Способы, установки и изделия промышленного производства для обработки измерений струн, вибрирующих в флюидах

Иллюстрации

Показать все

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во флюидах. Раскрытая, являющая примером установка включает в себя скважинный узел и наземный узел. Скважинный узел 300 включает в себя датчик 305, 325 для измерения колебательного сигнала, представляющего перемещение струны, вибрирующей во флюиде, на внутрискважинном месте в стволе скважины, устройство 332 моделирования колебательного сигнала для вычисления модельного параметра на основании измеряемого колебательного сигнала и первый телеметрический модуль 340 для передачи вычисляемого модельного параметра к месту на земной поверхности. Наземный узел включает в себя второй телеметрический модуль для приема вычисляемого модельного параметра от скважинного узла и анализатор вязкости для оценивания вязкости флюида на основании вычисляемого модельного параметра. Способ обработки измерений струн, вибрирующих во флюиде, включает операцию измерения колебательного сигнала и вычисление модельного параметра вибрации струны на основании измеряемого колебательного сигнала. Данный модельный параметр используется для определения вязкости пластового флюида. Технический результат - повышение точности определения свойств пластовых флюидов. 5 н. и 27 з.п. ф-лы, 7 ил.

Реферат

Родственные заявки

По этой заявке испрашивается преимущество приоритета предварительной заявки №61/161391 на патент США под названием “Two step processing of vibrating wire sensor”, поданной 18 марта 2009 года, которая полностью включена в эту заявку путем ссылки.

Область раскрытия

В общем эта заявка относится к струнам, вибрирующим во флюидах, и более конкретно к способам, установкам и изделиям промышленного производства для обработки измерений струн, вибрирующих во флюидах.

Уровень техники

Стволы скважины пробуривают, например, для обнаружения и добычи углеводородов. Во время операции бурения может быть желательно выполнять оценивание проходимых пластов и/или встречающихся пластовых флюидов. В некоторых случаях буровой инструмент извлекают и затем в ствол скважины спускают скважинный прибор для испытания пласта, и/или отбора образцов горных пород из пласта, и/или отбора проб флюидов, связанных с пластом. В других случаях бурильный инструмент может быть снабжен приборами для испытания пласта, и/или отбора образцов горных пород из окружающего пласта, и/или отбора проб пластовых флюидов без извлечения бурового инструмента из ствола скважины. Эти пробы или результаты испытаний можно использовать, например, для определения характеристик углеводородов, извлекаемых из пласта.

Для оценивания пласта часто требуется вытягивание флюида (флюидов) из пласта в скважинный прибор для исследования, оценивания и/или отбора проб. Различные устройства, такие как зонды, выдвигаются от скважинного прибора для установления сообщения по флюиду с пластом, окружающим ствол скважины, и для вытягивания флюида (флюидов) в скважинный прибор. Флюид (флюиды), проходящий через скважинный прибор и/или захватываемый в нем, можно исследовать и/или анализировать для определения различных параметров и/или свойств в то время, когда скважинный прибор находится на месте, то есть в стволе скважины. Различные свойства углеводородных пластовых флюидов, такие как вязкость, плотность и фазовое поведение флюида в пластовых условиях, можно использовать для оценивания потенциальных запасов, определения потоков в пористых средах и проектирования систем заканчивания скважины, разделения, обработки и измерения наряду с прочим.

Краткое изложение

Раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во флюидах. Раскрытая, являющаяся примером установка включает в себя скважинный узел и наземный узел. Скважинный узел включает в себя датчик для измерения колебательного сигнала, представляющего перемещение струны, вибрирующей в потоке флюида на внутрискважинном месте в стволе скважины, устройство моделирования колебательного сигнала для вычисления модельного параметра на основании измеряемого колебательного сигнала и первый телеметрический модуль для передачи вычисляемого модельного параметра к месту наземной поверхности. Наземный узел включает в себя второй телеметрический модуль для приема вычисляемого модельного параметра от скважинного узла и анализатор вязкости для оценивания вязкости флюида на основании вычисляемого модельного параметра.

