Управление маршрутом прохождения потока текучей среды на основе ее характеристик для регулирования сопротивления потоку в подземной скважине

Иллюстрации

Показать все

Группа изобретений относится к эксплуатации подземной скважины и, в частности, к вариантам системы регулирования потока текучих смесей из геологического пласта в скважину или из скважины в геологический пласт. Такое регулирование обеспечивает, например, минимизацию добычи воды и/или газа, максимизацию добычи нефти и/или газа с балансированием добычи между зонами. Обеспечивает повышение надежности работы системы за счет ее саморегулирования. Сущность изобретения по одному из вариантов: система переменной сопротивляемости потоку содержит первый проточный канал и первую сеть из одного или нескольких отводных каналов, пересекающих первый проточный канал. При этом обеспечена возможность отведения части текучей смеси из первого проточного канала к первой сети отводных каналов, варьирования ее в зависимости, по меньшей мере, от вязкости текучей смеси или от скорости текучей смеси в первом проточном канале. Первая сеть отводных каналов способна направлять текучую смесь к первому управляющему каналу переключателя путей потока, который способен выбирать один из множества путей потока, по которому после переключателя проходит преобладающая часть текучей среды, по меньшей мере, частично в зависимости от части текучей смеси, отводимой к первому управляющему каналу. 3 н. и 13 з.п. ф-лы, 10 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

Настоящее изобретение относится, в общем, к применяемому оборудованию и операциям, выполняемым при эксплуатации подземной скважины, и, в частности, к системе переменной сопротивляемости потоку.

В скважине по добыче углеводородов многократным преимуществом является наличие возможности регулировать поток текучих смесей из геологического пласта в скважину. Такое регулирование может служить достижению различных целей, включая предотвращение образования водяного или газового конуса в пласте, минимизацию добычи песка, минимизацию добычи воды и/или газа, максимизацию добычи нефти и/или газа, балансирование добычи между зонами и т.п.

Обычно в нагнетательной скважине желательно равномерно нагнетать воду, пар, газ и т.п. во множество зон так, чтобы углеводороды равномерно вытеснялись по геологическому пласту, и чтобы нагнетаемая текучая смесь не прорывалась преждевременно к эксплуатационной скважине. Таким образом, способность регулировать поток текучей смеси из скважины в геологический пласт также может быть полезной характеристикой для нагнетательных скважин.

Следовательно, нетрудно понять, что в вышеуказанных обстоятельствах существует потребность усовершенствований в области регулируемого ограничения потока текучей смеси в скважине, и такие усовершенствования могли бы быть полезными в большом разнообразии других обстоятельств.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Ниже представлено описание системы переменной сопротивляемости потоку, которая вносит усовершенствования в области управления потоком текучей среды в скважине. В частности, описан один вариант, в котором текучую смесь пропускают по пути с увеличенным сопротивлением потоку в том случае, если значение некоторой нежелательной характеристики этой текучей среды достигло порогового значения или превысило пороговое значение. В другом описанном ниже варианте сопротивление потоку при прохождении через систему возрастает по мере уменьшения отношения содержания желательной текучей среды к нежелательной в составе текучей смеси.

В одном аспекте настоящего изобретения представлена система переменной сопротивляемости потоку текучей смеси в подземной скважине. Эта система может включать проточный канал и набор из одного или нескольких отводных каналов, пересекающих проточный канал. Таким способом часть текучей смеси, отведенной из проточного канала в сеть отводных каналов, варьируется в зависимости, по меньшей мере, от одной из следующих характеристик: а) вязкости текучей смеси и б) скорости текучей смеси в проточном канале.

В другом аспекте настоящего изобретения описана система переменной сопротивляемости потоку текучей смеси в подземной скважине. Эта система может содержать переключатель пути потока, выбирающий один из множества путей, по которому пойдет преобладающая часть текучей среды после выхода из переключателя, в зависимости от отношения содержания желательной текучей среды к нежелательной в составе текучей смеси.

Еще в одном аспекте система переменной сопротивляемости потоку текучей смеси может включать проточную камеру. Преобладающая часть текучей смеси поступает в камеру в направлении, изменяющемся в зависимости от отношения содержания желательной текучей среды к нежелательной в составе текучей смеси.

В следующем аспекте настоящее изобретение предоставляет систему переменной сопротивляемости потоку текучей смеси в подземной скважине. Эта система включает проточную камеру, и преобладающая часть текучей смеси может поступать в камеру в направлении, изменяющемся в зависимости от скорости текучей смеси.

