Сенсорное устройство для определения целевого вещества

Иллюстрации

Показать все

Изобретение предназначено для определения целевого вещества в исследуемой области. Сенсорное устройство (100) содержит сенсорную поверхность (112) с исследуемой областью (113) и контрольной областью (120), а также контрольный элемент (121), размещенный в контрольной области (120). При этом контрольный элемент (121) адаптирован для защиты контрольной области (120) от целевого вещества (2), так чтобы свет, отраженный в контрольной области (120), при условии полного внутреннего отражения оставался не подвергнутым воздействию за счет присутствия или отсутствия целевого вещества (2). Это позволяет измерять свойство, обычно интенсивность света, отраженного на контрольную область (120), независимо от присутствия или отсутствия целевого вещества (2), что может быть использовано для выполнения улучшенной коррекции света, отраженного в исследуемой области (113). 3 н. и 10 з.п. ф-лы, 14 ил.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к сенсорному устройству и анализирующему устройству для определения целевого вещества в исследуемой области. Кроме того, изобретение относится к соответствующему способу определения для определения целевого вещества в исследуемой области.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Патентная заявка США № 7317534 B2 предоставляет способ измерения, содержащий измерительный блок со слоем пленки, имеющей зону определения, где целевая молекула прикреплена к ее поверхности и контрольную зону, где к ее поверхности не прикреплен лиганд. Фотодетектор обнаруживает интенсивность световых лучей, отраженных при полном внутреннем отражении в зоне определения и контрольной зоне соответственно. Кроме того, результат измерения в зоне определения калибруется на основе результата измерения в контрольной зоне.

Патентная заявка США № 2005/0052655 A1 описывает интерферометр, содержащий оптическое тело, адаптированное в процессе работы подключать измерительную зону, содержащую пленку, которая способна выполнять функцию двумерной среды для поверхностных плазмонов, и примыкающую контрольную зону, средства генерирования светового луча для облучения контрольной и измерительной зон излучением, способным генерировать поверхностный плазмонный резонанс, оптические средства для объединения излучения, отраженного от контрольной и измерительной зон, и пиксельные средства обнаружения для генерирования данных, представляющих двумерные изображения объединенных лучей излучения.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Однако часто сложно гарантировать, что контрольная зона останется свободной от какой-либо целевой молекулы или иным образом не подвергнется воздействию за счет присутствия целевой молекулы в среде. В частности, когда используются системы определения целевых молекул на основе бусин, сложно установить, что такие бусины не вступят в неспецифический контакт с контрольной зоной и не повлияют на обнаруженный сигнал от контрольной зоны. Таким образом, измерения должны предоставляться для гарантии того, что контрольная зона останется свободной от какой-либо целевой молекулы во время калибровки, которая достаточно сложно выполняет процедуру калибровки.

Цель изобретения состоит в том, чтобы предоставить сенсорное устройство и анализирующее устройство для определения целевого вещества в исследуемой области, что допускает более простую калибровку. Кроме того, цель изобретения состоит в том, чтобы предоставить соответствующий способ определения.

В аспекте настоящего изобретения предоставляется сенсорное устройство для определения целевого вещества в исследуемой области, содержащее:

- подложку, имеющую на ней сенсорную поверхность для воздействия целевого вещества, с исследуемой областью и контрольной областью,

- источник света, генерирующий падающий световой луч, чтобы отразиться в исследуемой области и/или контрольной области, тем самым генерируя отраженный свет.

- контрольный элемент, размещенный в контрольной области, адаптированный для защиты контрольной области от вещества, так чтобы свет, отраженный в контрольной области, при условии полного внутреннего отражения, оставался не подвергнутым воздействию за счет присутствия или отсутствия вещества.

- калибратор для сравнения интенсивности отраженного света как контрольной области, так и исследуемой области,

- где контрольный элемент имеет такой коэффициент преломления и такие размеры, что рассеянное поле, выявленное в контрольной области, остается не подвергнутым воздействию за счет присутствия или отсутствия целевого вещества.

