Сигнализирование подтверждения приема 4с-hsdpa

Иллюстрации

Показать все

Изобретение относится к методикам для сигнализирования статуса подтверждения приема (например, ACK, NACK или DTX) для вплоть до четырех обнаруженных несущих в соответствии с 4C-HSDPA (высокоскоростной пакетный доступ в нисходящей линии связи с четырьмя несущими). Технический результат состоит во внедрении новых технических приемов, например новых форматов каналов и новых кодовых слов, чтобы при необходимости приспосабливать дополнительные сценарии, которые, в частности, возникают в 4C-HSDPA. Для этого в примерном варианте осуществления интервал времени ACK канала HS-DPCCH использует коэффициент расширения, равный 128, чтобы размещать два 10-символьных кодовых слова в каждом интервале времени. Кодовые слова могут быть кодовыми словами двойной несущей, поддерживающими статус подтверждения приема вплоть до четырех несущих, сигнализируемый в каждом интервале времени. Дополнительно может быть обеспечено кодовое слово DTX-DTX, чтобы сигнализировать отсутствие обнаружения двух несущих, назначенных одному и тому же кодовому слову. В альтернативном примерном варианте осуществления кодовое слово, сигнализирующее статус подтверждения приема для двух несущих, может быть повторено дважды за единственный интервал времени. 6 н. и 12 з.п. ф-лы, 24 ил.

Реферат

РОДСТВЕННЫЕ ЗАЯВКИ

Настоящая патентная заявка испрашивает приоритет предварительной патентной заявки США № 61/303301 под названием "HS-DPCCH Code Mapping for 4C-HSDPA", зарегистрированной 10 февраля 2010 г. и переуступленной правопреемнику настоящей заявки, содержание которой тем самым включено здесь путем ссылки во всей ее полноте.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение относится в общем к беспроводной связи, и более конкретно, к методикам сигнализации сообщений о статусе подтверждения приема в системах беспроводной связи.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Системы беспроводной связи широко развертывают, чтобы обеспечивать различные типы содержимого связи, такие как голосовой трафик, данные и т.д. Эти системы могут быть системами множественного доступа, способными поддерживать связь с многочисленными пользователями, совместно использующими доступные системные ресурсы (например, полосу пропускания и мощность передачи). Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением каналов (TDMA), системы множественного доступа с частотным разделением каналов (FDMA), системы Проекта долгосрочного развития (LTE) 3GPP (Проекта партнерства 3-го поколения), включающие в себя E-UTRA, и системы множественного доступа с ортогональным частотным разделением каналов (OFDMA).

Технология высокоскоростного пакетного доступа в нисходящей линии связи (HSDPA) является протоколом для высокоскоростной передачи данных в сотовых сетях мобильной связи, основанных на стандарте W-CDMA, или 3GPP. В версии HSDPA, известной как HSDPA с двойной сотой (DC-HSDPA), данные от Узла В могут передаваться на UE по нисходящей линии связи с использованием вплоть до двух несущих. На стороне UE, оборудование UE может сигнализировать статус подтверждения приема несущих нисходящей линии связи, передавая ACK, NACK или DTX на канале восходящей линии связи, например, на канале HS-DPCCH.

В предшествующих реализациях HSDPA с несколькими несущими обеспечен механизм сигнализации, в котором статус подтверждения приема вплоть до двух несущих отображается в определенное кодовое слово в соответствии с кодовой книгой, и символы кодового слова распределяются по каналу HS-DPCCH с использованием коэффициента расширения, равного 256. В более новой версии HSDPA, известной как HSDPA с четырьмя несущими (4C-HSDPA), в которой на UE может передаваться вплоть до четырех несущих на нисходящей линии связи, необходимы альтернативные механизмы сигнализации на восходящей линии связи, чтобы сигнализировать статус подтверждения приема для большего количества несущих нисходящей линии связи.

Может потребоваться обеспечить схему сигнализации статуса подтверждения приема для 4C-HSDPA, которая с выгодой использует в полном объеме существующие технические приемы, например ранее существовавшие форматы и кодовые книги канала HSDPA. Дополнительно может потребоваться внедрять новые технические приемы, например новые форматы каналов и новые кодовые слова, чтобы при необходимости приспосабливать дополнительные сценарии, которые, в частности, возникают в 4C-HSDPA.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Аспект представленного раскрытия обеспечивает способ, содержащий передачу статуса подтверждения приема для первой и второй несущих во время первой половины интервала времени (слота) HS-DPCCH.