И еще в одном аспекте система переменной сопротивляемости потоку, предназначенная для применения в подземной скважине, может включать проточную камеру, имеющую выход и, по меньшей мере, первый и второй входы. Текучая смесь, поступающая в проточную камеру через второй вход, может противодействовать потоку текучей смеси, поступающей в проточную камеру через первый вход, посредством чего сопротивление потоку текучей смеси через проточную камеру может варьироваться в зависимости от соотношения потоков через первый и второй входы.

Эти и другие особенности и преимущества настоящего изобретения будут понятны квалифицированным специалистам после внимательного рассмотрения поданного ниже подробного описания представленных вариантов исполнения изобретения с прилагающимися чертежами, на которых аналогичные элементы на разных фигурах обозначены одними и теми же номерами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - схематичный вид с частичным разрезом скважинной системы, в которой могут быть осуществлены принципы настоящего изобретения.

Фиг. 2 - увеличенное изображение схематичного вида в разрезе скважинного фильтра и системы переменной сопротивляемости потоку, которые могут применяться в скважинной системе по Фиг. 1.

Фиг. 3 - схематичный «развернутый» вид одной конфигурации системы переменной сопротивляемости потоку, выполненный по линии 3-3 Фиг. 2.

Фиг. 4 - схематичный вид сверху другой конфигурации системы переменной сопротивляемости потоку.

Фиг. 5 - представленный в увеличенном масштабе схематичный вид сверху части системы переменной сопротивляемости потоку по Фиг. 4.

Фиг. 6 - схематичный вид сверху еще одной конфигурации системы переменной сопротивляемости потоку.

Фиг. 7А и 7B - схематичный вид сверху следующей конфигурации системы переменной сопротивляемости потоку.

Фиг. 8А и 8B - схематичный вид сверху еще одной конфигурации системы переменной сопротивляемости потоку.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

На Фиг. 1 представлен вариант скважинной системы 10, в которой могут быть осуществлены принципы настоящего изобретения. Как показано на Фиг. 1, скважина 12 имеет в целом вертикальный необсаженный участок 14, проходящий вниз от обсадной оболочки 16, а также в целом горизонтальный необсаженный участок 18, проходящий через геологический пласт 20.

В скважине 12 установлена трубная колонна 22 (например, эксплуатационная трубная колонна). В трубной колонне 22 установлено множество связанных между собой скважинных фильтров 24, систем 25 переменной сопротивляемости потоку и уплотнителей 26.

Уплотнители 26 изолируют затрубное пространство 28, образованное в радиальном направлении между трубной колонной 22 и участком 18 скважины. Таким способом текучие среды 30 можно добывать из множества горизонтов или зон пласта 20 через изолированные участки затрубного пространства 28, образованные между соседними парами уплотнителей 26.

Между каждой парой соседних уплотнителей 26 в трубной колонне 22 расположены взаимосвязанные скважинный фильтр 24 и система 25 переменной сопротивляемости потоку. Скважинный фильтр 24 фильтрует текучие среды 30, входящие в трубную колонну 22 из затрубного пространства 28. Система 25 переменной сопротивляемости потоку регулирует прохождение текучих сред 30 в трубную колонну 22, по-разному ограничивая прохождение в зависимости от определенных характеристик этих текучих сред.

Здесь следует заметить, что скважинная система 10 описана и показана на чертежах просто в качестве одного примера из широкого разнообразия скважинных систем добычи, в которых могут быть осуществлены принципы настоящего изобретения. Следует отчетливо понимать, что принципы настоящего изобретения совсем не ограничиваются какими-либо деталями скважинной системы 10 или ее компонентами, представленными на чертежах или в описании.

Например, в соответствии с принципами настоящего изобретения совсем не обязательно, чтобы скважина 12 содержала в целом вертикальный участок 14 или в целом горизонтальный участок 18. Совсем не обязательно, чтобы текучие среды 30 только добывались из пласта 20, поскольку в других примерах текучие среды могут нагнетаться в пласт, а текучие среды можно как нагнетать в пласт, так и добывать из пласта и т.д.

Совсем не обязательно, чтобы между каждой соседней парой уплотнителей 26 располагались и скважинный фильтр 24, и система 25 переменной сопротивляемости потоку. Совсем не обязательно, чтобы одна система 25 переменной сопротивляемости потоку применялась во взаимодействии с одним скважинным фильтром 24. Эти компоненты могут применяться в любом количестве, в любом порядке расположения и/или комбинации.

