Конденсированное полициклическое соединение и органическое светоизлучающее устройство, содержащее это соединение

Иллюстрации

Показать все

Изобретение относится к органическим светоизлучающим устройствам на основе конденсированного полициклического соединения. Светоизлучающее устройство включает пару электродов, содержащих анод и катод, и слой органического соединения, размещенный между электродами и представляющий собой эмиссионный слой. Слой органического соединения содержит, по меньшей мере, конденсированное полициклическое соединение, охарактеризованное заявленной формулой, в которой радикалы, каждый независимо, выбирают из группы, состоящей из атома водорода, фенильной группы и фенильной группы, замещенной двумя трет-бутильными группами. Органическое светоизлучающее устройство с использованием этого соединения имеет оптический выход с высокой эффективностью и высокой яркостью, и является долговечным. 6 н. и 7 з.п. ф-лы, 7 ил., 1 табл.

Реферат

Настоящее изобретение относится к новому конденсированному полициклическому соединению и органическому светоизлучающему устройству, содержащему это соединение.

УРОВЕНЬ ТЕХНИКИ

Органическое светоизлучающее устройство представляет собой устройство, имеющее тонкую пленку, которая содержит флуоресцентное или фосфоресцентное органическое соединение и размещена между анодом и катодом; и воспринимает дырки и электроны из соответствующих электродов.

Затем образуется экситон флуоресцентного или фосфоресцентного соединения. Экситон излучает свет при возвращении из возбужденного состояния в свое основное состояние. Устройство испускает свет.

В недавнее время очевиден прогресс органических светоизлучающих устройств, и характеристики устройства позволяют получить светоизлучающее устройство с высокой яркостью при низком приложенном напряжении, в широком диапазоне длин волн излучения, с высокой скоростью реагирования, тонкой формой и малым весом. Ввиду этого факта предполагается, что устройство является перспективным, чтобы найти применение в многочисленных вариантах использования.

Однако сложившаяся в настоящее время ситуация требует достижения оптического выхода даже с более высокой яркостью или более высоким коэффициентом преобразования. Кроме того, по-прежнему остаются многочисленные, требующие разрешения проблемы в отношении срока службы в плане изменений с течением времени при продолжительной эксплуатации, повреждений, обусловленных воздействием атмосферных газов, содержащих кислород, влагу или тому подобные.

Далее, при рассмотрении таких вариантов применения, как полноцветный дисплей и тому подобные, современный уровень техники все еще недостаточен для разрешения проблем, связанных с необходимостью эмиссии синего, зеленого и красного света с высокой чистотой цвета. Поэтому существовала потребность в материале для создания органического светоизлучающего устройства, имеющего хорошую чистоту цвета, высокие характеристики светоизлучения и хорошую долговечность.

В качестве способа разрешения вышеупомянутых проблем было предложено применение конденсированного полициклического соединения как компонента органического светоизлучающего устройства. Японская выложенная патентная заявка № 2001-102173 раскрывает пример, в котором в качестве компонента органического светоизлучающего устройства используют конденсированное полициклическое соединение. В дополнение, публикация патентной заявки США № 2004/0076853 представляет органическое светоизлучающее устройство с использованием хризенового производного. Японская Выложенная Патентная Заявка № 10-189248 раскрывает органическое светоизлучающее устройство, в котором используют производное флуорантена. Статья в журнале J. Org. Chem., том 64, стр. 1650-1656, 1999 год, описывает конденсированное полициклическое соединение, в котором хризеновый скелет и два бензольных цикла формируют пятичленное кольцо.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Целью настоящего изобретения является получение нового конденсированного полициклического соединения. Еще одной целью настоящего изобретения является предоставление органического светоизлучающего устройства, которое содержит новое конденсированное полициклическое соединение. Органическое светоизлучающее устройство имеет оптический выход с высокой эффективностью и высокой яркостью и является долговечным.

Настоящее изобретение представляет конденсированное полициклическое соединение, представленное следующей общей формулой (I):

где радикалы R1-R18, каждый независимо, выбирают из группы, состоящей из атома водорода, атома галогена, цианогруппы, нитрогруппы, замещенной или незамещенной алкильной группы, замещенной или незамещенной алкоксильной группы, замещенной или незамещенной алкенильной группы, замещенной или незамещенной алкинильной группы, замещенной или незамещенной арилалкильной группы, замещенной или незамещенной аминогруппы, замещенной или незамещенной арильной группы и замещенной или незамещенной гетероциклической группы.