Раскрытый, являющийся примером способ включает в себя возбуждение струнного датчика во флюиде, измерение колебательного сигнала, представляющего вибрацию струнного датчика во флюиде, вычисление модельного параметра вибрации струны, содержащего по меньшей мере одно из резонансной частоты и показателя логарифмического декремента затухания, на основании измеряемого колебательного сигнала и оценивание вязкости флюида на основании вычисляемого модельного параметра.

Раскрытая, являющаяся примером установка для использования на внутрискважинном месте ствола скважины включает в себя электромеханический преобразователь для возбуждения струны во флюиде на внутрискважинном месте, измеритель для измерения колебательного сигнала, представляющего вибрацию струны во флюиде, устройство преобразования для вычисления преобразования Гильберта измеряемого колебательного сигнала и для вычисления целевого колебательного сигнала на основании преобразования Гильберта и измеряемого колебательного сигнала, устройство подбора декремента для выбора первого и второго коэффициентов линейной модели, чтобы уменьшить разность между линейной моделью и вычисляемым целевым колебательным сигналом, и для вычисления показателя логарифмического декремента затухания на основании первого коэффициента и телеметрический модуль для передачи вычисляемого показателя логарифмического декремента затухания к месту на земной поверхности.

Другой раскрытый, являющийся примером способ включает в себя возбуждение струны во флюиде на внутрискважинном месте в стволе скважины, измерение колебательного сигнала, представляющего вибрацию струны во флюиде, вычисление преобразования Гилберта измеряемого колебательного сигнала, вычисление целевого колебательного сигнала на основании преобразования Гилберта и измеряемого колебательного сигнала, выбор первого и второго коэффициентов линейной модели, чтобы уменьшить разность между линейной моделью и вычисляемым целевым колебательным сигналом, вычисление показателя логарифмического декремента затухания на основании первого коэффициента и передачу вычисляемого показателя логарифмического декремента затухания к месту на земной поверхности.

Еще один раскрытый, являющийся примером способ включает в себя прием в месте на земной поверхности показателя логарифмического декремента затухания для струны, вибрирующей во флюиде на внутрискважинном месте в стволе скважины, прием в месте на земной поверхности с внутрискважинного места резонансной частоты вибрирующей струны во флюиде в стволе скважины на внутрискважинном месте и оценивание вязкости флюида на основании принимаемого показателя логарифмического декремента затухания и принимаемой резонансной частоты.

Краткое описание чертежей

На чертежах:

фигуры 1 и 2 - схематичные местные разрезы являющихся примерами установок для оценивания пласта, имеющих скважинный узел анализа вязкости флюида и наземный узел анализа вязкости флюида для обработки измерений от струн, вибрирующих в потоках флюидов;

фиг.3 - иллюстрация примера способа реализации являющихся примерами скважинных узлов анализа вязкости флюида из фигур 1 и 2;

фиг.4 иллюстрирует пример способа реализации являющихся примерами наземных узлов анализа вязкости флюида из фигур 1 и 2;

фиг.5 иллюстрирует пример процесса, который может быть выполнен для реализации являющихся примерами скважинных узлов анализа вязкости флюида из фигур 1-3;

фиг.6 иллюстрирует пример процесса, который может быть выполнен для реализации являющихся примерами наземных узлов анализа вязкости флюида из фигур 1-2 и 4; и

фиг.7 - схематичный вид являющейся примером процессорной платформы, которую можно использовать и/или программировать для выполнения примерных процессов из фигур 5 и 6 и/или для реализации любых из способов, установок и изделий, раскрытых в этой заявке.

Некоторые примеры показаны на названных выше чертежах и описываются подробно ниже. При описании этих примеров одинаковые или идентичные позиции могут использоваться для обозначения общих или аналогичных элементов. Чертежи не обязательно выполнены в масштабе и некоторые признаки и некоторые виды могут быть показаны на чертежах в увеличенном масштабе или схематично для ясности и/или выразительности. Кроме того, хотя в этой заявке раскрыты несколько предпочтительных осуществлений, другие осуществления могут использоваться, а структурные изменения могут быть сделаны без отступления от объема изобретения.