Совсем не обязательно, чтобы любая система 25 переменной сопротивляемости потоку применялась со скважинным фильтром 24. Например, в нагнетательных операциях нагнетаемая текучая среда может проходить через систему 25 переменной сопротивляемости потоку, не проходя через скважинный фильтр 24.

Совсем не обязательно, чтобы скважинные фильтры 24, системы переменной сопротивляемости потоку 25, уплотнители 26 и любые другие компоненты трубной колонны 22 располагались в необсаженных участках 14, 18 скважины 12. В соответствии с принципами настоящего изобретения любой участок скважины 12 может быть обсажен или не обсажен, и любая часть трубной колонны 22 может располагаться в необсаженном или обсаженном участке скважины.

Таким образом, следует отчетливо понимать, что настоящее описание иллюстрирует, каким образом можно выполнить и применить определенные варианты исполнения настоящего изобретения, но принципы изобретения не ограничиваются какими-либо деталями таких вариантов. Напротив, эти принципы могут быть применимы к множеству других вариантов, выполненных на основе знаний, полученных из данного описания.

Квалифицированным специалистам в данной области будет понятно, что было бы очень выгодно иметь возможность регулировать поток текучих сред 30 в трубную колонну 22 из каждой зоны пласта 20, например, для предотвращения образования водяного конуса 32 или газового конуса 34 в пласте. Другие цели применения регулировки потока в скважине включают, не ограничивая, балансирование добычи из множества зон (или нагнетания в них), минимизацию добычи или нагнетания нежелательных текучих сред, максимизацию добычи или нагнетания желательных текучих сред и т.д.

Варианты исполнения систем 25 переменной сопротивляемости потоку, подробно описанные ниже, могут обеспечить эти преимущества путем повышения сопротивления потоку в случае, когда скорость текучей среды увеличивается до значения, превышающего выбранный уровень (например, чтобы таким образом балансировать поток между зонами, предотвращать образование водяного или газового конуса и т.п.), путем повышения сопротивления потоку в случае, когда вязкость или плотность текучей среды уменьшается до значения ниже выбранного уровня (например, чтобы таким образом ограничить поток нежелательной текучей среды, скажем воды или газа, в нефтедобывающей скважине), и/или путем повышения сопротивления потоку в случае, когда вязкость или плотность текучей среды увеличивается до значения, превышающего выбранный уровень (например, чтобы таким образом минимизировать нагнетание воды в процессе нагнетания пара в скважину).

Какая текучая среда является желательной, а какая нежелательной зависит от цели выполняемых операций добычи или нагнетания. Например, если требуется добывать нефть из скважины, но не добывать воду или газ, то нефть является желательной текучей средой, а вода и газ являются нежелательными текучими средами. Если требуется добывать газ из скважины, но не добывать воду или нефть, то желательной текучей средой является газ, а нежелательными текучими средами - вода и нефть. Если требуется нагнетать в пласт пар, но не нагнетать воду, то пар является желательной текучей средой, а вода нежелательной текучей средой.

Следует заметить, что при имеющихся на большой глубине значениях температур и давлений углеводородный газ может в действительности частично или полностью пребывать в жидкой фазе. Поэтому следует понимать, что при использовании термина «газ» в данном описании он включает сверхкритическую, жидкую или газовую фазу этой текучей среды.

На Фиг. 2 представлен с увеличением вид в разрезе одного варианта системы 25 переменной сопротивляемости потоку и части одного скважинного фильтра 24. В этом варианте текучая смесь 36 (которая может включать одну текучую среду или несколько, например нефть и воду, жидкую воду и пар, нефть и газ, газ и воду, нефть, воду и газ и т.п.) проходит в скважинный фильтр 24, там фильтруется и затем проходит во вход 38 системы 25 переменной сопротивляемости потоку.

Текучая смесь может содержать одну или несколько желательных или нежелательных текучих сред. В составе текучей смеси могут комбинироваться вода и пар. В другом примере текучей смеси могут комбинироваться нефть, вода и/или газ.

Поток текучей смеси 36 через систему 25 переменной сопротивляемости потоку испытывает сопротивление, зависящее от одной или нескольких характеристик (например, плотности, вязкости, скорости и т.п.) текучей смеси. Затем текучая смесь 36 выходит из системы 25 переменной сопротивляемости потоку и проходит внутрь трубной колонны 22 через выход 40.