Соединение, представленное общей формулой (I) согласно настоящему изобретению, может быть материалом для органического светоизлучающего устройства, имеющего превосходные характеристики эмиссии света и высокую стабильность и поэтому может сформировать органическое светоизлучающее устройство, которое имеет оптический выход с исключительно высокой эффективностью и исключительно высокой яркостью и которое является исключительно долговечным.

Дополнительные признаки настоящего изобретения станут очевидными из нижеследующего описания примерных вариантов исполнения с привлечением сопроводительных чертежей.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

ФИГ.1 представляет вид в разрезе, иллюстрирующий пример органического светоизлучающего устройства в настоящем изобретении.

ФИГ.2 представляет вид в разрезе, иллюстрирующий еще один пример органического светоизлучающего устройства в настоящем изобретении.

ФИГ.3 представляет вид в разрезе, иллюстрирующий еще один пример органического светоизлучающего устройства в настоящем изобретении.

ФИГ.4 представляет вид в разрезе, иллюстрирующий еще один пример органического светоизлучающего устройства в настоящем изобретении.

ФИГ.5 представляет вид в разрезе, иллюстрирующий еще один пример органического светоизлучающего устройства в настоящем изобретении.

ФИГ.6 представляет вид, показывающий спектр флуоресценции (длина волны возбуждения: 360 нм) раствора Примерного Соединения 3-15 в толуоле (концентрация 1×10-6 моль/л).

ФИГ.7 представляет вид, показывающий спектр флуоресценции (длина волны возбуждения: 360 нм) раствора Примерного Соединения 3-7 в толуоле (концентрация 1×10-6 моль/л).

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Новое конденсированное полициклическое соединение согласно настоящему изобретению представляет собой конденсированное полициклическое соединение, представленное следующей общей формулой (I):

где радикалы R1-R18, каждый независимо, выбирают из группы, состоящей из атома водорода, атома галогена, цианогруппы, нитрогруппы, замещенной или незамещенной алкильной группы, замещенной или незамещенной алкоксильной группы, замещенной или незамещенной алкенильной группы, замещенной или незамещенной алкинильной группы, замещенной или незамещенной арилалкильной группы, замещенной или незамещенной аминогруппы, замещенной или незамещенной арильной группы и замещенной или незамещенной гетероциклической группы.

Конкретные примеры заместителей в конденсированном полициклическом соединении общей формулы (I) показаны ниже, но не ограничиваются таковыми.

Конкретные примеры радикалов R1-R18 показаны ниже.

Примеры атома галогена включают фтор, хлор, бром и иод.

Примеры алкильной группы включают метильную группу, этильную группу, нормальную пропильную группу, изопропильную группу, нормальную бутильную группу, третичную бутильную группу, вторичную бутильную группу, октильную группу, 1-адамантильную группу и 2-адамантильную группу.

Примеры алкоксильной группы включают метоксильную группу, этоксильную группу, пропоксильную группу и феноксильную группу.

Примеры алкенильной группы включают винильную группу, пропенильную группу, бутенильную группу, фенилвинильную группу и дифенилвинильную группу.

Примеры алкинильной группы включают этинильную группу, пропинильную группу, бутинильную группу и фенэтинильную группу.

Примеры арилалкильной группы включают бензильную группу и фенэтильную группу.

Примеры аминогруппы включают диметиламиногруппу, диэтиламиногруппу, дибензиламиногруппу, дифениламиногруппу, дитолиламиногруппу, ди-трет-бутиламиногруппу, дианизолиламиногруппу, нафтилфениламиногруппу и карбазолильную группу.

Примеры арильной группы включают фенильную группу, нафтильную группу, пенталенильную группу, инденильную группу, азуленильную группу, антрильную группу, пиренильную группу, индаценильную группу, аценафтенильную группу, фенантрильную группу, феналенильную группу, флуорантенильную группу, бензофлуорантенильную группу, ацефенантрильную группу, ацеантрильную группу, трифениленильную группу, хризенильную группу, нафтаценильную группу, периленильную группу, пентаценильную группу, бифенильную группу, терфенильную группу и флуоренильную группу.

