Автомобильный материал с превосходными характеристиками потока текучей среды, высокой жесткостью, превосходной пластичностью и низким коэффициентом линейного теплового расширения (clte)

Композиция для изготовления автомобильного материала со скоростью течения расплава MFR2 (230°С) в диапазоне от 10 до 50 г/10 мин, содержащая два гетерофазных полипропилена, в состав которых входит матрица на основе гомополимера пропилена и эластомерный сополимер, пластомер и минеральный наполнитель. При этом гетерофазные полипропилены обладают разными скоростями течения расплава: первый гетерофазный полипропилен со скоростью течения расплава MFR2 (230°С) в диапазоне от 3,0 до 30,0 г/10 мин и второй гетерофазный полипропилен с массовым содержанием растворимых в холодном ксилоле веществ (XCS) в диапазоне от 7,0 до 20,0%. Изобретение позволяет получить композицию, обладающую достаточной жесткостью, пластичностью и высокой скоростью течения расплава. 4 н. и 13 з.п. ф-лы, 2 табл.

Реферат

Настоящее изобретение относится к новой композиции полипропилена, ее использованию и изготовлению.

Благодаря возможности регулировать свойства полипропилена под необходимые требования, гетерофазные полипропилены находят самое широкое применение, например, в автомобильной промышленности (например, при изготовлении бамперов), поскольку они объединяют в себе достаточную жесткость и удовлетворительные характеристики ударной вязкости. Гетерофазные полипропилены содержат полипропиленовую матрицу, в которой диспергирована аморфная фаза. Аморфная фаза содержит сополимерный каучук пропилена, например, этилен-пропиленовый каучук (EPR) или синтетический каучук - этилен-пропилен-диен-мономер (EPDM). Кроме того, в состав гетерофазного полипропилена может входить некоторое количество кристаллического полиэтилена. В автомобильной промышленности в массовый состав таких сортов гетерофазного полипропилена входит приблизительно 30% сополимерного каучука пропилена, который обычно производится непосредственно в одном или двух газофазных реакторах или вводится в матрицу извне через этап компаундирования. Эти материалы обычно используются в сочетании с наполнителем, массовой долей 30%, в качестве которого используется, например, тальк, что в целом обеспечивает получение материала с хорошим балансом жесткости и ударной вязкости. Однако в настоящее время размеры деталей внешней отделки автомобиля становятся все больше и больше, и поэтому для того, чтобы обеспечить высокое давление во время литья под давлением, необходима высокая текучесть материала. Другим преимуществом материалов с высокой текучестью является сокращенное время цикла. Кроме того, насущной темой в автомобильной промышленности являются все возрастающие требования к сокращению расхода горючего и таким образом к снижению массы автомобилей. Снижение массы может быть получено путем уменьшения толщины стенок или плотности материала. Уменьшение толщины стенок приводит к требованию увеличить жесткость материала. С другой стороны, материал должен обладать высокой пластичностью при низких температурах, чтобы противостоять повреждениям во время парковки.

Таким образом, в настоящем изобретении предлагается материал, обладающий достаточной жесткостью и пластичностью, совмещенными с технологичностью, в частности, текучестью. Кроме того, хорошо, если у материала довольно низкий коэффициент линейного теплового расширения.

В итоге, настоящее изобретение сводится к тому, чтобы добавить к композиции, включающей гетерофазный полипропилен и минеральный наполнитель, еще один гетерофазный материал, обладающий более высокой скоростью течения расплава.

Таким образом, настоящее изобретение относится к композиции, обладающей скоростью течения расплава MFR2 (230°С), измереной согласно ISO 1133, в диапазоне от 10 до 50 г/10 мин, при этом в состав упомянутой композиции входит гетерофазный полипропилен (Н-РР1), гетерофазный полипропилен (Н-РР2), пластомер (Р) и минеральный наполнитель (F), при этом

(a) скорость течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР2), измеренная согласно ISO 1133, выше скорости течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР1), измеренной согласно ISO 1133,

(b) гетерофазный полипропилен (Н-РР1) со скоростью течения расплава MFR2 (230°С), измеренной согласно ISO 1133, в диапазоне от 3,0 до 30,0 г/10 мин, в состав которого входит

