чтобы они были прочными и гибкими. В некоторых вариантах осуществления кабель 1 может включать в себя полимерный наполнитель 20, экструдированный вокруг центрального жильного элемента 19, причем наполнитель 20 иногда может называться опорным разделителем из-за его назначения, заключающегося в поддержании расстояния между продольными структурными элементами, внешними в радиальном направлении относительно центрального жильного элемента, и в заполнении промежуточного пространства расположенных радиально внутренних элементов. Опорный разделитель 20 может быть образован из полупроводящего эластомера, такого как эластомер на основе бутадиен-нитрила (на NBR-основе). Продольные структурные элементы для сохранения геометрической стабильности внутри кабеля окружены внутренней оболочкой 11, предпочтительно, имеющей упругие свойства, например, эластомером на основе этилен-пропилена (на EPR-основе). Вместо использования внутренней оболочки стабилизация формы кабеля может быть достигнута множеством промежуточных заполнителей, заполняющих промежуточное пространство в радиально внешнем направлении относительно структурных элементов, которые (необязательно) могут быть покрыты упрочняющей пленкой (пример, на чертеже не показанный).

Следует понимать, что вышеприведенное описание структуры электрического кабеля представляет собой лишь одну из возможных структур кабеля, предназначенного для работы в тяжелых условиях, поскольку настоящее изобретение не сводится к конкретной внутренней структуре или к количеству структурных элементов внутри кабеля. Например, жилы кабеля 2 в общем случае могут быть фазными жилами для передачи энергии, жилами для передачи сигналов управления или жилами для передачи и сигналов управления и энергии.

Обратимся, в частности, к фиг. 1, на ней на внешней окружной поверхности кабеля вдоль его длины распределено множество идентификационных меток, начиная с 16а, 16b, 16с и т.д., которые могут детектироваться считывающим устройством. Показанное на чертеже количество идентификационных меток является чисто иллюстративным, поскольку данный чертеж представляет общий вид части кабеля. Здесь под идентификационными метками подразумевается устройство, считываемое без физического контакта, то есть бесконтактное, - посредством считывающего устройства, и, в частности, способное передавать однозначный идентификационный код с использованием электромагнитных полей. Этот идентификационный код одной метки из множества является однозначным относительно других меток этого множества.

Внешняя оболочка 14 окружает внутреннюю оболочку 11, например, будучи нанесенной на нее экструзией. В предпочтительных вариантах осуществления идентификационные метки встроены в структуру кабеля, предпочтительно расположены под внешней оболочкой кабеля, для обеспечения механической защиты и повышения износостойкости при воздействии внешнего окружения. В некоторых вариантах осуществления идентификационные метки размещены на внешней поверхности внутренней оболочки 11. На проиллюстрированном кабеле, прежде чем наносить внешнюю оболочку 14, для увеличения сопротивления электрического кабеля скручиванию на внешнюю поверхность внутренней оболочки 11 нанесен упрочняющий слой 15, такой как слой в виде оплетки или обмотки из двойной спирали упрочняющих волокон, например волокон полиэстера, например изготовленных из кевлара.

Радиочастотные идентификационные метки 16а, 16b, 16с и т.д. могут быть наклеены на внутреннюю оболочку 11, или же они могут быть зафиксированы посредством нанесения на них упрочняющего слоя 15 (если он есть) или внешней оболочки 14.

В предпочтительных вариантах осуществления идентификационные метки представляют собой радиочастотные идентификационные метки. Основные принципы работы радиочастотной идентификационной считывающей системы как таковой известны. Радиочастотные идентификационные метки дистанционно опрашиваются считывающим устройством, а связь между считывающим устройством и удаленными метками обеспечивается радиочастотными сигналами. Каждая радиочастотная идентификационная метка, по сути, является транспондером, содержащим запоминающую схему, обычно в виде микросхемы, для сохранения информации и антенну для приема и передачи РЧ сигналов. Кроме того, каждая метка содержит РЧ модуль для модуляции и демодуляции РЧ сигнала. Информация, сохраненная в запоминающей схеме, содержит однозначный идентификационный код, такой как двоичный код. По выбору, эта информация может содержать другие данные, идентифицирующие кабель, такие как дата выпуска кабеля, длина кабеля, тип кабеля и т.д. Предпочтительно, запоминающая схема хранит информацию об относительном продольном положении метки вдоль длины кабеля.

Радиочастотная идентификационная метка может быть активного типа, если она отслеживает сигналы опроса от считывающего устройства. Когда сигнал опроса, направленный на активную метку, воспринимается, ответом метки могут быть электромагнитные сигналы, использующие энергию либо от внутренней батареи, либо от источника питания. Альтернативно, радиочастотные идентификационные метки могут быть метками пассивного типа, и в отличие от активных радиочастотных идентификационных меток, не имеющими никакой внутренней батареи или источника питания. Когда радиоволны от считывающего устройства доходят до антенны метки, пассивная метка генерирует электромагнитное поле. Это электромагнитное поле запитывает метку и дает возможность отправить назад на считывающее устройство информацию, сохраненную в запоминающей схеме.