Примеры гетероциклической группы включают тиенильную группу, пирролильную группу, пиридильную группу, пиримидильную группу, бипиридильную группу, оксазолильную группу, оксадиазолильную группу, тиазолильную группу, тиадиазолильную группу, тертиенильную группу, хинолильную группу, хиноксалинильную группу, карбазолильную группу, акридинильную группу и фенантролильную группу.

Каждая из алкильной группы, алкоксильной группы, алкенильной группы, алкинильной группы, арилалкильной группы, аминогруппы, арильной группы и гетероциклической группы может иметь заместитель. Примеры заместителя включают:

алкильные группы, такие как метильная группа, этильная группа, пропильная группа и трет-бутильная группа;

арилалкильные группы, такие как бензильная группа и фенэтильная группа;

арильные группы, такие как фенильная группа, бифенильная группа, нафтильная группа, пиренильная группа, антрильная группа и флуоренильная группа;

гетероциклические группы, такие как тиенильная группа, пирролильная группа, пиридильная группа, фенантролильная группа и карбазолильная группа;

аминогруппы, такие как диметиламиногруппа, диэтиламиногруппа, дибензиламиногруппа, дифениламиногруппа, дитолиламиногруппа и дианизолиламиногруппа;

алкоксильные группы, такие как метоксильная группа, этоксильная группа, пропоксильная группа и феноксильная группа;

цианогруппы;

нитрогруппы;

и атомы галогена, такие как фтор и хлор.

Конденсированное полициклическое соединение, представленное общей формулой (I), главным образом, может быть использовано в качестве материала для органического светоизлучающего устройства.

В частности, соединение, представленное общей формулой (I), может быть использовано в транспортирующем дырки слое, транспортирующем электроны слое или эмиссионном слое для создания устройства, имеющего высокую эффективность эмиссии света и длительный срок службы.

В дополнение, когда соединение, представленное общей формулой (I), применяют в эмиссионном слое, соединение может быть использовано любым из многообразных путей для создания устройства, имеющего высокую чистоту цвета, высокую эффективность эмиссии света и длительный срок службы.

Например, в эмиссионном слое может быть использовано только соединение как таковое. Альтернативно соединение может быть применено в качестве легирующего (гостевого) вещества в эмиссионном слое. Альтернативно соединение может быть использовано в качестве основного вещества для каждого из флуоресцентного материала и фосфоресцентного материала.

Содержание конденсированного полициклического соединения, представленного общей формулой (I), когда соединение используют в качестве гостевого вещества, предпочтительно составляет от 0,1% по весу или более до 30% по весу или менее в расчете на общий вес эмиссионного слоя; более предпочтительно содержание варьирует от 0,1% по весу или более до 15% по весу или менее, чтобы можно было подавить концентрационное тушение.

В дополнение, когда конденсированное полициклическое соединение, представленное общей формулой (I), применяют в качестве гостевого вещества, основной материал не является в особенности ограниченным; предпочтительно применяют конденсированное полициклическое производное, чтобы можно было сделать это органическое светоизлучающее устройство сформированным в виде стабильной аморфной пленки. В дополнение, желательно, чтобы сам основной материал имел высокую эффективность эмиссии света, или желательно, чтобы сам основной материал имел химическую стабильность для создания органического светоизлучающего устройства, которое имеет высокую эффективность и которое является долговечным. Соответственно этому более предпочтительным является конденсированное полициклическое производное, имеющее высокий квантовый выход флуоресценции и химическую устойчивость, такое как производное флуорена, производное пирена, производное флуорантена или производное бензофлуорантена.

С другой стороны, когда конденсированное полициклическое соединение, представленное общей формулой (I), применяют в качестве основного вещества, гостевое вещество не является в особенности ограниченным, и гостевое вещество должно быть соответствующим образом использовано, например, только в зависимости от желательного цвета эмиссии. В дополнение, соединение может быть использовано после легирования транспортирующим дырки соединением, транспортирующим электроны соединением или тому подобным, а также гостевым веществом при необходимости.

Чтобы можно было улучшить эффективность эмиссии света органического светоизлучающего устройства, желателен высокий квантовый выход эмиссии самого светоизлучающего центрального материала (гостевого вещества). В дополнение, когда органическое светоизлучающее устройство применяют в дисплейном устройстве, важно, чтобы светоизлучающий центральный материал имел высокую чистоту цвета.