Подробное описание

Примерами способов, установок и изделий, раскрытых в этой заявке, предоставляются определенные преимущества при оценивании пласта. При условии, что имеется плотность ρ флюида, вязкость η флюида можно оценивать, используя вибрационный струнный датчик. Традиционно результаты измерений вибраций струнного датчика передают от скважинного прибора на внутрискважинном месте к месту на земной поверхности для последующей обработки на поверхности, чтобы оценивать вязкость η флюида. Однако полоса частот телеметрической системы передачи, необходимая для передачи измерений от внутрискважинного места к месту на земной поверхности, может превышать имеющуюся полосу частот, что может мешать определению в реальном времени вязкости флюида во время оценивания пласта.

Для преодоления этих трудностей в примерах, описанных в этой заявке, измерения вибраций струнного датчика обрабатывают в течение двух этапов. На первом этапе, который можно реализовывать, используя обрабатывающие и/или вычислительные ресурсы, обычно имеющиеся и/или без труда доступные в скважинном приборе, на основании измерений вычисляют резонансную частоту ω и показатель Δ логарифмического декремента затухания, которые характеризуют и/или представляют вибрации струнного датчика. Вычисляемые модельные параметры, то есть вычисляемую резонансную частоту ω и показатель Δ логарифмического декремента затухания, передают от скважинного прибора к месту на земной поверхности, используя только часть полосы частот телеметрической системы, необходимую для передачи самих измерений к месту на земной поверхности. На втором этапе в месте на земной поверхности, где имеется большее количество легкодоступных вычислительных ресурсов, вычисленные модельные параметры ω и Δ объединяют с одним или несколькими калибровочными параметрами для определения уравнения g() моделирования вязкости флюида, которое итерируют для оценивания и/или нахождения решения для вязкости η флюида, в котором измерялись вибрации струнного датчика. Поскольку вычислительные ресурсы затрачиваются в скважинном приборе, а необходимая полоса частот телеметрической системы уменьшается, примеры, описываемые в этой заявке, позволяют по существу в реальном времени определять вязкость η пластового флюида во время выполнения оценивания пласта.

На фиг.1 показан схематичный местный разрез, показывающий пример установки 100 оценивания пласта. В показанном на фиг.1 примере скважинный прибор 10 из фиг.1 подвешен к буровой установке 12 и находится в стволе 14 скважины, образованном в геологической формации G. В качестве являющегося примером скважинного прибора 10 можно реализовать скважинный прибор любого типа, способный выполнять оценивание пласта, такое как флуоресцентное, анализ пластового флюида, отбор проб пластового флюида, скважинный каротаж и т.д. Являющимся примером скважинным прибором 10 из фиг.1 является кабельный прибор, спускаемый с буровой установки 12 в ствол 14 скважины на каротажном кабеле 16 и располагаемый вблизи конкретного участка F геологической формации G.

Для уплотнения являющегося примером скважинного прибора 10 из фиг.1 относительно стенки 20 ствола 14 скважины (в дальнейшем называемой «стенкой 20» или «стенкой 20 ствола скважины») являющийся примером скважинный прибор 10 включает в себя зонд 18. Являющийся примером зонд 18 из фиг.1 образует уплотнение относительно стенки 20 и, как показано стрелками, извлекает флюид (флюиды) из пласта F в скважинный прибор 10. Поддерживающие поршни 22 и 24 содействуют прижатию являющегося примером зонда 18 скважинного прибора 10 к стенке 20 ствола скважины.