Другой аспект представленного раскрытия обеспечивает устройство, содержащее: модуль обнаружения несущих, выполненный с возможностью обнаружения по меньшей мере одной несущей, присутствующей в принятом сигнале для системы HSDPA; модуль приема несущих, выполненный с возможностью декодирования данных по меньшей мере от одной обнаруженной несущей; кодер, выполненный с возможностью генерирования кодового слова, сигнализирующего статус подтверждения приема для первой и второй несущих, основываясь на выходном сигнале модуля обнаружения несущих и модуля приема несущих; модуль передачи, выполненный с возможностью передачи кодового слова во время первой половины интервала времени HS-DPCCH.

Еще один аспект представленного раскрытия обеспечивает устройство, содержащее средство для передачи статуса подтверждения приема для первой и второй несущих во время первой половины интервала времени HS-DPCCH.

Еще один аспект представленного раскрытия обеспечивает компьютерно-читаемый носитель данных, хранящий команды, чтобы заставить компьютер передавать статус подтверждения приема для первой и второй несущих во время первой половины интервала времени HS-DPCCH.

Еще один аспект представленного раскрытия обеспечивает способ, содержащий прием статуса подтверждения приема для первой и второй несущих во время первой половины интервала времени HS-DPCCH.

Еще один аспект представленного раскрытия обеспечивает устройство, содержащее: модуль приема, выполненный с возможностью приема кодового слова, сигнализирующего статус подтверждения приема для первой и второй несущих во время первой половины интервала времени HS-DPCCH; и модуль декодирования, выполненный с возможностью декодирования кодового слова, сигнализирующего статус подтверждения приема.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 иллюстрирует пример системы беспроводной связи;

фиг.2A иллюстрирует примерный частотный спектр, показывающий две несущие С1, C2, запланированные для передачи нисходящей линии связи на UE на частотах f1, f2, соответственно;

фиг.2B иллюстрирует структуру канала предшествующего уровня техники для HS-DPCCH, как раскрыто в Rel-9 стандарта W-CDMA;

фиг.2C иллюстрирует информацию, которая может быть передана в интервале времени HARQ-ACK, в соответствии с техническими приемами сигнализации предшествующего уровня техники;

фиг.3 иллюстрирует примерный частотный спектр, показывающий четыре несущие С1, C2, С3, C4, обнаруженные оборудованием UE на частотах f1, f2, f3, f4, соответственно;

фиг.4 представляет иллюстративный пример интервала времени HARQ-ACK для HS-DPCCH, в котором UE может подтверждать прием вплоть до четырех несущих нисходящей линии связи, как показано на фиг.3;

фиг.5 иллюстрирует примерный частотный спектр, показывающий три несущие С1, C2, C3, обнаруженные оборудованием UE на частотах f1, f2, f3, соответственно, либо с тремя, либо с четырьмя несущими нисходящей линии связи, запланированными для UE;

фиг.6 представляет иллюстративный пример интервала времени HARQ-ACK, в котором UE сигнализирует статус подтверждения приема для трех несущих нисходящей линии связи, показанных на фиг.5;

фиг.7 иллюстрирует примерный частотный спектр, показывающий две несущие С1, C3, обнаруженные оборудованием UE на частотах f1, f3, соответственно, либо с двумя, либо с тремя, либо с четырьмя несущими нисходящей линии связи, запланированными для UE;

фиг.8 представляет иллюстративный пример интервала времени HARQ-ACK, в котором UE подтверждает прием двух несущих нисходящей линии связи, показанных на фиг.7;

фиг.9 иллюстрирует примерный частотный спектр, показывающий две несущие С1, C2, обнаруженные оборудованием UE на частотах f1, f2, соответственно, либо с двумя, либо с тремя, либо с четырьмя несущими нисходящей линии связи, запланированными для UE;

фиг.10A-10E иллюстрируют примерные варианты осуществления схем для UE для сигнализирования статуса подтверждения приема двух несущих нисходящей линии связи, показанных на фиг.9;

фиг.11A-11B иллюстрируют примерные варианты осуществления устройств в соответствии с представленным раскрытием;

фиг.12A-12B иллюстрируют примерные варианты осуществления способов в соответствии с представленным раскрытием; и

фиг.13A-13D иллюстрируют примерную сеть радиосвязи, работающую в соответствии с UMTS, в которой могут быть применены принципы представленного раскрытия.

ПОДРОБНОЕ ОПИСАНИЕ

Слово "примерное" используется в данном описании, чтобы означать "служащее примером, конкретным случаем или иллюстрацией". Любой вариант осуществления, описанный в данном описании как "примерный", не обязательно должен рассматриваться как предпочтительный или выгодный по сравнению с другими вариантами осуществления.