Изобретение основано на идее, что сигнал, соответствующий присутствию вещества в контрольной области, полученный посредством обнаружения света, отраженного от исследуемой области при условии полного внутреннего отражения, может быть откалиброван посредством сигнала, соответствующего стандартному отражению при условии полного внутреннего отражения. Таким образом, контрольный элемент, эффективно защищающий контрольную область от воздействия веществ, потенциально присутствующих в исследуемой области, позволяет измерять интенсивность света, отраженного в исследуемой области в стандартизированной форме, то есть независимо от присутствия или отсутствия вещества для анализа. Таким образом, отраженный в контрольной области свет является по существу только функцией факторов, отличных от присутствия или отсутствия вещества, и таким образом отражает ошибки, обусловленные ошибками измерения, например увеличение температуры или колебания при достижении выходным светом контрольной области.

В рамках настоящего изобретения отраженный в контрольной области свет, при условии полного внутреннего отражения, считают не подвергшимся воздействию за счет присутствия или отсутствия вещества, когда интенсивность света не изменяется за счет присутствия или отсутствия вещества более чем на 10%, предпочтительно не более 1%, и еще более предпочтительно не более 0,1%. В частности, предпочтителен диапазон от 0,05% до 0,3%.

Кроме того предпочтительно, чтобы контрольный элемент защищал контрольную область не только от анализируемого вещества, но также и от других веществ, потенциально воздействующих на присутствие рассеянного поля в контрольной области. Это преимущественно позволяет анализировать присутствие вещества в подкрашенной среде, в то время как окрашивание среды не будет мешать отраженному на контрольную область свету при условии полного внутреннего отражения. Таким образом, даже для окрашенной среды контрольная область может служить в качестве надежного стандарта. Способ по настоящему изобретению и сенсорные устройства по настоящему изобретению могут также преимущественно использоваться для дополнительных аналитических способов, используя измерение переданного света, например измерение абсорбции света и оптической плотности. Таким образом, желательно, чтобы контрольный элемент был предпочтительно цельным, гелеобразным или иным образом противостоял смыванию средой.

Необходимо отметить, что термин "полное внутреннее отражение" должен включать в себя случай, часто называемый "ослабленным полным внутренним отражением", где некоторый падающий свет теряется во время процесса отражения. Отраженный световой луч, возникающий в исследуемой области, обычно будет состоять из или содержать свет падающего светового луча, который был полностью внутренне отражен в исследуемой области сенсорной поверхности, которая может быть связывающей поверхностью для связывания целевого вещества. Однако он может также содержать свет от других источников, таких как флуоресценция, стимулируемая в исследуемой области.

Коэффициент преломления и размеры контрольного элемента предпочтительно выбираются так, чтобы размеры превышали длину экспоненциального затухания рассеянного поля, выявленного там, то ест, чтобы это рассеянное поле по существу не было размещено за пределами контрольного элемента и подложки, но которой размещен контрольный элемент. Толщина и латеральные размеры контрольного элемента затем выбираются таким образом, чтобы рассеянное поле, сгенерированное при условии полного внутреннего отражения внутри контрольного элемента, являлось по существу задемпфированным для выбранной длины волны и угла падения света. Длина экспоненциального затухания ζ вычисляется как

,

где λ и θ являются длиной волны используемого света и углом падения соответственно, а n1 и n2 являются коэффициентами преломления материала, в котором проходит свет, и контрольного элемента соответственно. Угол θкрит определяет критический угол. Таким образом, профессионал может выбрать подходящие материалы для производства контрольного элемента для заранее выбранной длины волны, угла падения и материала для проходящего в нем светового луча.

Латеральная форма контрольного элемента может быть выбрана произвольно, таким образом позволяя настоящему устройству быть адаптированным к множеству дополнительных условий. Предпочтительно, чтобы контрольный элемент являлся пленкой или слоем, имеющим толщину по меньшей мере 200 нм, более предпочтительно 500 нм-1 мм и наиболее предпочтительно 500 нм-100 мкм. Такие элементы могут преимущественно содержаться в микросенсорах, позволяя анализировать незначительное количество среды.