Предпочтительно, используются пассивные радиочастотные идентификационные метки, поскольку они, как правило, менее дороги, чем активные метки, и имеют длительный срок службы, практически неограниченный по сравнению со средним сроком службы кабеля, предназначенного для работы в тяжелых условиях. Предпочтительно, каждая радиочастотная идентификационная метка содержит находящуюся в микросхеме антенну, встроенную в микросхему энергонезависимой памяти, в которую встроен и радиочастотный модулятор-демодулятор.

Для увеличения сопротивляемости электрического кабеля механическим напряжениям внешняя оболочка кабеля, предназначенного для работы в тяжелых условиях, типично выполнена из полимерного материала, упрочненного отверждением, например, выполненного из усиленного, отвержденного литого термореактивного эластомера, предназначенного для работы в тяжелых условиях, такого как полихлоропрен или резиновые смеси, экструдированные на внутренние слои, например на внутреннюю оболочку 11. Большей части эластомерных материалов, пригодных для внешней оболочки кабелей, предназначенных для работы в тяжелых условиях, после экструзии требуется процесс отверждения, обычно проходящий в течение нескольких минут при температуре в 180-200°С.

Заявитель заметил, что идентификационные метки должны противостоять относительно высоким температурам производственных процессов, необходимым для формирования кабеля. Кроме того, желательно, чтобы метки выдерживали сильные изгибы кабеля, которым он часто подвергается в динамических приложениях, как, например, в случае использования кабелей, предназначенных для работы в тяжелых условиях, в подвижных установках.

Радиочастотная идентификационная метка, предпочтительно, заключена в отвержденную смолу, для увеличения механической сопротивляемости имеющую получечевицеобразную или чечевицеобразную форму. Такой отвержденной смолой может быть, например, эпоксидная смола.

Радиочастотные идентификационные метки, например, могут иметь прямоугольную форму с площадью от 50 до 500 мм2 и с толщиной от 1 до 5 мм.

Примерами радиочастотных идентификационных меток, подходящих для настоящего изобретения, являются D7-TAG 2k, D7-TAG 16k и D7-TAG 32k, промышленно выпускаемые компанией Microsensys GmbH.

Предполагается, что кабель на фиг. 1 находится по существу в нескрученном состоянии (то есть, свободен от деформации кручения). В том смысле, как оно здесь используется, выражение "по существу нескрученное состояние" предназначено для описания условий начального "опорного" состояния кабеля, которое может соответствовать состоянию до его размотки с исходного барабана, поставленного производителем (то есть, состоянию "после производства"), например, до его установки на наматывающую катушку и катушку крепления или на системы "челнока" и шкива. Однако в большинстве случаев, относящихся к кабелям, предназначенным для работы в тяжелых условиях, опорные условия относятся к состоянию кабеля после его монтажа на подвижное оборудование или на ветряную установку, то есть к состоянию после его переноса с исходного барабана и до использования, таким образом, до того, как он будет подвергнут воздействию соответствующих скручивающих напряжений.

Скрученное состояние содержит любое состояние кабеля, отличное от по существу нескрученного состояния.

В предпочтительном варианте осуществления на внешней поверхности кабеля вдоль образующей, обозначенной на фиг. 1 условным обозначением 18, которая может быть по существу параллельна центральной продольной оси Z, расположено множество идентификационных меток. Таким образом, когда кабель находится в по существу нескрученном состоянии, каждая из меток расположена под почти одинаковым углом, то есть в пределах ±10°, относительно соответствующей воображаемой оси в поперечном сечении кабеля, перпендикулярном его центральной продольной оси и проходящем через эту метку, в предположении, что определенные таким образом воображаемые оси параллельны одна другой.

Начальная компоновка меток вдоль образующей, далее по тексту - опорной образующей кабеля, может упростить производственный процесс размещения этих меток внутри внутренней структуры кабеля. Однако в соответствии с объемом настоящего изобретения начальное почти продольное расположение меток вдоль длины кабеля не является необходимым, и обычно i-я метка, где i=1, 2, n, при количестве n меток во множестве связана с опорным углом α0i, соответствующим по существу нескрученному состоянию.

В рабочих условиях кабель может подвергаться воздействию скручивающих сил и испытывать соответствующие развороты, которые могут происходить вдоль кабеля и при этом могут быть разными в различных секциях по его длине. Фиг. 3 изображает вид сверху части кабеля, который иллюстрирует скрученное состояние кабеля по фиг. 1, когда он подвергся воздействию значительных скручивающих усилий. Показаны радиочастотные идентификационные метки 16а-16f. Можно, например, предположить, что один конец кабеля зафиксирован, а в продольном участке кабеля имеет место скручивание. Вследствие разворота кабеля на участке длины кабеля возникают угловые отклонения радиочастотных идентификационных меток относительно опорной образующей 18. В частности, на показанном на фиг. 3 примере радиочастотные идентификационные метки 16c, 16d, 16e и 16f расположены на образующих, отличных от опорной образующей 18.