(b1) матрица (M1), состоящая из гомополимера пропилена и

(b2) эластомерный сополимер (Е1), в состав которого входят звенья, являющиеся производными пропилена и этилена и/или альфа-олефинов С4-С20,

(c) гетерофазный полипропилен (Н-РР2) с массовым содержанием веществ, растворимых в холодном ксилоле, измеренным согласно ISO 6427, в диапазоне от 7,0 до 20,0%, в состав которого входит

(с1) матрица (М2), состоящая из гомополимера пропилена, и

(с2) эластомерный сополимер (Е2), в состав которого входят звенья, являющиеся производными пропилена и этилена и/или альфа-олефинов С4-С20, и

(d) пластомер (Р), который отличается (химически) от эластомерного сополимера (Е1) и от эластомерного сополимера (Е2).

Более точно настоящее изобретение относится к композиции, обладающей скоростью течения расплава MFR2 (230°С), измеренной согласно ISO 1133, в диапазоне от 10 до 50 г/10 мин, при этом

в массовый состав упомянутой композиции входит от 20 до 40%, в соответствии с предпочтительным примером осуществления настоящего изобретения от 25 до 35% гетерофазного полипропилена (Н-РР1), от 18 до 38%, в соответствии с предпочтительным примером осуществления настоящего изобретения от 23 до 33% гетерофазного полипропилена (Н-РР2), от 12 до 30%, в соответствии с предпочтительным примером осуществления настоящего изобретения от 15 до 25% пластомера (Р), и от 15 до 30%, в соответствии с предпочтительным примером осуществления настоящего изобретения от 18 до 28% минерального наполнителя (F), остальное - композиция, в соответствии с более предпочтительным примером осуществления настоящего изобретения, остальное - компоненты Н-РР1, Н-РР2, Р и F, при этом

(a) скорость течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР2), измеренная согласно ISO 1133, выше скорости течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР1), измеренной согласно ISO 1133,

(b) гетерофазный полипропилен (Н-РР1) со скоростью течения расплава MFR2 (230°С), измеренной согласно ISO 1133, в диапазоне от 3,0 до 30,0 г/10 мин, в состав которого входит

(b1) матрица (M1), состоящая из гомополимера пропилена, и

(b2) эластомерный сополимер (Е1), в состав которого входят звенья, являющиеся производными пропилена и этилена и/или альфа-олефинов С4-С20,

(c) гетерофазный полипропилен (Н-РР2) с массовым содержанием веществ, растворимых в холодном ксилоле, измеренным согласно ISO 6427, в диапазоне от 7,0 до 20,0%, в состав которого входит

(с1) матрица (М2), состоящая из гомополимера пропилена, и

(с2) эластомерный сополимер (Е2), в состав которого входят звенья, являющиеся производными пропилена и этилена и/или альфа-олефинов С4-С20, и

(d) пластомер (Р), который отличается (химически) от эластомерного сополимера (Е1) и эластомерного сополимера (Е2).

Из описаний, посвященных различным полимерам (Н-РР1, Н-РР2, E1, E2 и Р), очевидно, что в соответствии с настоящим изобретением, они должны (химически) отличаться друг от друга. Настоящее изобретение также отличается тем, что ни вся композиция целиком, ни ее отдельные компоненты не подвергались легкому крекингу, например, с применением пероксидов. Кроме того, ни один из используемых полимеров не обладает разветвленной структурой. Другими словами индекс ветвления g' полимера целиком, используемого по настоящему изобретению, равен, по крайней мере, 0,90, в соответствии с более предпочтительным примером осуществления настоящего изобретения, по крайней мере, 0,95, например, 1,00.

