Способ (варианты) и средство для модификации пищевого поведения

Иллюстрации

Показать все

Группа изобретений относится к медицине и может быть использована для модификации пищевого поведения у субъекта. Для этого осуществляют периферическое введение субъекту PYY в количестве, эффективном для достижения физиологических уровней PYY3-36 в крови, плазме или сыворотке, определяемых после приема пищи. Или осуществляют периферическое введение субъекту агониста PYY в количестве, эффективном для имитации физиологических уровней PYY3-36 в крови, плазме или сыворотке, определяемых после приема пищи с модификацией пищевого поведения, посредством уменьшения потребления калорий, потребления пищи или снижения аппетита или увеличения энергозатрат у субъекта. Также предложено применение PYY или его агониста в качестве активного ингредиента при производстве лекарственного средства. Группа изобретений обеспечивает снижение веса у субъекта за счет уменьшения потребления калорий, снижения аппетита или увеличения энергозатрат у субъекта. 3 н. и 47 з.п. ф-лы, 9 ил., 6 пр.

Реферат

Область техники, к которой относится изобретение

Данное изобретение относится к способам модификации пищевого поведения и применению агентов для контроля аппетита, питания, потребления пищи, затрат энергии и потребления калорий, в особенности в случае ожирения.

Соответствующие исследования были осуществлены при поддержке правительства Соединенных Штатов в соответствии с грантами Национального Института здоровья RR00163, DK51730 и DK55819. Правительство Соединенных Штатов имеет определенные права на данное изобретение.

Уровень техники

Согласно данным Государственной службы инспекции здравоохранения и питания (National Health и Nutrition Examination Survey) (NHANES III, 1988-1994), от одной трети до половины мужчин и женщин в США имеют избыточную массу тела. В США шестьдесят процентов мужчин и пятьдесят один процент женщин в возрасте 20 лет и старше либо имеют избыточную массу тела, либо страдают ожирением. Кроме того, в США большой процент детей имеют избыточную массу тела или ожирение.

Причина ожирения является комплексной и многофакторной. Растет количество данных, которые позволяют предположить, что ожирение - это не просто проблема самоконтроля, но комплексное нарушение, включающее регуляцию аппетита и энергетический обмен. Кроме того, ожирение связано с множеством состояний, ассоциированных с повышенной заболеваемостью и смертностью населения. Хотя этиология ожирения окончательно не установлена, полагают, что в ней участвуют генетические, метаболические, биохимические, культурные и психологические факторы. Как правило, ожирение описывали как состояние, при котором избыток жира в организме является фактором риска для здоровья субъекта.

Имеется строгое доказательство того, что ожирение связано с повышенной заболеваемостью и смертностью. Риск развития заболевания, такой как риск развития сердечно-сосудистого заболевания и риск развития диабета типа 2, возрастает независимо с повышением индекса массы тела (ВМ1). В самом деле данный риск количественно оценен как повышение на пять процентов риска развития сердечных заболеваний у женщин и повышение на семь процентов риска развития сердечных заболеваний у мужчин для каждого пункта ВМ1, превышающего 24,9 (см. статьи Kenchaiah и соавт., N. Engl. J. Med. 347:305, (2002); Massie, N. Engl. J. Med. 347:358, (2002)). Кроме того, существует достаточно доказательств того, что снижение массы тела у субъектов с ожирением уменьшает факторы риска серьезных заболеваний. Даже небольшое снижение массы тела, такое как 10% от исходной массы тела у взрослых субъектов, как с избыточной массой тела, так и с ожирением, было связано со снижением факторов риска, например, гипертензии, гиперлипидемии и гипергликемии.

Несмотря на то что диета и физические упражнения являются простым способом уменьшения набора массы тела, субъекты с избыточной массой тела и ожирением зачастую не могут в достаточной мере контролировать данные факторы с целью эффективной потери массы тела. Существует возможность фармакотерапии. Управлением по контролю за продуктами и лекарствами одобрен ряд лекарственных препаратов для снижения массы тела, которые могут быть использованы как часть комплексной программы снижения массы тела. Однако многие из данных лекарственных препаратов имеют серьезные вредные побочные эффекты. При неэффективности использования менее инвазивных способов и при наличии высокого риска для пациента развития связанных с ожирением заболеваний или смерти вариантом выбора для тщательно отобранных пациентов с клинически тяжелым ожирением является хирургическое вмешательство, направленное на снижение массы тела. Впрочем, данные способы лечения входят в область высокого риска и пригодны для использования только на ограниченном числе пациентов. Не только субъекты с ожирением желают снижения массы тела. Люди с массой тела, находящейся в рекомендованных границах, например в верхней области рекомендованного интервала, могут иметь желание снизить массу своего тела с целью приближения ее к идеальной массе тела. Таким образом, остается потребность в агентах, которые могут быть использованы для воздействия на массу тела у субъектов с избыточной массой тела или ожирением.