Для выполнения анализа вязкости флюида являющаяся примером установка 100 для оценивания пласта из фиг.1 включает в себя скважинный узел 26 анализа вязкости флюида и наземный узел 27 анализа вязкости флюида, выполненные в соответствии с идеями этого раскрытия. Являющийся примером скважинный узел 26 принимает пластовый флюид (флюиды) из зонда 18 через оценочную отводную линию 46. Являющийся примером скважинный узел 26 анализа вязкости флюида из фиг.1 измеряет электродвижущую силу (ЭДС) D(t), которая является напряжением, возникающим и/или наводимым в результате изменений во времени магнитного потока, проходящего через контур, частично определяемый положением (положениями), смещением (смещениями) и/или вибрацией (вибрациями) струны, когда она вибрирует во флюиде, содержащемся в отводной линии 46 и/или протекающем по ней. Являющийся примером скважинный узел 26 вычисляет резонансную частоту ω и показатель Δ логарифмического декремента затухания, которые характеризуют и/или представляют измеряемую электродвижущую силу D(t), и передает вычисляемые модельные параметры ω и Δ к наземному узлу 27 с использованием телеметрической системы (систем) и/или системы (систем) передачи данных при любом количестве их и/или любого типа (типов). В некоторых примерах скважинный узел 26 вычисляет оценку и/или приближение вязкости η флюида на основании вычисляемого логарифмического декремента Δ для содействия оцениванию других параметров пласта, выполняемому скважинным прибором 10. Например, скважинный узел 26 может оценивать вязкость η в виде постоянной, умноженной на квадрат декремента Δ. Скважинный прибор 10 может сравнивать такую оценку вязкости η с порогом для, например, определения скорости отбора флюида при испытании для оценивания параметров пласта. Пример способа реализации являющегося примером скважинного узла 26 анализа вязкости флюида из фиг.1 описывается ниже в сочетании с фиг.3.

Являющийся примером наземный узел 27 анализа вязкости флюида из фиг.1 принимает вычисляемые модельные параметры ω и Δ от скважинного узла 26 и объединяет их с одним или несколькими калибровочными параметрами для определения уравнения g() моделирования вязкости. Наземный узел 27 итерационно вычисляет выходные данные уравнения g() моделирования вязкости для оценивания и/или нахождения решения для вязкости η флюида в отводной линии 46. В некоторых примерах являющийся примером наземный узел 27 анализа вязкости флюида может дополнительно или как вариант принимать от скважинного узла 26 оценку вязкости η, которая может вычисляться так, как описано выше. Вязкость η, принимаемая от скважинного узла 26, может использоваться являющимся примером наземным узлом 27 в качестве исходной начальной точки η 0 для итераций уравнения g() моделирования вязкости. Пример способа реализации являющегося примером наземного узла 27 анализа вязкости флюида из фиг.1 описывается ниже в сочетании с фиг.4.

На фиг.2 показан схематичный местный разрез другой являющейся примером установки 200 для оценивания пласта. В показанном примере из фиг.2 скважинный прибор 30 прикреплен к бурильной колонне 32, и буровое долото 33 приводится во вращение с буровой установки 12 и/или забойным двигателем (непоказанным), приводимым в движение потоком бурового раствора, для образования ствола 14 скважины в геологической формации G. Являющийся примером скважинный прибор 30 из фиг.2 транспортируют среди (или сам по себе) одного или нескольких приборов, например прибора для измерения в процессе бурения, прибора каротажа в процессе бурения или скважинного прибора другого типа, известного специалистам в данной области техники.

Для уплотнения являющегося примером скважинного прибора 30 из фиг.2 относительно стенки 20 ствола 14 скважины скважинный прибор 30 включает в себя зонд 18а. Являющийся примером зонд 18а из фиг.2 образует уплотнение относительно стенки 20, чтобы, как показано стрелками, извлекать флюид (флюиды) из пласта F в скважинный прибор 30. Поддерживающие поршни 22а и 24а содействуют прижатию являющегося примером зонда 18а скважинного прибора 30 к стенке 20 ствола скважины. Бурение прекращают до того, как зонд 18а приходит в контакт со стенкой 20.