В дополнительно предпочтительном сенсорном устройстве исследуемая область содержит связывающее вещество для связывания мишени. Мишень может быть целевым веществом, которое может воздействовать на свое рассеянное поле. Однако в случае определения концентрации вещества, требующего метки для воздействия на рассеянное поле для его определения, которое далее в настоящем документе обозначают "анализируемое вещество", мишенью будет такая метка. Тогда обычно мишенью будет являться вещество, предпочтительно магнитная бусина, содержащая соединительную часть для прикрепления анализируемого вещества, предпочтительно посредством прикрепления со специфичностью к анализируемому веществу ввиду других веществ, которые предположительно содержатся в среде. Соединительная часть может быть ковалентно или не ковалентно присоединена к анализируемому веществу и остальному целевому веществу соответственно. Предпочтительно, мишень содержит одно, два, три или более антител или их Fab фрагментов, включая F(ab')2 фрагменты, которые могут быть привязаны к анализируемому веществу в той же самой или другой секциях анализируемого вещества.

Типичным примером связывающего вещества исследуемой области является антитело или его Fab фрагмент, включая F(ab')2 фрагменты. Такие связывающие вещества могут производиться для огромного разнообразия целевых молекул и их антигенов и учитывают специфичные связи мишеней и/или анализируемых веществ, где применимо, в исследуемой области сенсорного устройства. Таким образом возможно выборочно обогащать эти мишени/анализируемые вещества в исследуемой области. При этом нежелательные мишени могут быть удалены с исследуемой области с помощью подходящих сил отталкивания (например, магнитные или гидродинамические силы), что не должно по существу разрушить связь между желаемыми целевыми молекулами и связывающими веществами. Связывание мишени может воздействовать на рассеянное поле, выявленное в исследуемой области и, таким образом, воздействовать на интенсивность света, отраженного оттуда при условии полного внутреннего отражения. Также дополнительные вещества могут быть добавлены для усиления воздействия, оказываемого связывающей мишенью в исследуемой области, на рассеянное поле, выявленное там. Кроме того, исследуемая область может содержать один, два или более типов связывающих веществ. Типы связывающих веществ могут быть специфичными для разных типов молекул или для разных секций и антигенов одной или более целевых молекул. Таким образом, сенсорная поверхность по настоящему изобретению пригодна для разных видов биосенсоров и способов измерения.

Другим типом анализа для определения концентрации анализируемого вещества в среде может быть конкурентно-связывающий анализ. В таком анализе количественное определение концентрации анализируемого вещества может быть выполнено посредством анализа присутствия или отсутствия мишени в соответствующей исследуемой области, как результат конкуренции между анализируемым веществом и веществом, подобным анализируемому веществу, для связывания с помощью связывающего вещества и/или мишени или ее соответствующей соединительной части.

Сенсорное устройство настоящего изобретения предпочтительно адаптировано для анализа присутствия вещества (то есть мишени или, если применимо, анализируемого вещества) в среде в концентрации, меньшей чем или равной 1 нМ, даже более предпочтительно от 1 до 100 пМ и наиболее предпочтительно от 10 до 1000 фМ. Такие низкие концентрации обычно требуют длительного времени измерения, равно как и полученные от среды сигналы малы. Сигналы, сгенерированные типичным оптическим сенсорным устройством, могут смещаться во времени без изменений в анализируемой композиции. Например, вывод света из источника света может изменяться, например, в результате температурных изменений среды или внутри биосенсорного устройства. Смещение может привести к значительным отклонениям полученного сигнала по сравнению с реальным количеством целевых молекул, связанных в исследуемой области. Таким образом, калибровка сигнала, принятого детектором от исследуемой области, необходима для получения значительных результатов. Чрезвычайно важным преимуществом настоящего изобретения является позволение такой калибровки, основанной на контрольной области и отраженном там свете, которая позволяет надежно анализировать присутствие или отсутствие вещества при низких концентрациях, упомянутых ранее. Это является чрезвычайно важным преимуществом при измерении присутствия вещества, подобного, например, сердечному тропонину-I, гормону околощитовидной железы (PTH) и BNP (мозговому натрийуретическому пептиду), в физиологических образцах, например крови, которое требует предел определения менее 1 пМ.