Раскрытие изобретения

В данном контексте представлены сведения о том, что периферическое введение субъекту PYY или его агониста в результате приводит к пониженному поглощению пищи, потреблению калорий и аппетиту, а также изменению энергетического обмена. Субъект может быть представлен любым субъектом, включающим, но без ограничения перечисленным, человека. В ряде вариантов осуществления субъект, желающий потерять массу тела, имеет ожирение, избыточную массу тела или страдает от нарушения, связанного с массой тела. Предпочтительным может быть введение субъекту PYY3-36.

В одном из вариантов осуществления описан способ снижения потребления калорий у субъекта. Способ включает периферическое введение субъекту терапевтически эффективного количества PYY или его агониста для снижения, таким образом, потребления субъектом калорий.

В другом варианте осуществления описан способ снижения аппетита у субъекта. Способ включает периферическое введение терапевтически эффективного количества PYY или его агониста субъекту для снижения таким образом аппетита у субъекта.

В следующем варианте осуществления описан способ снижения поглощения пищи у субъекта. Способ включает периферическое введение терапевтически эффективного количества PYY или его агониста субъекту для снижения таким образом поглощения пищи у субъекта.

В еще одном варианте осуществления в данном контексте описан способ повышения затрат энергии у субъекта. Способ включает периферическое введение терапевтически эффективного количества PYY или его агониста субъекту для повышения таким образом затрат энергии у субъекта.

Описан также способ снижения потребления калорий, поглощения пищи или аппетита у субъекта-человека. Способ включает периферическое инъекционное введение субъекту терапевтически эффективного количества PYY или его агониста в фармацевтически приемлемом носителе в пульсовой дозе для снижения таким образом потребления калорий, поглощения пищи или аппетита у субъекта.

В данном контексте представлены сведения о том, что периферическое введение субъекту антагониста PYY в результате дает повышение поглощения пищи, потребления калорий и аппетита, а также изменение энергетического обмена. Субъект может быть любым субъектом, включая, но без ограничения перечисленным, человека. В некоторых вариантах осуществления субъект желает увеличить массу тела или страдает от анорексии или кахексии.

Вышеуказанные и иные признаки и преимущества будут более очевидны из последующего детального описания некоторых вариантов осуществления, которому предшествует ссылка на сопровождающие фигуры.

Краткое описание чертежей

На Фигуре 1 представлен набор диаграмм и цифровых изображений, демонстрирующих получение трансгенных мышей, экспрессирующих EGFP (белка зеленой флуоресценции) в РОМС (проопиомеланокортиновых) нейронах ARC (дугообразного ядра). Фигура 1 представляет собой схематическую диаграмму структуры трансгена POMC-EGFP. На Фигуре 1а представлено цифровое изображение, показывающее идентификацию одного РОМС нейрона (показано стрелкой) с помощью флуоресценции EGFP (вверху) и IR-DIC-микроскопии (внизу) в живом срезе ARC перед регистрацией электрофизиологических данных. На Фигуре 1с представлен набор цифровых изображений, демонстрирующий колокализацию (светлые, справа) иммунореактивности EGFP (слева) и β-эндорфина (в середине) в нейронах РОМС дугообразного ядра. Столбики, показывающие масштаб изображения: b и с, 50 мкм. На Фигуре 1d представлен набор диаграмм, показывающий распространение EGFP-положительной сомы нейронов в ядре ARC. O = 5 клеток, • = 10 клеток.

На Фигуре 2 представлены запись регистрирующего прибора и графики, демонстрирующие, что активация MOP-Rs приводит к гиперполяризации нейронов РОМС, меченных EGFP, путем открывания G-белок-связанных калиевых каналов внутренней регуляции. На Фигуре 2а представлена запись регистрирующего прибора, которая показывает, что met-энкефалин приводит к гиперполяризации нейронов РОМС и ингибирует все потенциалы действия. Горизонтальная полоса показывает время, в которое 30 мМ Met-Enk наносят на срез путем погружения. На Фигуре 2b представлен график, демонстрирующий сдвиг тока met-энкефалина и потенциала реверсии под воздействием внеклеточной концентрации K+. На Фигуре 2с представлен график, показывающий, что met-энкефалин активирует MOP-R на нейронах РОМС. Наблюдают ток Met-Enk (30 мкМ) и в течение 1 минуты воздействуют MOP-R-специфическим антагонистом СТАР (1 мкМ). Дальнейшее воздействие СТАР Met-Enk не вызывает ток. Фигура представляет данные по трем экспериментам.