Для выполнения анализа вязкости флюида являющаяся примером установка 200 для оценивания пласта из фиг.2 включает в себя скважинный узел 26а анализа вязкости флюида и наземный узел 27а анализа вязкости флюида, выполненные в соответствии с идеями этого раскрытия. Являющийся примером скважинный узел 26а принимает пластовый флюид (флюиды) из зонда 18а через оценочную отводную линию 46а. Являющийся примером скважинный узел 26а анализа вязкости флюида из фиг.2 измеряет электродвижущую силу (ЭДС) D(t), которая является напряжением, возникающим и/или наводимым в результате изменений во времени магнитного потока, проходящего через контур, частично определяемый положением (положениями), смещением (смещениями) и/или вибрацией (вибрациями) струны, когда она вибрирует во флюиде, содержащемся в отводной линии 46а и/или протекающем по ней. Являющийся примером скважинный узел 26а вычисляет резонансную частоту ω и показатель Δ логарифмического декремента затухания, которые характеризуют и/или представляют измеряемую электродвижущую силу D(t), и передает вычисляемые модельные параметры ω и Δ к наземному узлу 27а с использованием телеметрической системы (систем) и/или системы (систем) передачи данных при любом количестве их и/или любого типа (типов). В некоторых примерах скважинный узел 26а вычисляет оценку и/или приближение вязкости η флюида на основании вычисляемого логарифмического декремента Δ для содействия оцениванию других параметров пласта, выполняемому скважинным прибором 30. Например, скважинный узел 26а может оценивать вязкость η в виде постоянной, умноженной на квадрат декремента Δ. Скважинный прибор 30 может сравнивать такую оценку вязкости η с порогом для, например, определения скорости отбора флюида при испытании для оценивания параметров пласта. Пример способа реализации являющегося примером скважинного узла 26а анализа вязкости флюида из фиг.2 описывается ниже в сочетании с фиг.3.

Являющийся примером наземный узел 27а анализа вязкости флюида из фиг.2 принимает вычисляемые модельные параметры ω и Δ от скважинного узла 26а и объединяет их с одним или несколькими калибровочными параметрами для определения уравнения g() моделирования вязкости. Наземный узел 27а итерационно вычисляет выходные данные уравнения g() моделирования вязкости для оценивания и/или нахождения решения для вязкости η флюида в отводной линии 46а. В некоторых примерах являющийся примером наземный узел 27а анализа вязкости флюида может дополнительно или как вариант принимать от скважинного узла 26а оценку вязкости η, которая может вычисляться так, как описано выше. Вязкость η, принимаемая от скважинного узла 26а, может использоваться являющимся примером наземным узлом 27а в качестве исходной начальной точки η 0 для итераций уравнения g() моделирования вязкости. Пример способа реализации являющегося примером наземного узла 27а анализа вязкости флюида из фиг.1 описывается ниже в сочетании с фиг.4.

На фиг.3 показан пример способа реализации являющихся примерами скважинных узлов 26 и 26а анализа вязкости флюида из фигур 1 и 2. Хотя каждый из являющихся примерами скважинных узлов 26 и 26а анализа вязкости флюида может быть реализован в соответствии с примером из фиг.3, для облегчения рассмотрения показанный пример из фиг.3 относится к скважинному узлу 300 анализа вязкости флюида или просто к скважинному узду 300.

Для получения измерений, представляющих вязкость η флюида 310, втекающего в отводную линию 315, являющийся примером скважинный узел 300 из фиг.3 включает в себя вибрационный струнный датчик 305 любого типа, электромеханический преобразователь 320 любого типа и измеритель 325 колебательного сигнала любого типа. Являющийся примером вибрационный струнный датчик 305 из фиг.3 включает в себя струну 306, удерживаемую в натяжении внутри отводной линии 315. Являющийся примером электромеханический преобразователь 320 из фиг.3 включает в себя электромагнитный источник (источники), при любом количестве их и/или любого типа (типов), и магниты для возбуждения, активирования и/или наведенного смещения (смещений) струны 306 в струнном датчике 305. Являющийся примером измеритель 325 колебательного сигнала из фиг.3 измеряет напряжение D(t) наведенной электродвижущей силы на струне 306, возникающее в ответ на действие электромеханического преобразователя 320, которое зависит от вязкости η флюида 310. Хотя на практике с измерителя 325 колебательного сигнала снимаются дискретные выборки, представляющие напряжение D(t) наведенной электродвижущей силы, для облегчения рассмотрения выходной сигнал измерителя 325 колебательного сигнала будет обозначаться в этой заявке как D(t). Напряжение D(t) наведенной электродвижущей силы представляет характеристику колебательного сигнала и/или представляет перемещение струны 306 с течением времени.