Выражение "гетерофазный" указывает на то, что эластомерные сополимеры (Е1) и (E2) (мелко)диспергированы в матрице (M1) и матрице (М2), соответственно. Другими словами эластомерные сополимеры (Е1) и (E2) образуют включения в матрицу (M1) и матрицу (М2), соответственно. Таким образом, матрица (M1) и матрица (М2) содержат (мелко)диспергированные включения, не являющиеся составной частью матрицы и в состав упомянутых включений входит эластомерный сополимер (Е1) и (E2), соответственно. В соответствии с предпочтительным примером осуществления настоящего изобретения термин «включение» должен указывать на то, что матрица и включение образуют различные фазы в композиции гетерофазного полипропилена (Н-РР1) или (Н-РР2), при этом упомянутые включения, например, можно наблюдать в микроскоп высокого разрешения, например, в электронный микроскоп или сканирующий атомно-силовой микроскоп. Окончательная композиция имеет вероятно сложную структуру. Вероятно матрица (M1) и матрица (М2) образуют непрерывную фазу, являющуюся матрицей (М) композиции, в которой эластомерные сополимеры (Е1) и (E2) и пластомер (Р) образуют вместе или по отдельности диспергированные в ней включения.

Кроме того, включения окончательной композиции могут также содержать минеральный наполнитель (F); однако в соответствии с предпочтительным примером осуществления настоящего изобретения наполнитель (F) образует отдельные включения в матрицу (М). В соответствии с другим примером осуществления настоящего изобретения матрица (М) содержит (мелко)диспергированные включения, не являющиеся составной частью матрицы (М) и при этом в состав упомянутых включений входят эластомерные сополимеры (Е1), (E2) и пластомер (Р). В таком случае в соответствии с предпочтительным примером осуществления настоящего изобретения пластомер (Р) в отдельных частях может образовывать включения (мелкодипергированные) в эластомерные сополимеры.

Кроме того, в соответствии с предпочтительным примером осуществления настоящего изобретения в состав композиции входят только гетерофазный полипропилен (Н-РР1), гетерофазный полипропилен (Н-РР2) и пластомер (Р), то есть никакие другие компоненты в состав полимера не входят.

Неожиданно было обнаружено, что композиция по настоящему изобретению обладает очень хорошей текучестью, сохраняя при этом неизменными другие свойства, например, жесткость и пластичность. В частности, модуль упругости при изгибе, вязкость при низких температурах и коэффициент линейного теплового расширения отвечают требованиям, установленным автомобильной промышленностью (см. таблицу 2).

Ниже приводится более подробное описание настоящего изобретения.

Одно из требований состоит в том, чтобы окончательная композиция обладала довольно высокой скоростью течения расплава. Скорость течения расплава зависит, главным образом, от средней молекулярной массы. Это вызвано тем, что длинные молекулы сообщают материалу более низкую текучесть, чем короткие молекулы. Таким образом, увеличение молекулярной массы означает уменьшение величины MFR. Скорость течения расплава (MFR) измеряется в г/10 мин и относится к полимеру, продавливаемому через фильеру при определенной температуре и под определенным давлением, и при определенной величине вязкости полимера, на которую, в свою очередь, влияет молекулярная масса полимера, а также степень его ветвления. Скорость течения расплава, измеренная под нагрузкой 2,16 кг при 230°С (ISO 1133), обозначается как MFR2 (230°С). Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения MFR2 (230°С) композиции находится в диапазоне от 10,0 до 50,0 г/10 мин, в соответствии с предпочтительным примером осуществления настоящего изобретения от 15,0 до 40,0 г/10 мин, в соответствии с более предпочтительным примером осуществления настоящего изобретения от 17,0 до 34,0 г/10 мин, в соответствии с наиболее предпочтительным примером осуществления настоящего изобретения от 19,0 до 27,0 г/10 мин.