В предпочтительном сенсорном устройстве сенсорная поверхность в контрольной области повернута относительно сенсорной поверхности исследуемой области, чтобы сделать возможным падение падающего светового луча в контрольную область под меньшим углом, чем у параллельного падающего светового луча в исследуемой области. Для достижения условий полного внутреннего отражения в интерфейсе контрольного элемента сенсорной поверхности коэффициент преломления материала контрольного элемента должен быть выбран достаточно низким для данного коэффициента преломления материала, в котором проходит отраженный свет. Таким образом, для некоторых материалов сложно найти подходящий материал контрольного элемента. Посредством небольшого поворота поверхности в контрольной области возможно достигнуть меньшего угла падения на контрольный элемент, чем в исследуемой зоне, таким образом позволяя использовать материалы контрольного элемента со сравнительно большим коэффициентом преломления.

В дополнительно предпочтительном сенсорном устройстве контрольная область предпочтительно примыкает к исследуемой области. Таким образом, могут быть минимизированы ошибки в измерениях интенсивности света, отраженного при условии полного внутреннего отражения, например, в результате небольших изменений в композициях материала подложки. В рамках настоящего изобретения контрольную область считают примыкающей, когда она отделена от исследуемой области, предпочтительно, вдобавок исследуемая область прикрепляет связывающее вещество, как указано выше, самое большее на 5 мм, более предпочтительно от 0,5 до 1 мм и наиболее предпочтительно от 0,1 до 0,5 мм.

Материал контрольного элемента может быть выбран произвольно, при условии что он позволяет полное внутреннее отражение в контрольной области для заранее выбранной длины волны и угла падения света и достаточно защищает контрольную область как сообщено выше. Предпочтительно, чтобы контрольный элемент был цельным, даже более предпочтительно, чтобы контрольный элемент был пленкой. В рамках настоящего изобретения линзы считают цельными. Кроме того, предпочтительные материалы контрольного элемента выбраны из полимеров, биомолекул и, в частности, протеинов, нуклеиновых кислот и полисахаридов, гелей, золь-гелей и других пластиков.

Предпочтительно выбирать материал, который может быть нанесен простым образом, например струйной печатью. Доступно множество полимеров, которые могут быть УФ-отвержденными или полимеризованными другими подходящими средствами для быстрой, надежной и автоматической полимеризации.

Также предпочтительно, чтобы контрольная область содержала зеркало для отражения падающего света. Такое зеркало, часто называемое истинным зеркалом, может применяться в виде диэлектрического многоуровневого или металлического покрытия и является пригодным, в частности, как контрольный элемент при таких условиях, где затруднен поиск материала контрольного элемента с достаточно низким коэффициентом преломления.

Во многих причастных на практике вариантах осуществления изобретения сенсорного устройства сенсорная поверхность будет содержать две или более исследуемые области, на которых разные падающие световые лучи могут быть полностью внутренне отражены. Так, одно устройство позволяет обрабатывать несколько исследуемых областей и, таким образом, например, осуществлять поиск разных целевых веществ, наблюдение за теми же целевыми веществами при разных условиях и/или выборка нескольких измерений для целей статистики. "Разные падающие световые лучи" опционально могут быть компонентами одного широкого луча света, который однородно сгенерирован одним источником света, они могут быть индивидуальными отдельными световыми лучами, направленными на исследуемые области и/или контрольные области одновременно (опционально через одни и те же или разные оптические окна), и/или они могут быть временно разными (то есть быть сгенерированными одним основным световым лучом, сканирующим исследуемые области). Предпочтительно, чтобы "разные падающие световые лучи" являлись частью одного широкого светового луча, одновременно освещающего одну, две или более контрольных областей и одну, две или более исследуемых областей. Детектор может затем отдельно измерить свет, отраженный от соответствующих областей, ниже все будет описано более подробно.