В других вариантах скважинный фильтр 24 может не применяться в сочетании с системой 25 переменной сопротивляемости потоку (например, в операциях нагнетания), а текучая смесь 36 может проходить в противоположном направлении через различные элементы скважинной системы 10 (например, в операциях нагнетания), при этом одна система переменной сопротивляемости потоку может применяться в сочетании с множеством скважинных фильтров, множество систем переменной сопротивляемости потоку могут применяться в сочетании с одним или несколькими скважинными фильтрами, а текучая смесь может поступать из участков скважины (или выходить в эти участки), не относящихся к затрубному пространству или трубной колонне, текучая смесь может проходить через систему переменной сопротивляемости потоку прежде чем пройти через скважинный фильтр, любые другие компоненты могут взаимосвязано располагаться выше или ниже по течению относительно скважинного фильтра и/или системы переменной сопротивляемости потоку и т.п. Таким образом, следует понимать, что принципы настоящего изобретения совершенно не ограничиваются деталями варианта, показанного на Фиг. 2 и описанного здесь.

Хотя показанный на Фиг. 2 скважинный фильтр 24 относится к известному в данной области типу скважинных фильтров с проволочной обмоткой, в других вариантах можно применять любые другие типы или комбинации скважинных фильтров (например, фильтры из спеченного порошка, объемные, сетчатые, напыляемые и т.п.). Кроме того, по желанию можно применять дополнительные компоненты (например, кожухи, обводные трубы, трубопроводы, контрольно-измерительную аппаратуру, датчики, регуляторы притока и т.п.).

На Фиг. 2 представлена система переменной сопротивляемости потоку 25 в упрощенной форме, но в предпочтительном варианте исполнения эта система может включать различные каналы и устройства для выполнения различных функций, как подробно описано ниже. Кроме того, в предпочтительном варианте система 25, по меньшей мере, частично располагается, выступая по окружности вокруг трубной колонны 22, или же эта система может быть сформирована в стенке трубной конструкции, связанной с трубной колонной в качестве ее составной части.

В других примерах система 25 может не быть расположенной вокруг трубной колонны или не быть сформированной в стенке трубной конструкции. Например, система 25 может быть сформирована в плоской конструкции и т.д. Система 25 может быть расположена в отдельном корпусе, прикрепленном к трубной колонне 22, или же она может быть сориентирована таким образом, чтобы ось выхода 40 была параллельной оси трубной колонны. Система 25 может находиться в контрольно-измерительной цепи или присоединяться к устройству, форма которого отличается от трубной. В соответствии с принципами настоящего изобретения можно применять любую ориентацию или конфигурацию системы 25.

На Фиг. 3 представлен более подробный вид в разрезе одного варианта системы 25. На Фиг. 3 система 25 показана так, как будто она «развернута» из своей кольцеобразной конфигурации в плоскую конфигурацию.

Как было описано выше, текучая смесь 36 входит в систему 25 через вход 38, а выходит из системы через выход 40. Сопротивление потоку текучей смеси 36 при прохождении ее через систему 25 изменяется в зависимости от одной или нескольких характеристик этой текучей смеси. Представленная на Фиг. 3 система 25 во многих отношениях подобна системе, представленной на Фиг. 23 предшествующей заявки с порядковым номером 12/700685, включенной сюда путем поданной выше ссылки.

В варианте по Фиг. 3 текучая смесь 36 изначально поступает во множество проточных каналов 42, 44, 46, 48. Эти проточные каналы 42, 44, 46, 48 направляют текучую смесь 36 к двум переключателям пути потока 50, 52. Переключатель 50 выбирает, на какой из двух путей 54, 56 поступит преобладающая часть потока текучей смеси из проточных каналов 44, 46, 48, а другой переключатель 52 выбирает, на какой из двух путей 58, 60 поступит преобладающая часть потока текучей смеси из проточных каналов 42, 44, 46, 48.

Проточный канал 44 имеет такую конфигурацию, чтобы в большей степени ограничивать поток текучих сред, обладающих повышенной вязкостью. С увеличением вязкости текучих сред в потоке проточный канал 44 будет усиливать ограничение этого потока.

Применяемый здесь термин «вязкость» используется для обозначения как ньютоновских, так и не ньютоновских реологических свойств, включая кинематическую вязкость, предел текучести, вязкопластичность, поверхностное натяжение, способность к смачиванию и т.п. Например, желательная текучая среда может иметь находящиеся в желаемом диапазоне значения кинематической вязкости, способности к смачиванию, предела текучести, вязкопластичности, поверхностного натяжения, смачиваемости и т.п.