Подробное описание, сформулированное ниже в связи с прилагаемыми чертежами, предназначается в качестве описания примерных вариантов осуществления данного изобретения и не предназначено для того, чтобы представлять только такие варианты осуществления, в которых может быть реализовано данное изобретение. Подробное описание включает в себя конкретные детали с целью обеспечения полного понимания примерных вариантов осуществления изобретения. Специалистам в данной области техники должно быть очевидно, что примерные варианты осуществления изобретения могут быть реализованы без этих определенных деталей. В некоторых случаях, известные структуры и устройства показаны в форме блок-схем, чтобы избегать неясности новизны примерных вариантов осуществления, представленных в данном описании.

Рассмотрим фиг.1, на которой, в сотовой системе 100 беспроводной связи, позиционные обозначения 102A-102G относятся к сотам, позиционные обозначения 160A-160G (все вместе обозначенные 160) относятся к Узлу В, а позиционные обозначения 106A-106I (все вместе обозначенные 106) относятся к оборудованию пользователя (UE). Канал связи включает в себя нисходящую линию связи (также известную как прямая линия связи) для передач от Узла В 160 на UE 106 и восходящую линию связи (также известную как обратная линия связи) для передач от UE 106 на Узел В 160. Передачи могут проводиться с использованием схемы со многими входами и многими выходами (MIMO) или не MIMO. Узел В также упоминается как базовая приемопередающая система (BTS), точка доступа или базовая станция. UE 106 также известно как станция доступа, удаленная станция, мобильная станция или абонентская станция. UE 106 может быть мобильным или стационарным. Кроме того, UE 106 может быть любым устройством ввода-вывода данных, которое устанавливает связь через беспроводной канал или через проводной канал связи, например, с использованием волоконно-оптических или коаксиальных кабелей. UE 106 дополнительно может быть любым из некоторого количества типов устройств, включающих в себя PC-карту (карту памяти для подключения к компьютеру), флэш-карту, внешний или внутренний модем или беспроводной или проводной телефон, но не ограничиваясь этим.

Современные системы связи предназначены для обеспечения возможности множеству пользователей получать доступ к общей среде связи. В уровне техники известны многочисленные методики множественного доступа, такие как множественный доступ с временным разделением каналов (TDMA), множественный доступ с частотным разделением каналов (FDMA), множественный доступ с пространственным разделением каналов, множественный доступ с полярным разделением каналов, множественный доступ с кодовым разделением каналов (CDMA) и другие подобные методики множественного доступа. Понятие множественного доступа представляет собой методологию выделения каналов, которая множеству пользователей предоставляет доступ к общей линии связи. Выделения канала могут принимать различные формы в зависимости от конкретной методики множественного доступа. В качестве примера в системах FDMA, весь частотный спектр делится на некоторое количество меньших поддиапазонов, и каждому пользователю предоставляется его собственный поддиапазон для получения доступа к линии связи. В качестве альтернативы, в системах CDMA, каждому пользователю предоставляется весь частотный спектр в течение всего времени, но его передача отличается с помощью кода.

Хотя некоторые примерные варианты осуществления представленного раскрытия ниже могут быть описаны для работы в соответствии со стандартом CDMA, известным как W-CDMA, специалисты в данной области техники могут принять во внимание, что эти методики без труда могут быть применены к другим системам цифровой связи. Например, методики представленного раскрытия также могут быть применены к системам, основанным на стандарте беспроводной связи cdma2000 и/или на любых других стандартах в области связи. Такие альтернативные примерные варианты осуществления рассматриваются как находящиеся в пределах объема представленного раскрытия.

В примерном варианте осуществления, один или больше из Узлов В 160 могут передавать данные на UE 106 с использованием множества несущих на нисходящей линии связи. В соответствии с примерным вариантом осуществления HSDPA, известным как HSDPA с двойной сотой (DC-HSDPA), UE 106 может принимать данные от вплоть до двух несущих на нисходящей линии связи (например, HS-PDSCH (высокоскоростном физическом совместно используемом канале нисходящей линии связи)), когда они передаются одним или больше Узлами В 160. Фиг.2A иллюстрирует примерный частотный спектр, показывающий две логические несущие С1, C2, запланированные для передачи нисходящей линии связи для UE на частотах f1, f2, соответственно. В соответствии с примерным вариантом осуществления HSDPA, известным как HSDPA с четырьмя несущими (4C-HSDPA), UE 106A может принимать данные от вплоть до четырех несущих. В соответствии с примерным вариантом осуществления, известным как DC-MIMO, UE 106A может принимать данные от вплоть до двух несущих, сконфигурированных для работы MIMO (то есть "несущих MIMO"), в то время как в соответствии с 4C-MIMO, UE 106A может принимать данные от вплоть до четырех несущих MIMO. Такой прием от множества несущих (HSDPA или MIMO) может выгодно улучшать качество данных, принимаемых UE, благодаря частотному разнесению несущих, а также увеличивать максимальную пропускную способность к UE.