Сенсорное устройство предпочтительно является картриджем, имеющим подложку, содержащую на ней сенсорную поверхность. Такие картриджи могут быть преимущественно использованы с помощью анализирующих устройств, чтобы адаптировать анализирующие устройства для конкретных задач измерения.

Пока в принципе возможно, чтобы подложка имела некоторую выделенную структуру со множественными компонентами разных материалов, предпочтительно, чтобы подложка была однородно изготовлена из прозрачного материала, например из стекла или прозрачного пластика. Таким образом, подложка может быть легко изготовлена, например, посредством литьевого формования.

Картридж может быть использован в комбинации со многими разными устройствами, в том числе с биосенсорными устройствами и способами. Для практически важного применения в процедуре исследования картридж предпочтительно содержит первое и второе оптическое окно, так чтобы падающий световой луч мог войти в подложку через первое оптическое окно, так что он полностью внутренне отражен в исследуемой области и/или контрольной области на сенсорной поверхности, и где отраженный световой луч, возникающий в исследуемой области и/или контрольной области, может выйти из подложки через второе оптическое окно.

Сенсорное устройство по настоящему изобретению предпочтительно дополнительно содержит:

- детектор для обнаружения отраженного света, для выдачи первого характеристичного сигнала, зависящего от интенсивности света, отраженного в исследуемой области, и второго характеристичного сигнала, зависящего от интенсивности света, отраженного в контрольной области, и

- калибратор для калибровки первого характеристичного сигнала, принимая во внимание второй характеристичный сигнал.

Такое устройство использует преимущество настоящего изобретения, то есть сенсорное устройство позволяет калибровать первый характеристичный сигнал, принимая во внимание второй характеристичный сигнал. Таким образом, сенсорное устройство особенно облегчает надежные, важные измерения, ограничивает ошибки измерения и позволяет обнаруживать целевое вещество в исследуемой(ых) области(ях) при низких концентрациях за счет более длительного времени измерения.

В практических вариантах осуществления такого устройства калибратор предпочтительно адаптирован корректировать или улучшать смещение в первом характеристичном сигнале, принимая во внимание второй характеристичный сигнал. Преимуществом такого устройства является то, что может быть достигнуто особенно длительное время измерения без значительного влияния смещения, таким образом облегчая или даже позволяя обнаруживать целевые вещества при низких концентрациях в исследуемой области или вопреки зашумленному фону среды.

В предпочтительном варианте осуществления изобретения сенсорное устройство адаптировано для совместной работы с анализирующим устройством для того, чтобы определять целевое вещество, где анализирующее устройство содержит:

- анализируемую область, чтобы вмещать сенсорное устройство,

- источник света для направления падающего света в анализируемую область, так что падающий свет направляется в исследуемую область и контрольную область сенсорной поверхности и так что падающий свет отражается, при условии полного внутреннего отражения, в исследуемую область и контрольную область, тем самым генерируя отраженный свет, когда сенсорное устройство помещено в анализируемой области,

- детектор, для обнаружения отраженного света, для выдачи первого характеристичного сигнала, зависящего от интенсивности света, отраженного в исследуемой области, и второго характеристичного сигнала, зависящего от интенсивности света, отраженного в контрольной области,

- калибратор, для калибровки первого характеристичного сигнала принимая во внимание второй характеристичный сигнал.

В дополнительном аспекте настоящего изобретения предоставлено анализирующее устройство для определения целевого вещества, адаптированное для совместной работы с сенсорным устройством для обнаружения целевого вещества, где сенсорное устройство содержит:

- сенсорную поверхность с исследуемой областью и контрольной областью на ней,

- контрольный элемент, размещенный в контрольной области, адаптированный для защиты контрольной области от целевого вещества, так чтобы свет, отраженный в контрольной области, при условии полного внутреннего отражения, оставался не подвергнутым воздействию за счет присутствия или отсутствия целевого вещества, где анализирующее устройство содержит:

- анализируемую область, чтобы вмещать сенсорное устройство,

- источник света для направления падающего света в анализируемую область, так что падающий свет направляется в исследуемую область и контрольную область сенсорной поверхности и так что падающий свет отражается, при условии полного внутреннего отражения, в исследуемую область и контрольную область, тем самым генерируя отраженный свет, когда сенсорное устройство помещено в анализируемой области,

- детектор для обнаружения отраженного света, для выдачи первого характеристичного сигнала, зависящего от интенсивности света, отраженного в исследуемой области, и второго характеристичного сигнала, зависящего от интенсивности света, отраженного в контрольной области,

- калибратор, для калибровки первого характеристичного сигнала, принимая во внимание второй характеристичный сигнал.