Проточный канал 44 может иметь относительно малое проходное сечение, этот проточный канал может вынуждать поток двигаться внутри канала по искривленному пути; увеличить сопротивление потоку текучей среды с повышенной вязкостью можно, применив шероховатую поверхность или установив препятствующие конструкции на пути потока и т.д. Однако поток текучей среды с относительно низкой вязкостью может проходить через проточный канал 44, испытывая относительно малое сопротивление.

Управляющий канал 64 переключателя потока 50 принимает текучую среду, проходящую через проточный канал 44. Управляющее отверстие 66 на конце управляющего канала 64 имеет уменьшенное проходное сечение, тем самым увеличивая скорость текучей среды, выходящей из управляющего канала.

Проточный канал 48 имеет такую конфигурацию, чтобы его сопротивление потоку было относительно нечувствительным к вязкости проходящих через него текучих сред, но могло бы возрастать в случае потока текучих сред с повышенной скоростью и/или плотностью. Поток текучих сред с возрастающей вязкостью при прохождении через проточный канал 48 может испытывать возрастающее сопротивление, но возрастающее не до такой большой степени, как сопротивление, испытываемое такими текучими средами при прохождении через проточный канал 44.

В варианте, представленном на Фиг. 3, текучая среда, проходящая через проточный канал 48, должна пройти через «вихревую» камеру 62 прежде чем войдет в управляющий канал 68 переключателя путей потока 50. Поскольку камера 62 в этом варианте имеет цилиндрическую форму с центральным выходом, и текучая смесь 36 движется в камере по спирали, увеличивая скорость по мере приближения к выходу под воздействием перепада давления между входом и выходом, такую камеру называют «вихревой» камерой. В других вариантах можно применять одно или несколько отверстий, трубки Вентури, сопла и т.п.

Управляющий канал 68 заканчивается управляющим отверстием 70. Это управляющее отверстие 70 имеет уменьшенное проходное сечение для того, чтобы увеличивать скорость текучей среды, выходящей из управляющего канала 68.

Нетрудно понять, что с увеличением вязкости текучей смеси 36 большая часть текучей смеси потечет через проточный канал 48, управляющий канал 68 и управляющее отверстие 70 (вследствие того, что проточный канал 44 оказывает потоку текучей среды повышенной вязкости большее сопротивление, чем проточный канал 48 и вихревая камера 62). И наоборот, со снижением вязкости текучей смеси 36 большая часть ее потечет через проточный канал 44, управляющий канал 64 и управляющее отверстие 66.

Текучая среда, проходящая через проточный канал 46, также проходит через вихревую камеру 72, которая может быть подобной вихревой камере 62 (хотя вихревая камера 72 в предпочтительном варианте оказывает меньшее сопротивление проходящему через нее потоку, чем вихревая камера 62), и выходит в центральный проточный канал 74. Вихревая камера 72 применяется для «согласования полных сопротивлений» с целью достижения желаемого баланса потоков через проточные каналы 44, 46, 48.

Следует заметить, что размеры и другие характеристики различных компонентов системы 25 необходимо выбирать соответствующим образом для достижения требуемых результатов. В варианте по Фиг. 3 один требуемый результат работы переключателя путей 50 потока состоит в том, что поток основной части текучей смеси 36, проходящей через проточные каналы 44, 46, 48, направляется на путь 54 потока в том случае, когда текучая смесь имеет достаточно высокое отношение содержания желательной текучей среды к нежелательной в своем составе.

В этом примере желательной текучей средой является нефть, обладающая большей вязкостью, чем вода или газ, и, таким образом, если текучая смесь 36 содержит достаточно высокий процент нефти, то основная часть текучей смеси 36, входящей в переключатель путей потока 50, будет направлена на путь 54 потока, а не на путь 56 потока. Этот результат достигнут благодаря тому, что расход или скорость текучей среды, выходящей из управляющего отверстия 70, будет больше, чем у текучей среды, выходящей из другого управляющего отверстия 66, вследствие чего текучая среда, выходящая из каналов 64, 68, 74, вынуждена проходить в большей степени на путь потока 54.

Если вязкость текучей смеси 36 недостаточно высока (а следовательно, отношение содержания желательной текучей среды к нежелательной находится ниже выбранного уровня), то основная часть текучей смеси (или, по меньшей мере, большая ее часть), поступающей в переключатель путей 50 потока, будет направлена на путь 56 потока, а не на путь 54 потока. Это произойдет благодаря тому, что расход, скорость и/или кинетическая энергия текучей среды, выходящей из управляющего отверстия 66, будут больше, чем у текучей среды, выходящей из другого управляющего отверстия 70, вследствие чего текучая среда, выходящая из каналов 64, 68, 74, вынуждена проходить в большей степени на путь потока 56.