В примерном варианте осуществления UE может подтверждать прием каждой из множества несущих нисходящей линии связи отдельно, выполняя передачу на восходящей линии связи, например, в соответствии со схемами ARQ или гибридного ARQ, известными в уровне техники. Например, серия V9.1.0 (2009-12) 3GPP TS 25 (в дальнейшем упоминаемая как "Rel-9"), содержание которой включено здесь посредством ссылки, описывает схему, посредством которой UE может сигнализировать сообщение о статусе подтверждения приема, указывающее на ACK (подтверждение приема), NACK (неподтверждение приема) или DTX (отсутствие обнаружения) для вплоть до двух несущих нисходящей линии связи HSDPA на единственном канале восходящей линии связи, известном как HS-DPCCH. (См., например, TS 25.212.)

Фиг.2B иллюстрирует структуру канала предшествующего уровня техники для HS-DPCCH, как раскрыто в Rel-9, содержание которой включено здесь посредством ссылки. Как показано на фиг.2B, кадр радиосвязи HS-DPCCH может включать в себя множество подкадров, при этом каждый подкадр включает в себя интервал 210 времени HARQ-ACK, имеющий продолжительность 2560 элементов сигнала, или 1 интервал времени.

Фиг.2C иллюстрирует информацию, которая может передаваться в интервале 210 времени HARQ-ACK в соответствии с методиками сигнализации предшествующего уровня техники. В примерном варианте осуществления, кодовое слово из 10 кодовых символов может быть передано в интервале 210 времени HARQ-ACK с использованием коэффициента расширения (SF), равного 256, и кодовое слово может сигнализировать ACK, NACK или DTX для вплоть до двух несущих на нисходящей линии связи. Например, единственное кодовое слово, изображенное на фиг.2C, может сигнализировать ACK, NACK или DTX отдельно для двух запланированных несущих С1 и C2, показанных на фиг.2A. В примерном варианте осуществления, для несущих HSDPA может использоваться кодовая книга, такая как обеспечена в Разделе 4.7.3A в TS 25.212, в то время как для несущих MIMO может использоваться кодовая книга, такая как обеспечена в Разделе 4.7.3.B в TS 25.212. В качестве альтернативы, кодовая книга MIMO может использоваться и для несущих MIMO, и для несущих не-MIMO. Следует отметить, что кодовые книги для HSDPA до Rel-9 и включая Rel-9 не обеспечивают явно кодового слова для одновременной сигнализации DTX для двух несущих нисходящей линии связи.

Следует отметить, что в этом описании и в формуле изобретения термин "обнаружение" может включать в себя процесс, при котором UE точно декодирует HS-SCCH (высокоскоростной совместно используемый канал управления) несущей. В примерном варианте осуществления, UE может сигнализировать DTX в ответ на отсутствие обнаружения HS-SCCH несущей. С другой стороны, термин "прием" может включать в себя процесс, при котором UE декодирует HS-PDSCH несущей, предполагая, что несущая обнаружена. В примерном варианте осуществления, UE может сигнализировать NACK или ACK в ответ на HS-PDSCH несущей, декодированной с ошибками или без ошибок, соответственно. Кроме того, одна или больше запланированных несущих могут быть "деактивированы" в случае, когда Узел В не планирует данные на деактивированных несущих, в то время как UE не ожидает данные на деактивированных несущих и, следовательно, не делает попытку приема на этих несущих. Такие примерные варианты осуществления рассматриваются как находящиеся в пределах объема представленного раскрытия.

В соответствии с представленным раскрытием, обеспечены новые методики для HS-DPCCH, чтобы сигнализировать статус подтверждения приема для вплоть до четырех несущих (HSDPA или MIMO), например, используемых в системе 4C-HSDPA, с использованием существующей структуры канала HS-DPCCH, как показано на фиг.2B.

Фиг.3 иллюстрирует примерный частотный спектр, показывающий четыре несущие С1, C2, С3, C4, обнаруженные оборудованием UE на частотах f1, f2, f3, f4, соответственно. Следует отметить, что фиг.3 показана только в иллюстративных целях и не предназначена для того, чтобы ограничивать объем представленного раскрытия какой-либо конкретной комбинацией или распределением частот. Например, упорядочивание логических несущих (например, С1-C4) не обязательно должно соответствовать физическому упорядочиванию частот канала (например, f1-f4). Например, в альтернативных примерных вариантах осуществления, С1 может быть отображена в f4, C2 может быть отображена в f3 и т.д. Кроме того, такое соответствие не должно быть последовательным, например С1 может быть отображена в f2, C2 может быть отображена в f4, C3 может быть отображена в f1 и т.д. Такие альтернативные примерные варианты осуществления рассматриваются как находящиеся в пределах объема представленного раскрытия.