Такое анализирующее устройство преимущественно адаптировано к сенсорному устройству, в частности картриджу, настоящего изобретения и использует контрольную область для калибровки характеристичного сигнала, полученного из контрольной области. Характеристический сигнал является сигналом интенсивности света. Сенсорное устройство предпочтительно является биосенсором.

Снова, калибратор предпочтительно адаптирован корректировать или улучшать смещение в первом характеристичном сигнале света исходящего из исследуемой области сенсорного устройства, в частности картридж, принимая во внимание второй характеристичный сигнал света, исходящий из контрольной области сенсорного устройства.

Таким образом, анализирующее устройство позволяет уменьшить ошибку измерения для измерений интенсивности света в исследуемой области. Таким образом, возможно анализировать свет, отраженный от исследуемой области в течение длительного периода времени без существенного примешивания первого характеристичного сигнала, полученного из указанной исследуемой области за счет ошибочных смещений интенсивности света. Таким образом, такое анализирующее устройство облегчает обнаружение веществ в исследуемой области при очень низких концентрациях, что обычно требует длительного времени облучения исследуемой области.

Согласно дополнительному аспекту изобретения предоставляется способ определения для определения целевого вещества в исследуемой области, содержащий этапы:

- предоставление сенсорной поверхности с исследуемой областью и контрольной областью на ней,

- предоставление контрольного элемента, размещенного в контрольной области, адаптированного для защиты контрольной области от целевого вещества, так чтобы свет, отраженный в контрольной области, при условии полного внутреннего отражения оставался не подвергнутым воздействию за счет присутствия или отсутствия целевого вещества,

- освещение исследуемой области и контрольной области при условии полного внутреннего отражения для одновременного или последовательного получения первого характеристичного сигнала, зависящего от интенсивности света, отраженного в исследуемой области, и второго характеристичного сигнала, зависящего от интенсивности света, отраженного в контрольной области,

- калибровка первого характеристичного сигнала принимая во внимание второй характеристичный сигнал.

Способ определения может также содержать этапы:

a) облучение исследуемой области сенсорного устройства по изобретению светом и получение первого характеристического сигнала полностью внутренне отраженного от нее света,

b) облучение исследуемой области сенсорного устройства изобретения светом и получение первого характеристического сигнала полностью внутренне отраженного от нее света,

c) калибровка первого характеристического сигнала, полученного на этапе a), посредством второго характеристического сигнала, полученного на этапе b).

Способ определения позволяет обнаруживать присутствие целевого вещества в исследуемой области и также позволяет определять другое свойство исследуемой области, например определять температуру посредством анализа воздействия термохромного материала на интенсивность света, отраженного при условии полного внутреннего отражения в исследуемой области.

Предпочтительно, чтобы этапы a) и c), этапы b) и c) или этапы a), b) и c) повторялись. Такое повторение может быть выполнено для одной исследуемой области, чтобы сделать возможным разрешенный во времени анализ связывания целевого вещества с исследуемой областью. Этапы могут быть также повторены посредством их последовательного применения к разным исследуемым областям, позволяя определять количество целевых(ого) веществ(а), связанных в разных исследуемых областях.

Особенно важно, по меньшей мере, последовательно выполнить этапы a) и b) для, по меньшей мере, одной контрольной области и одной исследуемой области. Таким образом, калибровка может быть выполнена при очень низком количестве ошибок измерения.