Примеры вибрационных струнных датчиков 305, электромеханических преобразователей 320 и измерителей 325 колебательного сигнала описаны в патенте США №7574898 под названием “Vibrating wire viscosity sensor”, выданном 18 августа 2009 года; в заявке №12/534151 на патент США под названием “Vibrating wire viscometers”, поданной 2 августа 2009 года; в заявке №12/537257 на патент США под названием “Vibrating wire viscometers”, поданной 7 августа 2009 года; в патенте США №7194902 под названием “Apparatus and methods for formation evaluation”, выданном 27 марта 2007 года; и в патенте США №7222671 под названием “Apparatus and methods for formation evaluation”, выданном 29 мая 2007 года, которые все переуступлены правопреемнику настоящей заявки и которые все полностью включены в эту заявку путем ссылки. Примеры способов обработки колебательного сигнала D(t) напряжения наведенной электродвижущей силы для оценивания вязкости η флюида 310 описаны в статье под названием “On the nonlinear interpretation of a vibrating wire viscometer operated at a large amplitude”, авторов Sullivan et al., опубликованной в Fluid Phase Equilibra 276 (2008), pp.99-107, которая была написана по меньшей мере частью авторов настоящей заявки и которая полностью включена в эту заявку путем ссылки.

В переходном режиме напряжение D(t) наведенной электродвижущей силы, возникающее на струне 306 при наличии флюида 310, представляет собой кратковременное колебание, которое согласуется с простой моделью затухающих гармонических колебаний, которое можно выразить математически в следующем виде

V ( t )   =   A e − Δ ω t sin ( ω t   +   φ ) ,   уравнение (1)

где V(t) является оценкой измеряемого напряжения D(t) наведенной электродвижущей силы, А является амплитудой начального переходного процесса, Δ является показателем логарифмического декремента затухания, в соответствии с которым регулируется демпфирование перемещения, ω представляет собой резонансную частоту струны 306 (рад/с), t является временным индексом и ϕ представляет неизвестный фазовый угол.

Логарифмический декремент Δ из уравнения (1) связан со свойствами флюида 310 и со свойствами струны 306. Логарифмический декремент Δ можно выразить математически в следующем виде

Δ   =   ( ρ   /   ρ s ) k ' + 2 Δ 0 2 [ 1   +   ( ρ   /   ρ s ) k ] ,   уравнение (2)

где ρ и ρ s представляют собой плотности флюида 310 и струны 306 соответственно, а Δ0 является внутренним демпфированием струны 306 в вакууме. Величины k и k' из уравнения (2) определяются математическими выражениями

k=-1+2ℑ(Λ),   уравнение (3)

k'=2ℜ(Λ)+2Δℑ(Λ),   уравнение (4)

где ℑ() обозначает мнимую часть комплексной величины и ℜ() обозначает действительную часть комплексной величины. В уравнениях (3) и (4) комплексная величина Λ определяется в соответствии с

Λ   =   ( i   −   Δ [ 1   +   2 K 1 [ ( ( i   −   Δ ) Ω ) 1 / 2 ] [ ( i   −   Δ ) Ω ] 1 / 2 K 0 [ ( ( i   −   Δ ) Ω ) 1 / 2 ] ] ,   уравнение (5)

где

ω   =   ω ρ R 2 η .   уравнение (6)

K 0 и K 1 из уравнений (5) и (6) являются модифицированными функциями Бесселя второго рода, а Ω находится в связи с числами Рейнольдса, которые характеризуют поток вокруг цилиндрической струны 306 радиуса R. В уравнении (6) вязкость и плотность флюида, флюида 310, даются η и ρ соответственно.