Нетрудно понять, что с помощью соответствующей конфигурации проточных каналов 44, 46, 48, управляющих каналов 64, 68, управляющих отверстий 66, 70, вихревых камер 62, 72 и т.п. отношение содержания желательной текучей среды к нежелательной текучей среде в составе текучей смеси 36, при котором переключатель 50 направляет основную часть проходящего через него потока текучей среды либо на путь потока 54, либо на путь потока 56, можно устанавливать на разные уровни.

Пути 54, 56 потока направляют текучую среду в соответствующие управляющие каналы 76, 78 другого переключателя путей 52 потока. Управляющие каналы 76, 78 заканчиваются соответствующими управляющими отверстиями 80, 82. Центральный канал 75 принимает текучую среду из проточного канала 42.

Работа переключателя путей потока 52 подобна работе переключателя путей потока 50 в том, что текучая среда, поступающая в переключатель 52 через каналы 75, 76, 78, в основном направляется на один из путей потока 58, 60, и выбор пути потока зависит от соотношения скорости текучей среды, выходящей из управляющих отверстий 80, 82. Если текучая среда проходит через управляющее отверстие 80 с расходом, скоростью и/или кинетической энергией большими, чем у текучей среды, проходящей через управляющее отверстие 82, тогда преобладающая часть (или, по меньшей мере, большая часть) текучей смеси 36 будет направлена на путь потока 60. Если текучая среда проходит через управляющее отверстие 82 с расходом, скоростью и/или кинетической энергией большими, чем у текучей среды, проходящей через управляющее отверстие 80, тогда преобладающая часть (или, по меньшей мере, большая часть) текучей смеси 36 будет направлена на путь потока 58.

Хотя в варианте системы 25 по Фиг. 3 представлены два переключателя путей 50, 52 потока, однако нетрудно понять, что в соответствии с принципами настоящего изобретения можно применять любое количество переключателей путей потока (включая один). Представленные на Фиг. 3 переключатели 50, 52 относятся к типу устройств, которые известны квалифицированным специалистам в данной области как струйные усилители соотношения текучих сред, однако, в соответствии с принципами настоящего изобретения можно применять переключатели путей потока, относящиеся к другим типам устройств (например, усилители соотношения текучих сред на основе давления, бистабильные переключатели текучих сред, пропорциональные усилители соотношения текучих сред и т.п.).

Текучая среда, проходящая по пути 58 потока, поступает в проточную камеру 84 через вход 86, который направляет входящую в камеру текучую среду в целом тангенциально (например, камера 84 имеет форму, подобную цилиндру, а вход 86 направлен по касательной к окружности цилиндра). В результате текучая среда будет двигаться в камере 84 по спирали, пока в итоге не выйдет через выход 40, как показано схематично стрелкой 90 на Фиг. 3.

Текучая среда, проходящая по пути потока 60, поступает в проточную камеру 84 через вход 88, который направляет эту текучую среду по более прямому пути к выходу 40 (например, в радиальном направлении, как показано схематично стрелкой 92 на Фиг. 3). Нетрудно понять, что потребление энергии при одинаковой скорости потока будет значительно меньше в том случае, если текучая среда проходит к выходу 40 более прямолинейно, чем при менее прямолинейном движении текучей среды к выходу.

Таким образом, поток будет испытывать меньшее сопротивление в том случае, когда текучая смесь 36 проходит к выходу 40 более прямым путем, и наоборот, поток будет испытывать большее сопротивление в том случае, когда текучая смесь проходит к выходу менее прямым путем. Соответственно, на участке выше по течению от выхода 40 поток испытывает меньшее сопротивление в том случае, когда основная часть текучей смеси 36 проходит в камеру 84 через вход 88 и по пути 60 потока.

Преобладающая часть текучей смеси 36 проходит по пути 60 потока в том случае, когда расход, скорость и/или кинетическая энергия потока текучей среды, выходящей из управляющего отверстия 80, больше, чем у текучей среды, выходящей из управляющего отверстия 82. Большее количество текучей среды выходит из управляющего отверстия 80 в том случае, когда основная часть текучей среды, проходящей через каналы 64, 68, 74, проходит по пути потока 54.

Преобладающая часть текучей среды, проходящей через каналы 64, 68, 74, проходит по пути 54 потока в том случае, когда расход, скорость и/или кинетическая энергия текучей среды, выходящей из управляющего отверстия 70, больше, чем у текучей среды, выходящей из управляющего отверстия 66. Большее количество текучей среды выходит из управляющего отверстия 70 в том случае, когда вязкость текучей смеси 36 превышает выбранный уровень.