Кроме того, предпочтителен способ определения, содержащий:

I) предоставление анализирующего устройства настоящего изобретения,

II) предоставление сенсорного устройства, предпочтительно картриджа, настоящего изобретения в анализируемой области указанного анализирующего устройства,

III) связывание целевого вещества в исследуемой области указанного сенсорного устройства,

IV) выполнение этапов измерительного способа a), b) и c), как описано выше.

Такой способ использует преимущества настоящего изобретения и, в частности, позволяет анализировать целевое вещество при очень низкой концентрации в исследуемой области, как описано выше.

Следует понимать, что сенсорное устройство по п. 1 формулы изобретения, анализирующее устройство по п. 11 формулы изобретения и способ определения по п. 13 формулы изобретения имеют схожие и/или идентичные предпочтительные варианты осуществления изобретения, как определено в зависимых пунктах формулы изобретения. Кроме того, следует понимать, что предпочтительный вариант осуществления изобретения также может являться любой комбинацией зависимых пунктов формулы изобретения с соответствующими независимыми пунктами формулы изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 схематично и примерно показан в виде сбоку вариант осуществления сенсорного устройства,

На фиг. 2 схематично и примерно показан график смещения сигнала нескорректированного сигнала обнаружения,

На фиг. 3 схематично и примерно показан в виде сбоку свет, отраженный при условии полного внутреннего отражения,

На фиг. 4 схематично и примерно показан в виде сверху вариант осуществления сенсорного устройства,

На фиг. 5 схематично и примерно показан в виде сбоку вариант осуществления сенсорного устройства с фиг. 4,

На фиг. 6 схематично и примерно показан в виде сверху вариант осуществления сенсорного устройства,

На фиг. 7 схематично и примерно показан в виде сбоку вариант осуществления сенсорного устройства с фиг. 6,

На фиг. 8 схематично и примерно показан график сигнала обнаружения и контрольного сигнала,

На фиг. 9 схематично и примерно показан в виде сбоку вариант осуществления сенсорного устройства,

На фиг. 10 схематично и примерно показан в виде сверху вариант осуществления сенсорного устройства с фиг. 9,

На фиг. 11 схематично и примерно показан в виде сбоку вариант осуществления сенсорного устройства,

На фиг. 12 схематично и примерно показан в виде сбоку вариант осуществления анализирующего устройства,

На фиг. 13 схематично и примерно показаны магнитные частицы, привязанные к исследуемой области сенсорного устройства, и

На фиг. 14 схематично и примерно показан способ настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

На фиг. 1 схематично и примерно показан в виде сбоку вариант осуществления сенсорного устройства 100 настоящего изобретения. Устройство 100 содержит подложку 110 из материала, прозрачного для падающего светового луча L1. Подложка 110 имеет сенсорную поверхность 112. На сенсорной поверхности 112 разделитель текучего вещества 101 размещен так, чтобы сделать возможным добавление среды 4 на сенсорную поверхность 112. Зона сенсорной поверхности 112 покрыта контрольным элементом 121, чтобы защитить контрольную область 120 сенсорной поверхности 112 от какого-либо целевого вещества (2) в среде 4. В окрестности контрольной области 120 находится исследуемая область 113 сенсорной поверхности 112. Исследуемая область 113 может содержать связывающее вещество 114 для прямого или непрямого связывания целевого вещества 2.

Контрольная область 120 и исследуемая область 113 могут быть освещены падающим светом (показан как падающий световой луч L1). Падающий свет L1 отражается при условии полного внутреннего отражения в контрольной области 120, чтобы произвести исходящий свет L2. Контрольный элемент 121 имеет такой коэффициент преломления и такие размеры, что рассеянное поле, выявленное полным внутренним отражением в контрольной области 120, остается не подвергнутым воздействию за счет присутствия или отсутствия целевого вещества 2. Таким образом, интенсивность исходящего светового луча L2 контрольной области 120 не зависит от присутствия или отсутствия целевого вещества 2 в среде 4 и предпочтительно также не зависит от присутствия или отсутствия других целевых веществ среды 4. Затем, исходящий световой луч L2 контрольной области 120 может служить как стандартный световой луч и его интенсивность может быть использована как (второй) характеристический сигнал 220 в детекторе 18.