На практике вследствие электрического импеданса неподвижной струны 306 неизвестный фоновый дрейф может присутствовать в напряжении D(t) наведенной электродвижущей силы, который можно учесть с помощью следующего математического выражения:

V ( t )   =   A e − Δ ω t sin ( ω t   +   φ )   +   a   +   b t ,   уравнение (7)

где а и b являются неизвестными постоянными, которые характеризуют смещение и временной дрейф, обусловленные неизвестной фоновой интерференцией.

В случае возбуждения струны 306 с использованием большого напряжения и/или большого смещения математическое выражение из уравнения (7) можно усилить включением корректирующего второго экспоненциального члена, показанного в следующем математическом выражении

V ( t )   =   A e − Δ ω t sin ( ω t   +   φ )   +   A 3 e − 3 Δ ω t sin ( ω t   +   φ 3 )   +   a   +   b t , уравнение (8)

Математическая модель уравнения (8) известна в отрасли как модель “VEZA”. В данном случае уравнение (7) относится к модели с одной экспонентой и уравнение (8) относится к модели с двумя экспонентами. Хотя ради ясности в уравнениях (1)-(8) предполагается, что флюид 310 является ньютоновской текучей средой, являющиеся примерами способы и установки, описываемые в этой заявке, можно дополнительно или как вариант использовать для определения вязкости η неньютоновских текучих сред с использованием математических моделей, пригодных для неньютоновских текучих сред. Модель с двумя экспонентами из уравнения (8) можно использовать, когда струна 306 колеблется с амплитудой, превышающей амплитуду, которая может быть точно представлена уравнениями (1) и (7). Такие условия могут встречаться, например, когда ток возбуждения и/или магнитное поле является чрезмерным и поэтому сила смещения, прикладываемая к струне 306, является избыточной для демпфирования, создаваемого окружающим флюидом 310. Как вариант избыточную амплитуду можно идентифицировать и переменный ток, подводимый к струне 306, уменьшать и/или, если датчик 305 включает в себя электромагнит, генерируемое магнитное поле можно уменьшать при снижении рассеиваемой мощности постоянного тока. Когда демпфирование, создаваемое флюидом 310, возрастает, напряжение наведенной электродвижущей силы снижается и для поддержания приемлемого отношения сигнала к шуму можно пропускать повышенный переменный ток через струну 306 и/или прикладывать более сильное магнитное поле.

Для вычисления одного или нескольких модельных параметров, представляющих и/или характеризующих измеряемый колебательный сигнал D(t) напряжения электродвижущей силы, являющийся примером скважинный узел 300 анализа вязкости флюида из фиг.3 включает в себя устройство 330 моделирования колебательного сигнала. Являющееся примером устройство 330 моделирования колебательного сигнала из фиг.3 согласовывает измеряемое напряжение D(t) наведенной электродвижущей силы (как функции времени) с ожидаемым V(t) согласно математическому выражению из уравнения (7) для определения, вычисления и/или нахождения решения для одного или нескольких модельных параметров A, Δ, ω=2πf, ϕ, a и b. Как описывается более подробно ниже, устройство 331 определения начальных значений вычисляет и/или определяет начальные оценки A 0, Δ0, ω 0, ϕ 0, a 0 и b 0 модельных параметров A, Δ, ω, ϕ, a и b.

Для вычисления модельных параметров A, Δ, ω, ϕ, a и b являющееся примером устройство 330 моделирования колебательного сигнала включает в себя устройство 332 моделирования. Исходя из начальных оценок A 0, Δ0, ω 0, ϕ 0, a 0 и b 0, вычисленных устройством 331 определения начальных значений, и с использованием способа (способов), уравнения (уравнений) и/или алгоритма (алгоритмов) при любом количестве их и любого типа (типов) устройство 330 моделирования итерирует модельные параметры A, Δ, ω, ϕ, a и b, чтобы уменьшить разность между измеряемым напряжением D(t) электродвижущей силы и эталонным значением V(t) из уравнения (7). В некоторых примерах согласование моделируемого напряжения V(t) электродвижущей силы с D(t) достигается выполнением итераций Левенберга-Марквардта для минимизации и/или снижения хи-квадрата χ2 между V(t) и D(t), что можно выразить математически в виде

min A , Δ , ω , φ , a , b χ 2 ,   уравнение (9)