Таким образом, поток через систему 25 будет испытывать меньшее сопротивление в том случае, если текучая смесь 36 имеет повышенную вязкость (и более высокое отношение содержания желательной текучей среды к нежелательной в своем составе). Поток через систему 25 будет испытывать большее сопротивление в том случае, когда текучая смесь 36 имеет пониженную вязкость.

Большее сопротивление потоку будет оказано в том случае, когда текучая смесь 36 проходит к выходу 40 менее прямолинейно (например, так, как показано стрелкой 90). Следовательно, поток будет испытывать большее сопротивление в том случае, когда основная часть текучей смеси 36 поступает в камеру 84 из входа 86 и по пути 58 потока.

Преобладающая часть текучей смеси 36 проходит по пути 58 потока в том случае, когда расход, скорость и/или кинетическая энергия потока текучей среды, выходящей из управляющего отверстия 82, больше, чем у текучей среды, выходящей из управляющего отверстия 80. Большее количество текучей среды выходит из управляющего отверстия 82 в том случае, когда основная часть текучей среды, проходящей через каналы 64, 68, 74, проходит по пути 56 потока, а не по пути 54 потока.

Преобладающая часть текучей среды, проходящей через каналы 64, 68, 74, проходит по пути потока 56 в том случае, когда расход, скорость и/или кинетическая энергия текучей среды, выходящей из управляющего отверстия 66, больше, чем у текучей среды, выходящей из управляющего отверстия 70. Большее количество текучей среды выходит из управляющего отверстия 66 в том случае, когда вязкость текучей смеси 36 будет ниже выбранного уровня.

Как описано выше, система 25 имеет конфигурацию, позволяющую оказывать меньшее сопротивление потоку в том случае, когда текучая смесь 36 имеет повышенную вязкость, и оказывать большее сопротивление потоку в том случае, когда текучая смесь имеет пониженную вязкость. Это является преимуществом тогда, когда требуется пропускать больше текучей среды повышенной вязкости и меньше текучей среды пониженной вязкости (например, для добычи большего количества нефти и меньшего количества воды или газа).

Если требуется пропускать большее количество текучей среды пониженной вязкости, а меньшее количество текучей среды повышенной вязкости (например, для добычи большего количества газа и меньшего количества воды или для нагнетания большего количества пара и меньшего количества воды), то конфигурацию системы 25 можно легко перестроить для этой цели. Например, входы 86, 88 можно легко поменять местами, в результате чего текучая среда, проходящая по пути потока 58, будет направляться на вход 88, а текучая среда, проходящая по пути потока 60, будет направляться на вход 86.

На Фиг. 4 представлена другая конфигурация системы переменной сопротивляемости потоку 25, которая в некоторых отношениях подобна конфигурации Фиг. 3, но и несколько отличается, в частности, тем, что в системе по Фиг. 4 вихревые камеры 62, 72 для проточных каналов 46, 48 не используются, а также не используется отдельный проточный канал 42, соединяющий вход 38 с переключателем путей потока 52. Вместо этого проточный канал 48 соединяет вход 38 с центральным каналом 75 переключателя 52.

Ряд отстоящих друг от друга отводных каналов 94а-с пересекают проточный канал 48 и обеспечивают соединение по текучей среде между этим проточным каналом и управляющим каналом 68. В точках пересечений отводных каналов 94а-с с проточным каналом 48 образованы соответствующие камеры 96а-с.

Все большая часть текучей смеси 36, проходящей через проточный канал 48, будет проходить в отводные каналы 94а-с по мере повышения вязкости текучей смеси или по мере снижения скорости текучей смеси. Следовательно, текучая среда будет проходить через управляющее отверстие 70 переключателя 50 с большим расходом, скоростью и/или кинетической энергией (по сравнению с расходом, скоростью и/или кинетической энергией текучей среды, проходящей через управляющее отверстие 66) по мере повышения вязкости текучей смеси или снижения скорости текучей смеси в проточном канале 48.

Предпочтительно, чтобы система 25 по Фиг. 4 имела такую конфигурацию, чтобы зависимость между соотношением потоков через управляющие отверстия 66, 70 и частью желательной текучей среды в составе текучей смеси 36 была представлена линейной или монотонной функцией. Например, если желательной текучей средой является нефть, то отношение потока через управляющее отверстие 70 к потоку через управляющее отверстие 66 может изменяться в зависимости от части нефти в текучей смеси 36.