Падающий свет L1 также отражается при условии полного внутреннего отражения в исследуемой области 113, чтобы произвести дополнительный исходящий свет L2. Однако рассеянное поле, выявленное в исследуемой области 113, подвергается воздействию целевого вещества 2 среды 4 и наиболее предпочтительно только или в основном целевого вещества 2. Затем интенсивность такого дополнительного исходящего света коррелируется посредством присутствия или отсутствия целевого вещества 2 в исследуемой области 113 и может служить как (первый) характеристический сигнал 213 в детекторе 18.

Калибратор 20 сравнивает исходящий свет L2 как контрольной области 120, так и исследуемой области 113. Посредством такого сравнения может быть определено воздействие целевого вещества 2 на интенсивность света, отраженного в исследуемой области 113 при условии полного внутреннего отражения. Этот режим сравнения уменьшает или устраняет любые дополнительные источники ошибок измерения, так как сравнение может быть сделано в значительной степени независимо от изменения в интенсивности падающего света L1 посредством единовременного или последовательного быстрого измерения интенсивности исходящего света L2 контрольной области 120 и исследуемой области 113. Также и первый, и второй характеристические сигналы 213 и 220 соответственно могут быть определены в одиночном детекторе 18, дополнительно уменьшающем ошибки измерения. Таким образом, калибратор 20 эффективно корректирует или улучшает смещение в первом характеристическом сигнале 213, принимая во внимание второй характеристический сигнал 220.

Для получения контрольного элемента 121 небольшую каплю УФ-отвержденного вещества, акрилат (2,2,3,3,4,4,5,5-октафтор-гександиол-1,6-диметакрилата) с низким коэффициентом преломления можно нанести на сенсорную поверхность 112 полистиролового картриджа. Таким образом, после отверждения в среде азота, в контрольной области 120 может быть получен контрольный элемент 121 с n2 < 1,42. Для такого контрольного элемента 121 было найдено, что когда примыкающая исследуемая область 113 сенсорного устройства 112 была затемнена с помощью черной маркерной ручки, интенсивность света, отраженного (L2) при условии полного внутреннего отражения (угол падения θi: 70°) заметно снизилась в исследуемой области 113. Однако, несмотря на то что контрольный элемент 121 был также покрыт чернилами черной маркерной ручки, интенсивность света, отраженного при условии полного внутреннего отражения (угол падения θi: 70°), не снизилась заметно в контрольной области 120, как показано на фиг. 8.

Коэффициент преломления n2 отвержденного акрилата все еще достаточно высок. При вышеупомянутых специальных экспериментальных условиях входящий луч не был идеально параллельным, так что часть падающего света имела угол, меньший чем 70°. Это значит, что малая часть входящего светового луча проникла в контрольный элемент 121 и таким образом подверглась воздействию чернил черного маркера, уменьшая интенсивность отраженного света.

Это может быть решено посредством дополнительного уменьшения коэффициента преломления контрольного элемента 121, и/или посредством увеличения угла падения, и/или посредством увеличения коэффициента преломления материала картриджа, и/или посредством коллимации входящего освещающего луча. Вместо полимера могут быть пригодны другие материалы с низким коэффициентом преломления, такие как например, биомолекулы (в частности, протеины, нуклеиновые кислоты, полисахариды), гели, золь-гели и другие пластики. Способ, которым применяют эти различные контрольные элементы 121 к сенсорной поверхности 112, зависит от природы контрольного элемента 121, сенсорной поверхности 112 и материала картриджа. Например, в случае биомолекул может быть необходимо ковалентно присоединить их к сенсорной поверхности 112 картриджа.

На фиг. 2 схематично и примерно показан график смещения сигнала нескорректированного сигнала обнаружения. Ось X относится ко времени t измерения, заданному в минутах. Ось Y относится к изменению (задана в процентах) первого характеристического сигнала 213 света исследуемой области 113 сенсорного устройства 100 типа, который представлен на фиг. 1. Во время измерения, показанного на фиг. 2, в исследуемую область 113 не добавляли вещес