где χ 2   =   ∑ i = 1 N | D ( t i )   −   V ( t i ) | 2 ν ,   уравнение (10)

t i представляет моменты времени, в которые выборки времени напряжения D(t) наведенной электродвижущей силы измеряются измерителем 325 колебательного сигнала, N - количество обрабатываемых выборок и ν является числом степеней свободы для подбора N точек данных. Пример способа выполнения итераций Левенберга-Марквардта для математического решения уравнений (9) и (10) описали Bevington и соавторы в книге под названием “Data Reduction and Error Analysis for the Physical Sciences”, которая полностью включена в эту заявку путем ссылки. Дополнительно и/или как вариант ньютоновские и/или квазиньютоновские итерации можно выполнять для минимизации разности между прогнозируемым напряжением V(t) электродвижущей силы и измеряемым напряжением D(t) электродвижущей силы.

Математические выражения из уравнений (9) и (10) можно решать без вычисления значений из уравнений (2)-(6). Поэтому модельные параметры A, Δ, ω, ϕ, a и b могут вычисляться устройством 330 моделирования колебательного сигнала без вычисления значений функций K 0 и K 1 Бесселя, для которого требуются обременительные затраты вычислительных ресурсов процессора скважинного прибора 10, 30, чтобы выполнять вычисления с достаточной точностью.

В случае модели с двумя экспонентами из уравнения (8) являющееся примером устройство 332 моделирования из фиг.3 уменьшает и/или минимизирует разность между измеряемым колебательным сигналом D(t) напряжения электродвижущей силы и ожидаемым колебательным сигналом V(t) из уравнения (8) путем, например, реализации уравнений (9) и (10) относительно параметров А 3, ϕ 3, А, Δ, ω, ϕ, а и b, где начальные значения А 3 и ϕ 3 представляют собой А 300 и ϕ 300 соответственно.

Для вывода вычисляемых модельных параметров являющийся примером скважинный узел 300 из фиг.3 включает в себя выходные интерфейсы (интерфейс) в любом количестве и/или любых типов (типа), один из которых обозначен позицией 335. Являющийся примером выходной интерфейс 335 из фиг.3 передает некоторые или все вычисляемые модельные параметры (например, Δ и ω) и/или измеряемый волновой сигнал D(t) к наземному узлу 27, 27а анализа вязкости через телеметрическую систему любого типа или модуль 340 передачи данных и/или может сохранять вычисляемые модельные параметры и/или измеряемый волновой сигнал D(t) в запоминающем элементе (элементах), запоминающем устройстве (устройствах), накопителе и накопительном устройстве (устройствах) 345 при любом количестве их и/или любого типа (типов).

В некоторых примерах модельные параметры вычисляются в течение каждого интервала телеметрического кадра и передаются к наземному узлу 27, 27а анализа вязкости флюида в каждом телеметрическом кадре. При отработке и/или испытании периодические и/или непериодические участки измеряемых колебательных сигналов D(t) можно разделять на многочисленные сегменты и передавать к месту на земной поверхности с использованием многочисленных телеметрических кадров.

Для удаления любой систематической ошибки или смещения, присутствующего в измеряемом колебательном сигнале D(t), являющееся примером устройство 331 определения начальных значений из фиг.3 включает в себя устройство 350 исключения систематической ошибки. Являющееся примером устройство 350 исключения систематической ошибки из фиг.3 вычисляет среднее значение а 0 измеряемого напряжения D(t) и вычитает среднее значение а 0 из измеряемого D(t) для образования колебательного сигнала D ˜ ( t ) с нулевым средним. То есть

D ˜ ( t )   =   D ( t )   −   a 0 ,