В общем, при температурах, равных комнатной температуре или превышающих таковую, каждое из многих органических соединений проявляет широкий спектр флуоресценции и каждое имеет тенденцию иметь плохую чистоту цвета. В свете вышеизложенного было выполнено следующее молекулярное конструирование конденсированного полициклического соединения: систему сопряжения расширили так, чтобы в спектре соединения могла проявляться колебательная структура и можно было повысить чистоту цвета соединения.

Однако оказалось затруднительным применение вышеуказанного подхода для синей флуоресценции, имеющей высокую энергию, поскольку расширение системы сопряжения сопровождается сужением энергетической щели.

В свете вышеизложенного авторы настоящего изобретения провели углубленные исследования. В результате авторы настоящего изобретения нашли, что конденсированное полициклическое соединение, представленное общей формулой (I), дает спектр флуоресценции, имеющий явно выраженную колебательную структуру и генерирует флуоресцентную эмиссию, имеющую высокую чистоту синего цвета. То есть систему сопряжения надлежащим образом расширяют с использованием нафталинового ядра как одного из двух ароматических циклов, применяемых для формирования пятичленных колец с хризеновым скелетом, и бензольного ядра в качестве другого из двух ароматических циклов. При таком образе действий относительная интенсивность первого пика как 0-0-перехода делается более высокой, чем интенсивность любого другого пика, и ширина спектральной полосы на половине высоты сужается, в результате чего может быть достигнуто повышение чистоты цвета без смещения спектральной полосы из области синего цвета.

Кроме того, конденсированное полициклическое соединение, представленной общей формулой (I), пригодно для получения органического светоизлучающего устройства, эмиттирующего синий свет, имеющего высокую эффективность и высокую чистоту цвета, поскольку соединение имеет высокий квантовый выход, обусловленный его жестким скелетом.

Чтобы можно было создать органическое светоизлучающее устройство, которое является долговечным, соединение для органического светоизлучающего устройства, из которого формируют устройство, должно быть химически стабильным.

Конденсированное полициклическое соединение, представленное общей формулой (I), имеет низкую реакционную способность в отношении электрофильной реакции, например, с молекулой синглетного кислорода вследствие электроноакцепторного действия каждой из пятичленных циклических структур и тем самым является химически стабильным. В дополнение, соединение, которое имеет две пятичленных циклических структуры, имеет более высокую химическую стабильность, чем соединение со скелетом, имеющим одну пятичленную циклическую структуру, такую как скелет флуорантена или бензофлуорантена.

Конденсированное полициклическое соединение, представленное общей формулой (I), имеет электронодонорные свойства в силу электроноакцепторных свойств каждой из пятичленных циклических структур. В результате, когда соединение используют в качестве материала для органического светоизлучающего устройства, может быть снижено напряжение, при котором срабатывает устройство. В дополнение, соединение, которое имеет две пятичленных циклических структуры, оказывает более сильное понижающее действие на напряжение, при котором срабатывает устройство, чем скелет, имеющий одну пятичленную циклическую структуру, такой как скелет флуорантена или бензофлуорантена.

Уровень граничных орбиталей HOMO/LUMO (ВЗМО/НСМО; высшая занятая/низшая свободная молекулярные орбитали) соединения, представленного общей формулой (I), может быть без труда скорректирован введением заместителя.

Соответственно этому молекулярное конструирование может быть проведено с учетом баланса между количествами вводимых носителей заряда, таких как дырки и электроны. В дополнение, может быть выполнено молекулярное конструирование светоизлучающих материалов для разнообразных цветов эмиссии.

Далее, когда по меньшей мере один из радикалов R1-R18 в общей формуле (I) представляет заместитель, присутствие заместителя ведет к исключению эффекта наслоения молекул конденсированного полициклического соединения и обусловливает: характеристики возгонки и стабильность осаждения соединения; и стабильность пленки, полученной из соединения, благодаря снижению кристалличности соединения или высокой температуре стеклования соединения. Заместитель, представленный по меньшей мере одним из радикалов R1-R18, предпочтительно является замещенной или незамещенной арильной группой или замещенной или незамещенной гетероциклической группой; более предпочтительно каждый из радикалов R1, R4, R9 и R14 представляет замещенную или незамещенную арильную группу или замещенную или незамещенную гетероциклическую группу. В частности, когда в каждый из радикалов R1, R4, R9 и R14 вводят заместитель, стерические препятствия, создаваемые любым из заместителей по отношению к соседней группе, являются настолько большими, что усиливаются взаимодействия, препятствующие наслоению молекул друг на друга.