На Фигуре 3 представлены записи регистрирующих приборов и графики, демонстрирующие, что лептин деполяризует нейроны РОМС, действуя через неспецифический катионный канал, и снижает ГАМКергический сигнал на клетках РОМС. На Фигуре 3а представлены записи регистрирующих приборов, демонстрирующие, что лептин деполяризует нейроны РОМС и повышает частоту потенциалов действия в интервале от 1 до 10 минут после введения. Фигура является репрезентативным примером записей, сделанных по 77 нейронам РОМС. На Фигуре 3b представлен график, показывающий, что лептин вызывает зависимую от концентрации деполяризацию клеток РОМС. Деполяризацию, вызываемую лептином, определяют как 0,1, 1, 10, 50 и 100 нМ (ЕС50=5,9 нМ) в (8, 7, 9, 3, 45) клетках, соответственно. На Фигуре 3с представлен график, показывающий, что лептин деполяризует клетки РОМС путем активации неспецифического катионного тока. Фигура представляет реакцию в 10 клетках. На Фигуре 3d представлен график, показывающий, что лептин снижает частоту IPSCS в клетках РОМС. На Фигуре в качестве примера приведено 5 клеток, в которых лептин (в концентрации 100 нМ) снижает частоту IPSCS. На Фигуре 3е представлены записи регистрационных приборов, демонстрирующие, что лептин не действует на 5 соседних нефлуоресцентных нейронов ARC. На Фигуре 3f приведены записи регистрационных приборов, показывающие, что лептин вызывает гиперполяризацию 5 нефлуоресцентных нейронов ARC.

На Фигуре 4 представлен набор изображений, показывающий, что ГАМКергические вводы в клетки РОМС происходят из нейронов NPY, которые коэкспрессируют ГАМК. На Фигуре 4а приведен график, демонстрирующий, что NPY повышает частоту miniIPSCS в нейронах РОМС. На Фигуре 4b представлен график, демонстрирующий, что D-Trp8-yMSH (7 нМ), в дозе, которая селективно активирует MC3-R, повышает частоту ГАМКергических IPSCS в нейронах РОМС. На Фигуре 4с представлены записи регистрационных приборов, показывающие, D-Trp8-yMSH вызывает гиперполяризацию нейронов РОМС. Фигуры 4а, 4b и 4с являются репрезентативными. На Фигуре 4d представлен набор цифровых изображений, демонстрирующих экспрессию NPY в нервных окончаниях, прилежащих к нейронам РОМС в ARC. Нервные окончания NPY (черные, указаны стрелками); сома нейронов РОМС (показана серым). Столбик, показывающий масштаб, имеет размер 10 мкм. На Фигуре 4е приведено цифровое изображение, демонстрирующее экспрессию ГАМК и NPY в нервных окончаниях с синапсами на нейронах в ARC. Иммунореактивность ГАМК (частицы золота размером 10 нм, стрелки без хвостового оперения) и иммунореактивность NPY (частицы золота размером 25 нм, стрелки с хвостовым оперением) находятся в раздельных популяциях везикул, колокализованных в синаптических бутонах, которые обеспечивают непосредственный контакт с сомой нейронов РОМС (DAB при контрастировании уранилацетатом и цитратом свинца, диффузное черное окрашивание цитоплазмы). Столбик, указывающий масштаб, 1 мкм. На Фигуре 4f представлена диаграмма модели NPY/ГАМК и нейронов РОМС в ARC.

На Фигуре 5 представлен набор графиков, касающихся пищевой реакции крыс на PYY3-36. На Фигуре 5а приведен график в виде столбиков питания в темной фазе, сводящий данные по поглощению пищи после внутрибрюшинной инъекции PYY3-36. Крысам со свободным доступом к пище инъекционным путем вводили PYY3-36 в указанных дозах (мкг/100 г) или физиологический раствор непосредственно перед выключением света и измеряли кумулятивное поглощение пищи за 4 часа. Результаты представляют как среднее значение ± s.e.m. (стандартная ошибка) (n=8/группу), *=p<0,05, **=p<0,01, ***=<0,001 относительно физиологического раствора. На Фигуре 5b представлен график в виде столбиков, отражающий поглощение пищи после внутрибрюшинной инъекции PYY3-36. Подвергнутым голоданию крысам инъекционным путем вводили PYY3-36 в указанных дозах (мкг/100 г) или физиологический раствор и измеряли кумулятивное поглощение пищи за 4 часа. Результаты представляют как среднее значение ± s.e.m. (n=8/группу), *=p<0,05, **=p<0,01, ***=<0,001 относительно физиологического раствора. На Фигуре 5с представлен график в виде столбиков, отражающий кумулятивное поглощение пищи после внутрибрюшинной инъекции физиологического раствора или PYY3-36. Подвергнутым голоданию крысам инъекционным путем вводили либо физиологический раствор (черные столбики), либо PYY3-36 в дозе 5 мкг/100 г (белые столбики) и измеряли кумулятивное поглощение пищи в указанных точках времени. Результаты выражают как среднее значение ± s.e.m. (n=12/группу), **=p<0,01 относительно физиологического раствора. На Фигуре 5d приведен линейный график увеличения массы тела в период хронического лечения PYY3-36. Крысам путем внутрибрюшинной инъекции дважды в день в течение 7 дней вводили PYY3-36 в дозе 5 мкг/100 г (белые квадраты) или физиологический раствор (черные перевернутые треугольники). Увеличение массы тела вычисляли ежедневно. Результаты выражают как среднее значение ± s.e.m. (n=12/группу), **=p<0,01 относительно физиологического раствора.