Фиг. 4 изображает вид поперечного сечения фиг. 3, сделанного по линии В-В, перпендикулярной продольной оси кабеля, такой как центральная продольная ось Z, и пересекающего радиочастотную идентификационную метку 16е. В изображенной плоскости поперечного сечения кабеля воображаемая ось 21, проходящая через метку 16е, образует угол α1 с воображаемой опорной осью 22 в той же плоскости поперечного сечения, пересекающей опорную образующую 18. Обусловленное разворотом кабеля угловое изменение определяется как Δα1101, где α1 есть действительное угловое положение (скрученное состояние), а α01 есть опорный угол для метки 16е.

В общем случае, зная опорный угол α0i, где i=1, 2, n, для каждой метки из множества меток и измеряя угловое положение α0i i-й метки в определенный момент времени, например во время работы кабеля, можно определить угловое изменение Δα1, которое является показателем состояния разворота кабеля на продольном участке кабеля в области i-й метки. Поскольку кабель зафиксирован, по меньшей мере, на одном из своих концов, либо поскольку он подключен к системе энергоснабжения или вследствие трения на участке своей длины, величина углового изменения, отличная от нуля, является показателем присутствия скручивающего напряжения в некотором месте вдоль кабеля.

В проиллюстрированном на рисунках варианте осуществления предполагается, что продольное расстояние вдоль оси Z между двумя соседними радиочастотными идентификационными метками по существу постоянно и равно l, то есть l=1 м. Однако, как более подробно описано далее, следует понимать, что нет необходимости в том, чтобы идентификационные метки располагались по длине кабеля с равными промежутками.

В соответствии с главным аспектом настоящего изобретения идентификационные метки детектируются считывающим устройством, которое сконфигурировано с возможностью измерения углового положения, по меньшей мере, одной метки из множества идентификационных меток в плоскости поперечного сечения относительно продольной оси кабеля. Предпочтительно, плоскость поперечного сечения это плоскость, перпендикулярная продольной оси кабеля. Фиг. 5 изображает схематично вариант осуществления настоящего изобретения - системы мониторинга скручивания для мониторинга скручивания в кабеле 51, содержащем множество радиочастотных идентификационных меток, 52а, 52b, 52e, расположенных вдоль длины кабеля. Эти метки встроены в кабель, например, они расположены под внешней оболочкой кабеля (внутренняя структура кабеля не изображена). Считывающее устройство 50 системы радиочастотной идентификации, имеющее кольцевую форму, расположено относительно кабеля 51 таким образом, что охватывает внешнюю круговую поверхность кабеля в соответствии с определенным продольным участком кабеля.

Радиочастотные идентификационные метки сохраняют в своих запоминающих схемах (то есть, в микросхемах) свой однозначный идентификационный код, и, предпочтительно, они являются пассивными метками.

В обычных условиях считывающее устройство содержит, по меньшей мере, один приемопередатчик, при этом приемопередатчик содержит источник сигнала опроса, связанный с антенной для передачи и приема сигнала опроса в зоне опроса, и также связанный с антенной детектор для обработки сигналов, сгенерированных находящимися в зоне опроса метками. Когда пассивная радиочастотная идентификационная метка находится в зоне опроса, она отправляет радиочастотный сигнал метки, активизированный сигналом опроса. Возвращенный радиочастотный сигнал метки принимается антенной считывающего устройства и передается на детектор, который декодирует этот ответ (а именно: считывает идентификационный код и другие возможные закодированные данные) и идентифицирует метку.

По меньшей мере, один приемопередатчик испускает радиочастотный несущий сигнал, активизирующий метку, а созданное приемопередатчиком электромагнитное поле индуцирует в антенне метки небольшой электрический ток. В частности, когда радиочастотная идентификационная метка проходит через зону опроса приемопередатчика, то есть через область, в которой радиочастотная идентификационная метка может быть активизирована и таким образом считана приемопередатчиком. После этого считывающее устройство декодирует данные, закодированные в запоминающей схеме метки, и тем самым однозначно идентифицирует метку.

Считывающее устройство сканирует внешнюю круговую поверхность кабеля для детектирования расположенной в зоне опроса или проходящей сквозь нее радиочастотной идентификационной метки. Когда произведено детектирование i-й радиочастотной идентификационной метки, детектируется также и ее угловое положение αi. Считывающее устройство может либо сохранить декодированный идентификационный код и измеренное угловое положение i-й метки, либо передать эти данные в блок управления (не изображен). Предпочтительно, эти данные поставляются в блок управления, такой как персональный компьютер (ПК) или программируемый логический контроллер (ПЛК), который может обрабатывать принятые данные. В некоторых вариантах осуществления блок управления сконфигурирован с возможностью ассоциирования i-й метки с ее опорным угловым положением α