Настоящее изобретение было выполнено с использованием молекулярного конструирования, основанного на вышеописанных соображениях.

Далее настоящее изобретение будет описано более подробно.

Конкретные примеры вышеуказанного конденсированного полициклического соединения, представленного общей формулой (I), показаны ниже. Однако настоящее изобретение не ограничивается этими примерами.

Пример 1 соединений

Пример 2 соединений

Пример 3 соединений

Далее будет более подробно описано органическое светоизлучающее устройство согласно настоящему изобретению.

Органическое светоизлучающее устройство согласно настоящему изобретению включает пару электродов, сформированных из анода и катода, и слой органического соединения, размещенный между парой электродов. В органическом светоизлучающем устройстве слой органического соединения содержит по меньшей мере конденсированное полициклическое соединение согласно настоящему изобретению.

Каждая из ФИГ.1-5 иллюстрирует предпочтительный пример органического светоизлучающего устройства согласно настоящему изобретению.

Сначала будет описан каждый кодовый номер позиции.

Представлены подложка 1, анод 2, эмиссионный слой 3, катод 4, транспортирующий дырки слой 5, транспортирующий электроны слой 6, слой-источник 7 дырок и слой 8 запирания дырок/экситонов.

ФИГ.1 представляет вид в разрезе, иллюстрирующий пример органического светоизлучающего устройства согласно настоящему изобретению. Как иллюстрировано в ФИГ.1, органическое светоизлучающее устройство имеет структуру, в которой анод 2, эмиссионный слой 3 и катод 4 размещены на подложке 1 в указанном порядке. Используемое здесь светоизлучающее устройство применимо в том случае, где само устройство имеет свойство транспортировать дырки, свойство транспортировать электроны и свойство излучать свет или где соединения, имеющие соответствующие свойства, применяют в сочетании.

ФИГ.2 представляет вид в разрезе, иллюстрирующий еще один пример органического светоизлучающего устройства согласно настоящему изобретению. Как иллюстрировано в ФИГ.2, органическое светоизлучающее устройство имеет структуру, в которой анод 2, транспортирующий дырки слой 5, транспортирующий электроны слой 6 и катод 4 размещены на подложке 1 в указанном порядке. Светоизлучающее вещество применимо в случае, где в каждом слое используют материал, имеющий одно или оба из свойства транспортировать дырки и свойства транспортировать электроны, и светоизлучающее вещество применяют в комбинации с неизлучающим транспортирующим дырки веществом или транспортирующим электроны веществом. В этом случае эмиссионный слой 3 формируют из транспортирующего дырки слоя 5 или транспортирующего электроны слоя 6.

ФИГ.3 представляет вид в разрезе, иллюстрирующий еще один дополнительный пример органического светоизлучающего устройства согласно настоящему изобретению. Как иллюстрировано в ФИГ.3, органическое светоизлучающее устройство имеет структуру, в которой анод 2, транспортирующий дырки слой 5, эмиссионный слой 3, транспортирующий электроны слой 6 и катод 4 размещены на подложке 1 в указанном порядке. Это органическое светоизлучающее устройство имеет по отдельности функцию транспортирования носителей заряда и функцию эмиссии света. Устройство используют в комбинации с соединениями, каждое из которых имеет свойство транспортировать дырки, свойство транспортировать электроны или свойство излучать свет, насколько это уместно, тем самым позволяя значительно расширить возможности выбора используемого материала. Далее, могут быть применены разнообразные соединения, имеющие эмиссию в различных диапазонах длин волн, тем самым позволяя увеличить разнообразие цветов эмиссии. Кроме того, эффективность эмиссии света может быть улучшена эффективным захватом каждого носителя заряда или экситона в эмиссионном слое 3, размещенном в середине устройства.