На Фигуре 6 представлен набор цифровых изображений экспрессии c-fos у мышей Pomc-EGFP. На Фигурах 6а и 6b представлены цифровые изображения репрезентативных срезов (теменная область - 1,4 мм2), отражающие экспрессию c-fos в дугообразном ядре мышей Pomc-EGFP как ответ на внутрибрюшинное введение физиологического раствора (см. Фигуру 6а) или PYY3-36 (5 мкг/100 г) (см Фигуру 6b). Линия, показывающая масштаб изображения 100 мкм. 3V - третий желудочек; ARC дугообразное ядро. На Фигурах 6с и 6d представлены цифровые изображения репрезентативных срезов, демонстрирующие нейроны POMC-EGFP (см. Фигуру 6с) и иммунореактивность c-fos (см. Фигуру 6d) либо в колокализованном виде (светлые стрелки), либо отдельно друг от друга (одна более темная стрелка). Линия, показывающая масштаб изображения, 25 мкм.

На Фигуре 7 представлен набор графиков в виде столбиков, отражающий введение крысам PYY3-36 в дугообразное ядро и эффекты на питание внутрибрюшинного введения PYY3-36 мышам Y2r-null. На Фигуре 7а представлен график в виде столбиков поглощения пищи после инъекционного введения PYY3-36 в дугообразное ядро. Подвергнутым голоданию крысам инъекционным путем вводили физиологический раствор или PYY3-36 в дугообразное ядро в указанных дозах. Через 2 часа после инъекции измеряли поглощение пищи, **=p<0.01 относительно физиологического раствора. На Фигурах 7b и 7с представлены графики в виде столбиков, отражающие пищевую реакцию на PYY3-36 у мышей Y2r-null после внутрибрюшинного введения: потомству мышей дикого типа (см. Фигуру 7b) и мышам Y2r-null (см. Фигуру 7с), подвергнутым голоданию в течение 24 часов, инъецировали PYY3-36 в указанных дозах (мкг/100 г) или физиологический раствор и измеряли кумулятивное поглощение пищи в течение 4 часов. Результаты представлены как среднее значение ± s.e.m. (n=5/группу), *=p<0,05, **=p<0,01 относительно физиологического раствора.

На Фигуре 8 представлен набор изображений, касающихся электрофизиологического и нейропептидного ответа на PYY3-36 и Y2A. На Фигуре 8а представлена запись регистрирующего прибора, демонстрирующая эффект PYY3-36 (концентрация 10 нМ) на частоту потенциалов действия в нейронах РОМС (записи для цельноклеточной конфигурации; n=22) * p<0,05. PYY3-36 вводят во время D в течение 3 минут; линия базового уровня - 3 - 0 минут; PYY3-36 2-5 минуты и отмывание 8-11 минут. Вставка показывает репрезентативную запись мембранного потенциала и частоту следования импульсов потенциала действия. На Фигуре 8b представлен график, отражающий эффект PYY3-36 (в концентрации 10 нМ) на частоту следования импульсов потенциала действия в записях потенциала пэтч-клампа со свободным прикреплением к клеткам (n=8). Данные, характеризующие отдельные клетки, нормализованы относительно числа импульсов за период 200 с до добавления PYY3-36. На Фигуре 8с приведена запись регистрирующего прибора и график эффекта PYY3-36 (в концентрации 50 нМ) на спонтанные IPSCS на нейронах РОМС (n=13). На вставке показана репрезентативная запись IPSCS до и после добавления PYY3-36 (концентрация 50 нМ), соответственно. Результаты, приведенные на Фигурах 8а-8с выражают как среднее значение ± s.e.m. На Фигурах 8d и 8е приведены графики в виде столбиков, показывающие выход NPY (см. Фигуру 8d) и α-MSH (см. Фигуру 8е) из эксплантатов гипоталамуса в ответ на Y2A. Срезы гипоталамуса инкубируют с искусственным CSF (aCSF) с добавлением или без добавления 50 нМ Y2A в течение 45 минут. Результаты выражают как среднее значение ± s.e.m. (n=40), **=p<0,01, ***=p<0,001 относительно физиологического раствора.