Чтобы сигнализировать статус подтверждения приема для несущих, UE может использовать канал HS-DPCCH, как описано в отношении фиг.2B. Фиг.4 представляет иллюстративный пример интервала 210 времени HARQ-ACK для HS-DPCCH, в котором UE может подтверждать прием вплоть до четырех несущих нисходящей линии связи, как показано на фиг.3.

На фиг.4 можно увидеть, что коэффициент расширения (SF) интервала 210 времени HARQ-ACK составляет 128, так что два 10-символьных кодовых слова 410, 420 могут быть последовательно подвергнуты временному мультиплексированию в пределах 2560 элементов сигнала интервала 210 времени HARQ-ACK. Первое кодовое слово 410 является 10-символьным кодовым интервалом, сигнализирующим ACK или NACK для запланированных несущих С1 и C2, и обеспечивается в первой половине интервала 210 времени. Второе кодовое слово 420 является 10-символьным кодовым словом, сигнализирующим ACK или NACK для запланированных несущих С3 и C4, и обеспечивается во второй половине интервала 210 времени. В примерном варианте осуществления, в котором все несущие представляют собой несущие HSDPA, кодовые слова 410, 420 могут выбираться из одной и той же кодовой книги, как определено в Rel-9 для DC-MIMO.

Следует отметить, что в этом описании и в формуле изобретения ссылки на "первую половину" и "вторую половину" интервала 210 времени делаются только в целях идентификации и не подразумевают, что первая половина обязательно предшествует по времени второй половине.

Фиг.5 иллюстрирует примерный частотный спектр, показывающий три несущие С1, C2, C3, обнаруженные оборудованием UE на частотах f1, f2, f3, соответственно, либо с тремя, либо с четырьмя несущими нисходящей линии связи, запланированными для UE. На фиг.5 несущая, соответствующая C4 и f4, может быть не запланирована Узлом B. В качестве альтернативы, несущая, соответствующая C4 и f4, может быть запланирована для UE, но соответствующий HS-SCCH для C4 может быть точно не обнаружен UE. В еще одной альтернативе четвертая несущая может быть запланирована, но по выбору деактивирована Узлом В, так что UE выполнено с возможностью работы с четырьмя несущими, но активным будет только на трех. Следует отметить, что фиг.5 показана только в иллюстративных целях и не предназначена для того, чтобы ограничивать объем представленного раскрытия каким-либо конкретным выделением несущих частот, или любой определенной несущей или частотой, не обнаруженной оборудованием UE. Специалисты в данной области техники могут принять во внимание, что методики, раскрытые в данном описании, без труда могут быть применены к другим сценариям, в которых оборудованием UE обнаруживаются три из четырех несущих.

Фиг.6 представляет иллюстративный пример интервала 210 времени HARQ-ACK, в котором UE сигнализирует статус подтверждения приема для трех несущих нисходящей линии связи, показанных на фиг.5. На фиг.6, первое кодовое слово 610 является 10-символьным кодовым словом, сигнализирующим ACK или NACK для запланированных несущих С1 и C2. Второе кодовое слово 620 является 10-символьным кодовым словом, сигнализирующим ACK или NACK для единственной запланированной несущей С3 и DTX для несущей С4, которая может быть запланирована или не запланирована. В примерном варианте осуществления, кодовые слова 610, 620 могут быть выбраны из одной и той же кодовой книги, как определено в Rel-9 для DC-MIMO. Следует отметить и можно принять во внимание, что кодовые слова могут быть выбраны из кодовой книги DC-MIMO, даже когда несущих MIMO нет.

Специалисты в данной области техники могут принять во внимание, что в альтернативном примерном варианте осуществления (не показан), кодовое слово для единственной несущей С3 вместо этого может быть выбрано из кодовой книги для сигнализации статуса подтверждения приема для единственной несущей. Кодовая книга единственной несущей может быть, например, кодовой книгой HSDPA с единственной несущей, как описано в Rel-5 3GPP, или кодовой книгой MIMO с единственной несущей, как описано в Rel-7 3GPP. UE может использовать такое кодовое слово единственной несущей для C3, когда, например, C4 будет деактивирована, и UE и Узел В ожидают, что C4 не будет передаваться. Такие альтернативные примерные варианты осуществления рассматриваются как находящиеся в пределах объема представленного раскрытия.