ФИГ.4 представляет вид в разрезе, иллюстрирующий еще один дополнительный пример органического светоизлучающего устройства согласно настоящему изобретению. ФИГ.4 представляет структуру, иллюстрированную в ФИГ.3, за исключением того, что на стороне анода 2 вводят слой-источник 7 дырок. Эта структура эффективна для улучшения адгезивности между анодом 2 и транспортирующим дырки слоем 5 или для улучшения свойства инжекции дырок, что способствует снижению напряжения, подводимого к устройству.

ФИГ.5 представляет вид в разрезе, иллюстрирующий еще один дополнительный пример органического светоизлучающего устройства согласно настоящему изобретению. ФИГ.5 представляет структуру, иллюстрированную в ФИГ.3, за исключением того, что на стороне катода 4 между эмиссионным слоем 3 и транспортирующим электроны слоем 6 вводят слой (слой 8 запирания дырок/экситонов) для блокирования перемещения дырок или экситонов. В этой структуре для слоя 8 запирания дырок/экситонов используют соединение, имеющее исключительно высокий потенциал ионизации, и она является благоприятной для улучшения эффективности эмиссии света.

Следует отметить, что каждая из ФИГ.1-5 иллюстрирует базовую конструкцию устройства и структура органического светоизлучающего устройства с использованием соединения согласно настоящему изобретению не ограничивается конструкциями, иллюстрированными в ФИГ.1-5. Например, органическое светоизлучающее устройство согласно настоящему изобретению может иметь любую из разнообразных слоистых структур, включающую: конструкцию, в которой на поверхности раздела между электродом и органическим слоем предусматривают изолирующий слой; конструкцию, в которой предусматривают адгезив или интерференционный слой; и конструкцию, в которой транспортирующий дырки слой формируют из двух слоев с различными потенциалами ионизации.

Конденсированное полициклическое соединение, представленное общей формулой (I) и используемое в настоящем изобретении, может быть применено в любой из конструкций, иллюстрированных в ФИГ.1-5.

В частности, когда органический слой с использованием соединения согласно настоящему изобретению формируют способом осаждения в вакууме, способом нанесения покрытия из раствора или тому подобным, слой практически не кристаллизуется и имеет превосходную стабильность во времени.

В настоящем изобретении конденсированное полициклическое соединение, представленное общей формулой (I), используют в особенности в качестве компонента эмиссионного слоя. В дополнение, при необходимости вместе с ним может быть применено общеизвестное соединение, такое как транспортирующее дырки соединение с низкой молекулярной массой или на основе полимера, люминесцентное соединение или транспортирующее электроны соединение.

Примеры транспортирующего дырки соединения включают: производное триариламина; производное фенилендиамина; производное триазола; производное оксадиазола; производное имидазола; производное пиразолина; производное пиразолона; производное оксазола; производное флуоренона; производное гидразона; производное стильбена; производное фталоцианина; производное порфирина; поливинилкарбазол; полисилилен; политиофен и другие электропроводные полимеры.

Примеры люминесцентного соединения кроме ароматического соединения с конденсированными циклами согласно настоящему изобретению включают: производное нафталина, производное фенантрена, производное флуорена, производное пирена, производное тетрацена, производное коронена, производное хризена, производное перилена, производное 9,10-дифенилантрацена, рубрен, производное хинакридона, производное акридона, производное кумарина, производное пирана, Нильский красный, производное пиразина, производное бензимидазола, производное бензтиазола, производное бензоксазола и производное стильбена; металлоорганический комплекс (например, алюминийорганический комплекс, такой как трис(8-хинолинолато)алюминий; и бериллийорганический комплекс), и полимерное производное, включающее полифениленвиниленовое производное, полифлуореновое производное, полифениленовое производное, политиениленвиниленовое производное и полиацетиленовое производное.

Примеры транспортирующего электроны соединения включают производное оксадиазола, производное оксазола, производное тиазола, производное тиадиазола, производное пиразина, производное триазола, производное триазина, производное перилена, производное хинолина, производное хиноксалина, производное флуоренона, производное антрона, производное фенантролина и металлоорганический комплекс.