На Фигуре 9 представлен набор графиков, показывающий эффект вливания PYY3-36 на аппетит и поглощение пищи у человека. На Фигуре 9а приведен график потребления калорий из свободно выбранных закусок через 2 часа после вливания физиологического раствора или PYY3-36. Тонкие линии показывают индивидуальные изменения в потреблении калорий у каждого субъекта при введении физиологического раствора и PYY3-36. Толстая линия отражает среднее изменение, происходящее при двух вариантах вливаний (n=12). На Фигуре 9b приведен график 24-часового потребления калорий после вливания физиологического раствора или PYY3-36. Общее потребление калорий показывают для 24-часового периода после вливания либо физиологического раствора, либо PYY3-36 на основании оценки с помощью журнала регистрации питания. Данные приведены как среднее значение ± s.e.m. (n=12), [***]=p<0,0001 относительно физиологического раствора. На Фигуре 9с представлен график учета аппетита (относительная шкала). Аналоговые визуальные системы учета (см. статью Raben и соавт., Br. J. Nutr., 73:517-30, (1995)) показывают ощущение голода во время и после вливаний. Результаты представлены как отклонение от уровня базовой линии, и они являются средними значениями + s.e.m. по всем 12 субъектам.

Список последовательностей

Последовательности нуклеиновых кислот и аминокислот, перечисленные в прилагаемом списке последовательностей, приведены с использованием стандартных буквенных сокращений для нуклеотидных оснований и буквенного кода для аминокислот, как определено в 37C.F.R. 1.822. Показана только одна нить каждой последовательности нуклеиновой кислоты, но включение комплементарной нити подразумевается в виде любой ссылки на представленную нить.

Осуществление изобретения

I. Сокращения

α-MSH: α-меланокортин-стимулирующий гормон

ARC: дугообразное ядро

EPSP: возбуждающий постсинаптический потенциал

ГАМК: γ-аминомасляная кислота

GFP, EGFP: белок зеленой флуоресценции

IPSCS: тормозной постсинаптический ток

т.п.н.: килобаз, (тысяча пар оснований)

кг: килограмм

MOP-R: мю-опиоидный рецептор

мВ: милливольт

NPY: нейропептид Y

пмоль: пикомоль

РОМС: проопиомеланокортин

RIA: радиоиммуноанализ

RPA: анализ защиты РНКазы

s.e.m: стандартная ошибка

ТН: тирозингидроксилаза

мкМ: микромольный

В: вольт

Y2A: N-aцeтил(Leu28,Leu31)NPY(24-36)

II. Термины

Если не указано иначе, технические термины используют в соответствии с принятой в данной области их трактовкой. Определения терминов, распространенных в молекулярной биологии, можно найти в монографии Benjamin Lewin, Гены V (Genes V), опубликованной Oxford University Press, (1994) (ISBN 0-19-[854287-9)]; в монографии под ред. Kendrew и соавт. Энциклопедия молекулярной биологии (The Encyclopedia of Molecular Biology), опубликованной Blackwell Science Ltd., (1994) (ISBN 0-632-02182-9) и монографии под ред. Robert A. Meyers, Полный настольный справочник по молекулярной биологии и биотехнологии (Molecular Biology и Biotechnology: a Comprehensive Desk Reference), опубликованный VCH Publishers, Inc., (1995) (ISBN 1-56081-569-8).

Для облегчения экспертизы различных вариантов осуществления данного открытия представлены следующие объяснения специальных терминов.

Потенциал действия: быстро распространяющийся электрический сигнал, который проходит по аксону нейрона и над поверхностной мембраной многих мышечных и железистых клеток. В аксонах они короткие, проходят с постоянной скоростью и поддерживают постоянную амплитуду. Как все электрические сигналы центральной нервной системы, потенциал действия представляет собой изменение мембранного потенциала, вызываемое потоком ионов, проходящим через мембранные каналы. В одном из вариантов осуществления потенциал действия является регенеративной волной проницаемости натрия.

Животное: живые многоклеточные позвоночные организмы категории, которая включает, например, млекопитающих и птиц. Термин млекопитающее включает как человека, так и млекопитающих, отличных от человека. Аналогично термин "субъект" включает как человека, так и объекты ветеринарии.