В то время как фиг.5 и 6 были описаны для случая, в котором несущая С4 является одной из четырех несущих, не обнаруженной оборудованием UE, специалисты в данной области техники смогут принять во внимание, что методики, раскрытые в данном описании, без труда могут быть применены к случаю, в котором любая из несущих С1, C2 или C3 представляет собой одну из четырех несущих, не обнаруженную оборудованием UE. Например, если обнаружены только несущие С2, С3, C4, то вместо этого на фиг.6 может быть выбрано первое кодовое слово 610, чтобы сигнализировать DTX для С1 и ACK или NACK для C2, в то время как второе кодовое слово 620 может быть выбрано для сигнализирования ACK или NACK для С3, C4. Такие примерные варианты осуществления рассматриваются как находящиеся в пределах объема представленного раскрытия.

Фиг.7 иллюстрирует примерный частотный спектр, показывающий две несущие С1, C3, обнаруженные оборудованием UE на частотах f1, f3, соответственно, либо с двумя, либо с тремя, либо с четырьмя несущими нисходящей линии связи, запланированными для UE. Следует отметить, что фиг.7 показана только в иллюстративных целях и не предназначена для того, чтобы ограничивать объем представленного раскрытия каким-либо конкретным выделением несущих частот.

Фиг.8 представляет иллюстративный пример интервала 210 времени HARQ-ACK, в котором UE подтверждает прием двух несущих нисходящей линии связи, показанных на фиг.7. На фиг.8, первое кодовое слово 810 является 10-символьным кодовым словом, сигнализирующим ACK или NACK для обнаруженной несущей С1 и DTX для несущей С2. Второе кодовое слово 820 является 10-символьным кодовым словом, сигнализирующим ACK или NACK для обнаруженной несущей С3 и DTX для несущей С4. В примерном варианте осуществления, кодовые слова 810, 820 могут быть выбраны из одной и той же кодовой книги, как определено в Rel-9 для DC-MIMO.

В то время как фиг.7 и 8 показаны для случая, в которых несущие С2, C4 представляют собой две из четырех несущих, не обнаруженные оборудованием UE, специалисты в данной области техники могут принять во внимание, что методики, раскрытые в данном описании, без труда могут быть применены к случаю, в котором другие две несущие, назначенные отдельным кодовым словам, являются двумя из четырех несущих, не обнаруженных оборудованием UE. Например, если обнаружены несущие С2, C4, то вместо этого может быть выбрано первое кодовое слово 810 на фиг.8, чтобы сигнализировать DTX для С1 и ACK или NACK для C2, в то время как второе кодовое слово 820 может быть выбрано, чтобы сигнализировать DTX для C3 и ACK или NACK для C4. Подобные методики могут быть применены к случаям, в которых обнаружены только C2, C3 или обнаружены только С1, C4. Такие примерные варианты осуществления рассматриваются, как находящиеся в пределах объема представленного раскрытия.

Фиг.9 иллюстрирует примерный частотный спектр, показывающий две несущие С1, C2, обнаруженные оборудованием UE на частотах f1, f2, соответственно, либо с двумя, либо с тремя, либо с четырьмя несущими нисходящей линии связи, запланированными для UE. На фиг.9, несущие С1, C2 соответствуют двум несущим, назначенным единственному кодовому слову, сигнализируемому UE на восходящей линии связи. Следует отметить, что фиг.9 показана только в иллюстративных целях и не предназначена для того, чтобы ограничивать объем представленного раскрытия каким-либо конкретным выделением несущих частот кодовым словам. Например, в альтернативных примерных вариантах осуществления (не показаны), две несущие, выделенные единственному кодовому слову, не должны быть непрерывными по частоте. Например, в примерном варианте осуществления, С1 и C3 (назначенные частотам f1 и f3, соответственно) могут быть закодированы, используя единственное кодовое слово, и/или C2 и C4 (назначенные частотам f2 и f4, соответственно) могут быть закодированы, используя единственное кодовое слово.

Фиг.10A иллюстрирует первый примерный вариант осуществления схемы для UE, чтобы сигнализировать статус подтверждения приема двух несущих нисходящей линии связи, показанных на фиг.9. На фиг.10A, первое кодовое слово 1010A является 10-символьным кодовым словом, сигнализирующим ACK или NACK для обнаруженных несущих С1, C2. В примерном варианте осуществления, кодовое слово 1010A может быть выбрано из одной и той же кодовой книги, как определено в Rel-9 для DC-MIMO. Во время второй половины 1020A интервала времени никакое кодовое слово не передается в ответ на несущие С3, C4, не обнаруженные оборудованием UE. В этом случае, на основании отсутствия передач UE во время второй половины 1020A Узел В может интерпретировать, что С3, C4 не были обнаружены UE.