Примеры материала, который составляет анод, включают: металлический элемент, такой как золото, платина, серебро, медь, никель, палладий, кобальт, селен, ванадий или вольфрам; их сплав и оксид металла, такой как оксид олова, оксид цинка, оксид индия, оксид индия-олова (ITO) или оксид индия-цинка. Далее, может быть также использован электропроводный полимер, такой как полианилин, полипиррол, политиофен или полифениленсульфид. Каждый из этих электродных материалов может быть применен по отдельности, или же два или более сортов их могут быть использованы в комбинации. Кроме того, анод может иметь однослойную структуру или многослойную структуру.

Примеры материала, который составляет катод, включают: металлический элемент, такой как литий, натрий, калий, кальций, магний, алюминий, индий, рутений, титан, марганец, иттрий, серебро, свинец, олово или хром; и их сплав, такой как литий-индиевый сплав, натрий-калиевый сплав, магний-серебряный сплав, литий-алюминиевый сплав, магний-алюминиевый сплав или магний-индиевый сплав. Может быть также применен оксид металла, такой как оксид индия-олова (ITO). Каждый из этих электродных материалов может быть применен по отдельности, или же два или более типов их могут быть использованы в комбинации. Кроме того, катод может иметь однослойную структуру или многослойную структуру.

Подложка, используемая в настоящем изобретении, не является в особенности ограниченной, но примеры ее включают: непрозрачную подложку, такую как металлический субстрат или керамический субстрат; и прозрачную подложку, такую как стеклянный субстрат, кварцевый субстрат или субстрат из листового пластика.

В дополнение, подложка может иметь пленочный цветовой фильтр, пленочный флуоресцентный цветокорректирующий фильтр, диэлектрическую отражающую пленку или тому подобные для регулирования цвета люминесценции. В дополнение, на подложке может быть создан тонкопленочный транзистор (TFT) как переключающее устройство и затем устройство, которое может регулировать включение/выключение эмиссии света, может быть создано соединением с TFT. В этом случае может быть реализован так называемый активный драйвер. Конечно, излучает ли свет или нет органическое светоизлучающее устройство согласно настоящему изобретению, может управляться так называемым пассивным драйвером (драйвер пассивной матрицы).

Альтернативно органическое светоизлучающее устройство согласно настоящему изобретению может управляться одним из методов “duty drive” и “static (direct) drive”.

Что касается направления эмиссии устройства, то устройство может иметь структуру с нижней эмиссией (конструкция, в которой свет излучается со стороны подложки) или структуру с верхней эмиссией (топ-эмиссией) (конструкция, в которой свет излучается со стороны, противоположной подложке).

В дополнение, может быть применена следующая процедура: многочисленные органические светоизлучающие устройства согласно настоящему изобретению помещают на одну и ту же подложку, и каждое из них используют как пиксель. В этом случае может быть дополнительно предусмотрен управляющий блок для управления каждым пикселем. В дополнение, в этом случае может быть создано дисплейное устройство, имеющее любое такое органическое светоизлучающее устройство в качестве пикселя в любой из его пиксельных частей. Дисплейное устройство, например, представляет собой тонкий дисплей. Альтернативно дисплейное устройство может быть использовано в функциональной части устройства для формирования электрофотографического изображения.

Как описано выше, органическое светоизлучающее устройство согласно настоящему изобретению может быть использовано в любом из многообразных вариантов применения. Примеры многообразных вариантов применения включают вышеописанные дисплей и устройство для формирования электрофотографического изображения. Примеры дополнительно включают создающие изображение устройства, такие как цифровая фотокамера и цифровая видеокамера. Альтернативно органическое светоизлучающее устройство может быть, например, смонтировано на дисплее, установленном в транспортном средстве, таком как автомобиль (таком, как четырехколесный автомобиль или двухколесный транспорт) или поезд. Альтернативно может быть предусмотрено осветительное устройство, имеющее органическое светоизлучающее устройство в качестве его источника света, или устройство для формирования электрофотографического изображения, имеющее органическое светоизлучающее устройство в качестве экспозиционного источника света.

Далее настоящее изобретение описано более конкретно с привлечением примеров, но настоящее изобретение не ограничивается этими примерами.