Анорексия: Недостаток или потеря аппетита, вызываемого пищей. В одном из вариантов осуществления анорексия является результатом "нервной анорексии". Это пищевое нарушение, в основном поражающее женщин обычно в начале периода полового созревания. Оно характеризуется отказом от поддержания нормальной минимальной массы тела, сильным страхом увеличения массы тела или ожирения и беспокойством по поводу внешнего вида тела, что в результате дает ощущение того, что некоторые части тела толстеют или стали толстыми даже в случаях сильного истощения, неоправданную уверенность в собственной оценке массы или формы тела и вызывает аменорею. Сопутствующие признаки часто включают отрицание заболевания и невосприимчивость к психотерапии, симптомы депрессии, значительно пониженное либидо и обсессию (навязчивую идею) или специфическое поведение в отношении пищи, такое как запасание пищи. Нарушение разделяют на два подтипа - ограничивающий тип, при котором снижение массы тела достигается в основном путем диеты или физических упражнений, и тип, связанный с перееданием/очищением организма, при котором поведение переедания или очищения также происходят регулярно.

Антагонист: Субстанция, тенденцией активности которой является отмена действия другой, как в случае агента, который связывает клеточный рецептор, не вызывая биологической реакции, блокируя связывание субстанций, которые могли бы вызвать такие реакции.

Аппетит: Естественное желание или стремление к пище. В одном из вариантов осуществления, аппетит измеряют путем обследования с целью оценки желания пищи. Повышенный аппетит, как правило, приводит к усилению пищевого поведения.

Препараты для подавления аппетита: Соединения, снижающие желание пищи. Имеющиеся в продаже препараты для подавления аппетита включают без ограничения перечисленным амфепрамон (диэтилпропион), фентермин, мазиндол и фенилпропаноламин фенфлурамин, дексфенфлурамин и флуоксетин.

Связывание: Специфическое взаимодействие между двумя молекулами такое, что две молекулы взаимодействуют. Связывание может быть специфическим и избирательным, при этом одна молекула имеет преимущество в связывании по сравнению с другой молекулой. В одном из вариантов осуществления специфическое связывание идентифицируют по константе диссоциации (Kd).

Индекс массы тела (ВМI): Математическая формула для измерения массы тела, иногда также называемая индексом Quetelet. BMI вычисляют путем деления массы тела (в кг) на рост2 (в м2). Согласно современным стандартам как для мужчин, так и для женщин за "нормальный" принимают ВМI 20-24,9 кг/м2. В одном из вариантов осуществления ВМI, превышающий 25 кг/м2, может быть использован для идентификации ожирения у субъекта. Ожирение I степени соответствует ВМI 25-29,9 кг/м2. Ожирение II степени соответствует ВМI 30-40 кг/м2, и ожирение III степени соответствует ВМI более 40 кг/м2 (см. статью Jequier, Am. J. Clin. Nutr., 45: 1035-47, (1987)). Идеальная масса тела будет варьировать у видов и отдельных лиц в зависимости от роста, телосложения, структуры костей и пола.

c-fos: Клеточный гомолог вирусного онкогена v-fos, обнаруженного в FBJ (Finkel-Biskis-Jinkins) и вирусах мышиной остеосаркомы FBR (MSV). Человеческий ген fos картируется на хромосоме 14q21-q31. Человеческий fos идентифицирован как TIS-28. Считают, что c-fos играет важную роль в сигнальной трансдукции, пролиферации и дифференцировке клеток. Он является ядерным белком, который в комбинации с другими факторами транскрипции (например, jun) действует как транс-активирующий регулятор экспрессии генов. C-fos представляет собой ген немедленного раннего ответа, который, как полагают, играет ключевую роль в раннем ответе клеток на факторы роста. C-fos также участвует в контроле клеточного роста и дифференцировки эмбриональных гемопоэтических клеток и нервных клеток. Известны кодирующие последовательности аминокислот и нуклеиновых кислот человеческого c-fos (например, см. работу Verma и соавт., Cold Spring Harb. Symp. Quant. Biol., 51:949, (1986); GenBank, регистрационные номера K00650 и М 16287, а информацию в Интернете).

Кахексия: Общее физическое истощение и неправильное питание, которые зачастую связаны с хроническим болезненным процессом. Кахексию часто отмечают у пациентов, больных раком, СПИДом или другими заболеваниями. Кахексия включает без ограничения перечисленным 1) раковую кахексию, наблюдаемую в случаях злокачественной опухоли; 2) сердечную кахексию - истощение, обусловленное сердечным заболеванием, которое обычно обусловлено сочетанием повышенного расхода калорий и пониженного потребления или использования калорий; 3) фторную кахексию, отмечаемую при флюорозе; 4) гипофизарную кахексию; 5) кахексию, связанную с недостаточностью функции гипофиза - комплекс симптомов, происходящих от общей депривации функции гипофиза, включая туберкулез, потерю половой функции, атрофию желез, связанных с гипофизом, брадикардию, гипотермию, апатию и кому; 6) малярийную кахексию - группу физических признаков хронического характера, которые обусловлены предшествующими приступами тяжелой малярии; 7) меркуриализм, наблюдаемый при хроническом отравлении ртутью; 8) гипофизарную кахексию (болезнь Симмондса); 9) свинцовую кахексию, наблюдаемую при хроническом отравлении свинцом; 10) супраренальную кахексию, связанную с болезнью Аддисона и 11) уремическую кахексию, связанную с другими системными симптомами хронической почечной недостаточности.