Фиг.10B иллюстрирует второй примерный вариант осуществления схемы для UE, чтобы сигнализировать статус подтверждения приема двух несущих нисходящей линии связи, показанных на фиг.9. На фиг.10B, единственное 10-символьное кодовое слово 1010B расширено с использованием коэффициента расширения, равного 256, чтобы сигнализировать ACK или NACK для обнаруженных несущих С1, C2. В соответствии со вторым примерным вариантом осуществления, коэффициент расширения для HS-DPCCH может изменяться в каждом интервале времени от 128 к 256 и, наоборот, в зависимости от количества несущих, обнаруженных оборудованием UE.

В этом примерном варианте осуществления следует отметить, что Узел В может гарантировать, что вероятность обнаружения С1, C2 оборудованием UE достаточно высока относительно вероятности обнаружения С3, C4, так что UE, как ожидают, передаст кодовое слово, соответствующее только С1, C2, а не С3, C4. В этом случае, Узел В тогда может знать, что в течение интервала времени следует ожидать только единственное кодовое слово коэффициента расширения, равного 256, соответствующее С1, C2. В качестве альтернативы, если С3, C4 запланированы, но деактивированы, то Узел В также может знать, что в течение этого интервала времени следует ожидать только единственное кодовое слово для С1, C2.

Фиг.10C иллюстрирует третий примерный вариант осуществления схемы для UE, чтобы подтверждать прием двух несущих нисходящей линии связи, показанных на фиг.9. На фиг.10C, чтобы сигнализировать ACK или NACK для обнаруженных несущих С1, C2, единственное 10-символьное кодовое слово 1010C распределяется с использованием коэффициента расширения, равного 128, и повторяется во второй раз во время второй половины интервала 210 времени в 1020C.

Фиг.10D иллюстрирует альтернативный сценарий для третьего примерного варианта осуществления, в котором UE подтверждает прием двух несущих С1 и C3, назначенных единственному кодовому слову. Следует отметить, что этот сценарий может возникать, когда, например, планируются все четыре несущие С1, C2, С3, C4, но несущие С2 и C4 деактивируются и, таким образом, С1 и C3 присваиваются единственному кодовому слову.

Специалисты в данной области техники могут принять во внимание, что методики сигнализации, показанные на фиг.10C и 10D, могут применяться всякий раз, когда активны две несущие (например, С1, C3 или С1, C4 или C2, C3 или C2, C4). Кроме того, они также могут применяться, например, всякий раз, когда активны четыре несущие, а обнаруживаются только две.

Фиг.10E иллюстрирует четвертый примерный вариант осуществления схемы для UE, чтобы подтверждать прием двух несущих нисходящей линии связи, показанных на фиг.9. На фиг.10E, в первой половине интервала времени, единственное 10-символьное кодовое слово 1010E распределяется с использованием коэффициента расширения, равного 128, чтобы сигнализировать ACK или NACK для обнаруженных несущих С1, C2. Во второй половине интервала времени обеспечивается 10-символьное кодовое слово 1020E DTX-DTX для сигнализации, что несущие С3, C4 оборудованием UE не были обнаружены. В примерном варианте осуществления, кодовая книга, обеспеченная в Rel-9 для DC-MIMO, может быть модифицирована так, чтобы включать в себя такое дополнительное кодовое слово DTX-DTX.

В то время как фиг.10E показана для случая, в котором несущие С3, C4 представляют собой две из четырех несущих, не обнаруженные оборудованием UE, специалисты в данной области техники могут принять во внимание, что методики, раскрытые в данном описании, без труда могут быть применены к любому случаю, в котором двум необнаруженным несущим назначается одно и то же кодовое слово. Например, если вместо этого обнаружены несущие С3, C4, а С1, C2 не обнаружены, то в первой половине интервала времени на фиг.10E может быть обеспечено кодовое слово DTX-DTX, в то время как второе кодовое слово, сигнализирующее ACK или NACK для С3, C4, может быть обеспечено во второй половине интервала времени. Такие альтернативные примерные варианты осуществления рассматриваются как находящиеся в пределах объема представленного раскрытия.

Следует принять во внимание, что методики представленного раскрытия без труда могут быть применены для сигнализации ACK или NACK и для несущих не-MIMO, и для несущих MIMO, передаваемых на нисходящей линии связи. В частности следует принять во внимание, что методики, описанные в данном описании, без труда могут быть модифицированы так, чтобы их приспособить к любым из следующих схем, использующих несущие MIMO, или ко всем таким схемам:

1) конфигурируются 4 несущие DL MIMO и планируется любое подмножество несущих;

2) конфигурируются 3 несущие DL MIMO и 1 несущая не-MIMO и планируется любое подмножество несущих;

3) конфигурируются 2 несущие DL MIMO и 2 несущие не-MIMO и планируется любое подмножество несущих;

4) конфигурируются 1 несущая MIMO и 3 несущие не-MIMO и планируется любое подмножество несущих; и

5) конфигурируются 3 несущие DL с MIMO на 0, 1, 2 или 3 несущих (и не-MIMO на остальных несущих) и планируется любое подмножество несущих.