Наличие камер 96а-с не является строго обязательным, но позволяет повысить влияние вязкости на отвод текучей среды в отводные каналы 94а-с, можно считать «водоворотными» камерами, поскольку они образуют объем, в котором текучая смесь 36 может воздействовать сама на себя, тем самым увеличивая отвод текучей среды по мере возрастания ее вязкости. Для формирования камер 96а-с можно использовать различные формы, объемы, способы обработки поверхности, топографию поверхности и т.п., обеспечивающие повышения воздействия вязкости на отвод текучей среды в отводные каналы 94а-с.

Хотя на Фиг. 4 показаны три отводных канала 94а-с, однако в соответствии с принципами настоящего изобретения можно использовать любое количество (включая один) отводных каналов. Отводные каналы 94а-с расположены с интервалами друг от друга в одну линию с одной стороны проточного канала 48, как показано на Фиг. 4, но в других вариантах в соответствии с принципами настоящего изобретения они могут располагаться радиально, по спирали или иным образом по отношению друг к другу с определенными интервалами между ними, а кроме того, они могут располагаться с любой стороны (сторон) проточного канала 48.

Как видно более отчетливо на Фиг. 5, у проточного канала 48 предпочтительно увеличивается ширина (а следовательно, и проходное сечение) в каждой точке пересечения отводных каналов 94а-с с проточным каналом. Следовательно, ширина w2 проточного канала 48 превышает ширину w1 проточного канала, ширина w3 превышает ширину w2, а ширина w4 превышает ширину w3. Каждое увеличение ширины предпочтительно находится на той стороне проточного канала 48, которую пересекает соответствующий отводной канал из каналов 94а-с.

Ширина проточного канала 48 увеличивается на каждом пересечении с отводными каналами 94а-с для того, чтобы компенсировать расширение потока текучей смеси 36 по проточному каналу. Предпочтительно, чтобы поддерживался поток струйного типа текучей смеси 36 при прохождении каждой из точек пересечения. Таким способом, текучие среды с более высокой скоростью и низкой вязкостью будут менее подвержены отводу в отводные каналы 94а-с.

Интервалы между пересечениями отводных каналов 94а-с с проточным каналом 48 могут быть одинаковыми (как показано на Фиг. 4 и 5) или неодинаковыми. Расстояния между отводными каналами 94а-с желательно выбирать так, чтобы поддерживать поток струйного типа текучей смеси 36 через проточный канал 48 в каждой точке пересечения, как упоминалось выше.

В системе по Фиг. 4 и 5 желательная текучая среда имеет более высокую вязкость, чем нежелательная текучая среда, а поэтому конфигурации различных элементов системы 25 (например, проточных каналов 44, 48, управляющих каналов 64, 68, управляющих отверстий 66, 70, отводных каналов 94а-с, камер 96а-с и т.п.) соответственно выбирают такими, чтобы переключатель 50 направлял преобладающую часть (или, по меньшей мере, большую часть) текучей среды, проходящей через каналы 44, 46, 48, на путь потока 54 в том случае, когда текучая смесь обладает достаточно высокой вязкостью. Если вязкость текучей смеси 36 недостаточно высока, то переключатель 50 направляет преобладающую часть (или, по меньшей мере, большую часть) текучей среды на путь потока 56.

Если преобладающая часть текучей среды направляется на путь потока 54 (т.е. если текучая смесь 36 имеет достаточно высокую вязкость), тогда переключатель 52 будет направлять основную часть текучей смеси на путь потока 60. Следовательно, значительно большая часть текучей смеси 36 будет проходить в камеру 84 через вход 88 и следовать к выходу 40 по относительно прямому пути с меньшим сопротивлением.

Если основная часть текучей среды направляется переключателем 50 на путь 56 потока (т.е. если текучая смесь 36 имеет относительно низкую вязкость), тогда переключатель 52 будет направлять основную часть текучей смеси на путь потока 58. Следовательно, значительно большая часть текучей смеси 36 будет проходить в камеру 84 через вход 86 и следовать к выходу 40 по относительно искривленному пути с большим сопротивлением.

Следовательно, нетрудно понять, что система 25 по Фиг. 4 и 5 повышает сопротивление потоку текучих композиций, обладающих относительно низкой вязкостью, и снижает сопротивление потоку текучих композиций с относительно высокой вязкостью. Уровень вязкости, при котором сопротивление потоку через систему 25 может расти вверх от