Калорийность или потребление калорий: Количество калорий (энергии), потребляемой отдельным лицом.

Калория: Единица измерения пищи. Стандартную калорию определяют как 4,184 абсолютных джоулей или количество энергии, необходимое для того, чтобы повысить температуру одного грамма воды от 15 до 16°С (или 1/100 количества энергии, необходимой для повышения температуры одного грамма воды при давлении в 1 атмосферу от 0°С до 100°С. Пищевая калория фактически равна 1000 стандартных калорий (1 пищевая калория = 1 килокалории).

Консервативная вариация: Замена одного остатка аминокислоты другим, биологически близким остатком. Примеры консервативных вариаций включают замену одного гидрофобного остатка, такого как изолейцин, валин, лейцин или метионин, другим, или замену аргинина лизином, или замену одного полярного остатка другим, такую как замена аргинина лизином, глутаминовой кислоты аспарагиновой кислотой или глутамина аспарагином и т.п. Термин "консервативная вариация" включает также использование замещенной аминокислоты вместо незамещенной исходной аминокислоты при условии, что антитела, образующиеся к замещенному полипептиду иммунореактивны также с незамещенным полипептидом.

Неограничивающие примеры консервативных замен аминокислот включают нижеперечисленные замены:

Исходный остаток Консервативные замены
Ala Ser
Arg Lys
Asn Gln, His
Asp Glu
Cys Ser
Gln Asn
Glu Asp
His Asn; Gln
Ile Leu, Val
Leu Ile; Val
Lys Arg; Gln; Glu
Met Leu; Ile
Phe Met; Leu; Tyr
Ser Thr
Thr Ser
Trp Tyr
Tyr Trp; Phe
Val Ile; Leu

Деполяризация: Повышение мембранного потенциала клетки. Некоторые стимулы снижают заряд в плазматической мембране. Они могут быть представлены электрическими стимулами (которые открывают потенциал-регулируемые каналы), механическими стимулами (которые активируют механически регулируемые каналы) или определенными нейромедиаторами (которые открывают лиганд-регулируемые каналы). В каждом случае облегченная диффузия натрия в клетки повышает потенциал покоя в той точке на клетке, которая создает возбуждающий постсинаптический потенциал (EPSP). Деполяризации могут быть также созданы путем снижения частоты тормозных постсинаптических токов (IPSCs), которые с помощью ингибирующих нейромедиаторов способствуют притоку ионов хлорида в клетку, создавая IPSC. При повышении потенциала до порогового напряжения (приблизительно 50 мВ в нейронах млекопитающих) в клетке происходит генерация потенциала действия.

Диабет: Неспособность клеток транспортировать через мембраны эндогенную глюкозу как вследствие эндогенной недостаточности инсулина, так и/или дефекта чувствительности к инсулину. Диабет представляет собой хронический синдром нарушения обмена углеводов, белков или жиров вследствие недостаточной секреции инсулина или устойчивости к инсулину ткани-мишени. Существует две основные формы диабета: инсулинзависимый сахарный диабет (IDDM, тип I) и неинсулинзависимый сахарный диабет (NIDDM, тип II), которые отличаются по этиологии, патологии, генетике, возрасту начала заболевания и лечению.

Обе основные формы диабета характеризуются неспособностью доставлять инсулин в количестве и в точное время, которые необходимы для контроля гомеостаза глюкозы. Диабет типа I или инсулинзависимый сахарный диабет (IDDM) обусловлен деструкцией β-клеток, которая приводит в результате к недостаточным уровням эндогенного инсулина. Диабет типа II или неинсулинзависимый диабет вызван как дефектом чувствительности организма к инсулину, так и относительной недостаточностью продукции инсулина.

Поглощение пищи: Количество пищи, употребляемой лицом. Поглощение пищи может быть измерено объемом или массой. В одном из вариантов осуществления поглощение пищи представляет собой пищу, потребляемую лицом. В другом варианте осуществления поглощение пищи представлено количеством белков, жиров, углеводов, холестерина, витаминов, минералов или любых других пищевых компонентов, потребляемых лицом. Термин "поглощение белков" относится к количеству белков, потребляемых лицом. Аналогично, термины "поглощение жиров", "поглощение углеводов", "поглощение холестерина", "поглощение витаминов" и "поглощение минералов" относятся к количеству белков, жиров, углеводов, холестерина, витаминов или минералов, употребляемых лицом.