ПРИМЕР 1

Синтез Примерного Соединения 3-15

(а) Синтез Промежуточного Соединения 4-1

20,0 г (87,6 ммоль) хризена, 46,7 г (350 ммоль) хлорида алюминия и 400 мл дихлорметана поместили в трехгорлую колбу емкостью 500 мл. В процессе перемешивания смеси в атмосфере азота при температуре -78°С к смеси прибавляли по каплям 55,6 г (438 ммоль) оксалилхлорида. После этого полученную смесь перемешивали в течение 30 минут и затем ее температуру повысили до комнатной температуры в течение 2 часов. Реакционный раствор вылили в 4 л ледяной воды, в то же время перемешивая ледяную воду. Полученное твердое вещество отделили фильтрованием, и затем диспергировали в 100 мл метанола и промыли таковым. Твердое вещество отфильтровали и высушили при нагревании в вакууме, в результате чего получили 21,5 г Промежуточного Соединения 4-1 (оранжевый порошок) (выход 87%).

(b) Синтез Промежуточного Соединения 4-3

2,01 г (7,10 ммоль) Соединения 4-1, 1,50 г (7,13 ммоль) Соединения 4-2 и 100 мл этанола поместили в трехгорлую колбу емкостью 200 мл. При перемешивании смеси в атмосфере азота при комнатной температуре, к смеси по каплям добавляли 25 мл водного раствора, в котором растворили 4,00 г гидроксида калия. Затем температуру полученной смеси повысили до 75°С и затем смесь перемешивали в течение 1 часа и 30 минут. После охлаждения реакционной жидкости твердый осадок отделили фильтрованием и высушили, в результате чего получили 3,08 г Промежуточного Соединения 4-3 (зеленый порошок) (выход 95%).

(с) Синтез Промежуточного Соединения 4-4

4,00 г (8,76 ммоль) Соединения 4-3, 1,26 г (9,19 ммоль) антраниловой кислоты, 1,50 мл (11,2 ммоль) изоамилнитрита и 300 мл толуола поместили в трехгорлую колбу емкостью 500 мл. В атмосфере азота температуру смеси повысили до 85°С и затем смесь перемешивали в течение 2 часов. После охлаждения реакционной жидкости добавили воду к реакционной жидкости и смесь подвергли двухфазной экстракции. Органическую фазу высушили над безводным сульфатом натрия и затем очистили в колонке с силикагелем (с использованием смеси толуола и гептана в качестве проявляющего растворителя), в результате чего получили 2,27 г Промежуточного Соединения 4-4 (желтый порошок) (выход 51%).

(d) Синтез Промежуточного Соединения 4-5

1,00 г (1,98 ммоль) Соединения 4-4, 1,06 г (7,92 ммоль) хлорида алюминия и 50 мл дихлорметана поместили в трехгорлую колбу емкостью 100 мл. В процессе перемешивания смеси в атмосфере азота при температуре -78°С к смеси прибавляли по каплям 1,26 г (9,90 ммоль) оксалилхлорида. После этого полученную смесь перемешивали в течение 30 минут и затем ее температуру повысили до комнатной температуры в течение 2 часов. Реакционный раствор вылили в 1 л ледяной воды, в то же время перемешивая ледяную воду. Полученное твердое вещество отделили фильтрованием и затем диспергировали в 30 мл метанола и промыли таковым. Твердое вещество отфильтровали и высушили при нагревании в вакууме, в результате чего получили 1,11 г Промежуточного Соединения 4-5 (оранжевый порошок) (выход 100%).

(е) Синтез Промежуточного Соединения 4-7

1,11 г (1,98 ммоль) Соединения 4-5, 0,856 г (1,97 ммоль) Соединения 4-6, 100 мл этанола и 10 мл толуола поместили в трехгорлую колбу емкостью 200 мл. При перемешивании смеси в атмосфере азота при комнатной температуре к смеси по каплям добавляли 5 мл водного раствора, в котором растворили 1,11 г гидроксида калия. Затем температуру полученной смеси повысили до 75°С и затем смесь перемешивали в течение 1 часа и 30 минут. После охлаждения реакционной жидкости твердый осадок отделили фильтрованием и высушили, в результате чего получили 0,87 г Промежуточного Соединения 4-7 (зеленый порошок) (выход 46%).

(f) Синтез Примерного Соединения 3-15

0,87 г (0,91 ммоль) Соединения 4-7, 8,38 г (91 ммоль) 2,5-норборнадиена и 40 мл уксусного ангидрида поместили в трехгорлую колбу емкостью 200 мл. В атмосфере азота температуру смеси повысил