Такие альтернативные примерные варианты осуществления, приспособленные к одной или больше несущим MIMO, рассматриваются, как находящиеся в пределах объема представленного раскрытия.

Фиг.11A иллюстрирует примерный вариант осуществления упрощенного устройства 1100A в соответствии с представленным раскрытием. Следует принять во внимание, что устройство 1100A показано только в иллюстративных целях и не предназначено для того, чтобы ограничивать объем представленного раскрытия. Как могут принять во внимание специалисты в данной области техники, альтернативные примерные варианты осуществления могут опускать или объединять любые из модулей, показанных на фиг.11A, и такие альтернативные примерные варианты осуществления рассматриваются как находящиеся в пределах объема представленного раскрытия.

На фиг.11A, передающая/приемная антенна 1110A связана с RX (приемным) модулем 1120A и TX (передающим) модулем 1150A. RX модуль 1120A принимает сигналы, соответствующие одной или больше несущим системы HSDPA или MIMO. Принимаемый сигнал подается в модуль 1130A обнаружения несущих, который выполнен с возможностью обнаружения несущих, присутствующих в принимаемом сигнале. Выходной сигнал модуля 1130A обнаружения несущих подается в модуль 1135A приема несущих, который декодирует данные от одной или больше обнаруженных несущих. Выходные сигналы модуля 1130А обнаружения несущих и модуля 1135A приема несущих подаются в кодер 1140A ACK/NACK/DTX (или статуса подтверждения приема). Кодер 1140A ACK/NACK/DTX выполнен с возможностью кодирования статуса подтверждения приема, например ACK, NACK или DTX, для несущих в ответ на выходной сигнал модуля 1130A обнаружения несущих и модуля 1135A приема несущих. В примерном варианте осуществления, кодер 1140A ACK/NACK/DTX может применять методики представленного раскрытия, чтобы генерировать кодовые слова, подлежащие отправке с использованием HS-DPCCH. Выходной сигнал кодера 1140A подается в TX модуль 1150A, который может быть выполнен с возможностью выбора формата интервала времени (включая коэффициент расширения) для того, чтобы передавать кодированный сигнал. Следует принять во внимание, что устройством 1100A может быть, например, UE в системе HSDPA.

Фиг.11B иллюстрирует альтернативный примерный вариант осуществления устройства 1100B в соответствии с представленным раскрытием. На фиг.11B, приемная антенна 1110B устанавливает связь с приемным модулем 1120B. Приемный модуль 1120B может быть выполнен с возможностью приема кодового слова, сигнализирующего статус подтверждения приема для первой и второй несущих во время первой половины интервала времени HS-DPCCH. Приемный модуль 1120B дополнительно связан с модулем 1130B декодирования. Модуль 1130B декодирования может быть выполнен с возможностью декодирования принимаемого кодового слова, сигнализирующего статус подтверждения приема для несущих. Модуль 1130B декодирования может принимать входной сигнал от планировщика 1140B, чтобы модуль декодирования 1130B знал, какие несущие запланированы и активированы или деактивированы, так что для декодирования из кодовой книги могут быть выбраны соответствующие кодовые слова. Следует принять во внимание, что устройством 1100B может быть, например, Узел В.

Фиг.12A иллюстрирует примерный вариант осуществления способа 1200A в соответствии с представленным раскрытием. Следует принять во внимание, что способ 1200A показан только в иллюстративных целях и что в альтернативных примерных вариантах осуществления некоторые из показанных блоков могут быть опущены, а другие блоки обеспечены в соответствии с принципами представленного раскрытия.

На этапе 1210A статус подтверждения приема для первой и второй несущих передается во время первой половины интервала времени HS-DPCCH.

На этапе 1220A интервал времени HS-DPCCH распределяется с использованием коэффициента расширения, равного 128.

На этапе 1230A статус подтверждения приема для третьей и четвертой несущих передается во время второй половины интервала времени HS-DPCCH.

Фиг.12B иллюстрирует альтернативный примерный вариант осуществления способа 1200B в соответствии с представленным раскрытием.

На этапе 1210B статус подтверждения приема для первой и второй несущих передается во время первой половины интервала времени HS-DPCCH.

На этапе 1220B интервал времени HS-DPCCH распределяется с использованием коэффициента расширен