Гиперполяризация: Снижение мембранного потенциала клетки. Ингибирующие нейромедиаторы подавляют передачу нервных импульсов посредством гиперполяризации. Данный тип гиперполяризации называют тормозным постсинаптическим потенциалом (IPSP). Несмотря на то что клетка не заряжена до порогового напряжения, для гиперполяризованной клетки необходим более сильный возбуждающий стимул для достижения порогового значения.

Тормозной постсинаптический ток: Ток, который ингибирует электрофизиологический параметр постсинаптической клетки. Потенциал постсинаптической клетки может быть проанализирован с целью определения эффекта на пресинаптическую клетку. В одном из вариантов осуществления постсинаптическую клетку поддерживают в состоянии фиксации напряжения и регистрируют постсинаптические токи. При необходимости могут быть добавлены антагонисты других классов токов. В одном конкретном неограничивающем примере с целью регистрации ГАМКергических IPSCs добавляют блокаторы возбуждающих каналов или рецепторов. Затем в течение времени определяют мгновенную частоту.

В одном из вариантов осуществления IPSCs является мерой частоты выхода ГАМК из нейрона, содержащего NPY. Поскольку нейроны, содержащие NPY выделяют ГАМК на нейроны РОМС, измерение частоты IPSCs является мерой ингибирующего сигнала, который получают нейроны РОМС, и может быть использовано для оценки эффекта агониста PYY.

Мембранный потенциал: Электрический потенциал внутренней части клетки относительно окружающей среды, такой как раствор, в котором находится клетка. Компетентный специалист в данной области легко может определить мембранный потенциал клетки, например, с помощью принятых методик с использованием целых клеток. Активация клетки связана с менее отрицательными мембранными потенциалами (например, сдвигами от приблизительно -50 мВ до приблизительно -40 мВ). Данные изменения потенциала повышают вероятность возникновения потенциалов действия и, таким образом, приводят к повышению частоты потенциалов действия.

Частоту следования потенциалов действия можно определить с помощью многих подходов, таких как использование принятой методики на основе целых клеток или, например, использование цельноклеточных конфигураций с перфорированным участком или конфигураций с прикреплением к клеткам. В каждом событии оценивают не абсолютное значение напряжения или тока, а частоту быстрых отклонений, характеризующих потенциалы действия, которую определяют как функцию времени (вследствие этого данная частота представляет собой мгновенную частоту, обозначаемую в "бинах"). Данный временной компонент может быть связан со временем, в которое соединение, такое как агонист PYY, вносят в емкость для анализа эффекта соединения, такого как агонист PYY, на частоту следования импульсов потенциала действия.

Нейропептид Y (NРY): Пептид из 36 аминокислот, который представляет собой нейропептид, идентифицированный в головном мозге человека. Считают, что NPY является важным регулятором как в центральной, так и в периферической нервной системе и воздействует на широкий круг физиологических параметров, включая эффекты на психомоторную активность, поглощение пищи, центральную эндокринную секрецию и вазоактивность сердечно-сосудистой системы. Высокие концентрации NPY обнаружены в симпатических нервах, обеспечивающих коронарную, церебральную и почечную сосудистую сеть и играющих роль в вазоконстрикции. Центры связывания NPY идентифицированы во многих тканях, включая селезенку, кишечные оболочки, головной мозг, гладкую мускулатуру аорты, почки, яичко и плаценту. Кроме того, связывающие центры описаны в ряде клеточных линий крысы и человека.

Рецептор нейропептида Y (NPY) по структуре/активности близок семейству пептидов поджелудочной железы. Данное семейство включает NPY, который преимущественно синтезируется в нейронах, пептид YY (PYY), который преимущественно синтезируется в эндокринных клетках кишки, и полипептид поджелудочной железы (РР), который преимущественно синтезируется в эндокринных клетках поджелудочной железы. Данные пептиды из 36 аминокислот имеют компактную спиральную структуру, включающую аминокислотную структуру, называемую "РР-складкой", в середине пептида.

NPY связывается с несколькими рецепторами, включая рецепторы Y1, Y2, Y3, Y4 (РР), Y5, Y6 и Y7. Данные рецепторы распознают по аффинностям связывания, фармакологии и последовательности (если она известна). Большинство, если не все из данных рецепторов представляют собой G-белок-связанные рецепторы. В целом предполагают, что рецептор Y1 является постсинаптическим и опосредует многие из известных функций нейропептида Y на периферии. Изначально данный рецептор описан, как обладающий низкой аффинностью к С-концевым фрагментам нейропептида Y, таким как фрагмент 13-36, но он взаимодействует с нейропептидом Y полной длины и пептидом YY с равной афинностью (например, см. публикацию РСТ WO 93/09227).

Фармакологически рецептор Y2 отличается от Y1 тем, что проявляет аффинность к С-конц