Кроме того, чтобы получить требуемые свойства потока расплава композиции, некоторые свойства гетерофазного полипропилена (Н-РР1) и гетерофазного полипропилена (Н-РР2) должны быть разными. Соответственно одно из требований состоит в том, чтобы скорость течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР2) была выше скорости течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР1). Говоря точнее, хорошо, если скорость течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР2) по крайней мере, на 30 г/10 мин, в соответствии с более предпочтительным примером осуществления настоящего изобретения, по крайней мере, на 50 г/10 мин, больше скорости течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР1). Соответственно, в частности, хорошо, если отношение скорости течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР1) к скорости течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР2) [MFR (Н-РР1)/MFR (Н-РР2)] находится в диапазоне от 1:4 до 1:80, в соответствии с более предпочтительным примером осуществления настоящего изобретения должно находиться в диапазоне от 1:5 до 1:50. Отличаться должны не только скорости течения расплава гетерофазных систем, но в соответствии с предпочтительным примером осуществления настоящего изобретения также и скорости течения расплава матриц соответствующих гетерофазных систем. Гетерофазная система характеризуется растворимой в холодном ксилоле фракцией (XCS) и нерастворимой в холодном ксилоле фракцией (XCI). В настоящей заявке нерастворимая в холодном ксилоле фракция (XCI) гетерофазного полипропилена в высшей степени идентична матрице упомянутого гетерофазного полипропилена. Соответственно, при обсуждении скорости течения расплава матрицы гетерофазного полипропилена имеется в виду скорость течения расплава нерастворимой в холодном ксилоле фракции (XCI) упомянутого гетерофазного полипропилена. Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения скорость течения расплава MFR2 (230°С) нерастворимой в холодном ксилоле (XCI) фракции гетерофазного полипропилена (Н-РР1), измеренная согласно ISO 1133, меньше, по крайней мере, на 80 г/10 мин, в соответствии с более предпочтительным примером осуществления настоящего изобретения меньше, по крайней мере, на 100 г/10 мин, скорости течения расплава MFR2 (230°С) нерастворимой в холодном ксилоле (XCI) фракции гетерофазного полипропилена (Н-РР2), измеренной согласно ISO 1133.

Кроме того, очевидно, что особенно подходящие композиции могут быть получены тогда, когда обе гетерофазные системы отличаются также содержанием веществ, растворимых в холодном ксилоле. Таким образом, желательно, чтобы массовое содержание растворимой в холодном ксилоле фракции (XCS) гетерофазного полипропилена (Н-РР1), измеренное согласно ISO 6427, было больше, в соответствии с предпочтительным примером осуществления настоящего изобретения, по крайней мере, больше на 8,0%, в соответствии с более предпочтительным примером осуществления настоящего изобретения, по крайней мере, больше на 11,0%, содержания растворимой в холодном ксилоле фракции (XCS) гетерофазного полипропилена (Н-РР2), измеренного согласно ISO 6427. Таким образом, хорошо, если справедлива формула (I), в соответствии с предпочтительным примером осуществления настоящего изобретения формула (Ia):

X C S   (H-PP1)  >  1 ,5 XCS  (H-PP2)             (I)

X C S   (H-PP1)  >  1 ,7 XCS  (H-PP2)             (Ia)

где XCS (Н-РР1) - массовое содержание растворимой в холодном ксилоле фракции гетерофазного полипропилена (Н-РР1), измеренное согласно ISO 6427, и XCS (Н-РР2) - массовое содержание растворимой в холодном ксилоле фракции гетерофазного полипропилена (Н-РР2), измеренное согласно ISO 6427.

Для достижения хорошего баланса между жесткостью и пластичностью отличаться должна также и характеристическая вязкость растворимых в холодном ксилоле фракций (XCS) гетерофазных полипропиленов. Таким образом, хорошо, если характеристическая вязкость (IV) растворимой в холодном ксилоле фракции (XCS) гетерофазного полипропилена (Н-РР1), измеренная согласно ISO 1268-1 (в декалине), больше характеристической вязкости (IV) растворимой в холодном ксилоле фракции (XCS) гетерофазного полипропилена (Н-РР2), измеренной согласно ISO 1268-1 (в декалине). Ниже приводится более подробная информация по характеристической вязкости двух гетерофазных полипропиленов.

Кроме того, было обнаружено, что особенно хорошие результаты достижимы в случае, если массовое содержание пропилена в гетерофазном полипропилене (Н-РР2) больше, по крайней мере, на 5,0%, массового содержания пропилена в гетерофазном полипропилене (Н-РР1).

В данной области техники гетерофазный полипропилен (Н-РР1) используется в качестве обычного материала. Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения скорость течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР1) находится в диапазоне от 3,0 до 30,0 г/10 мин, в соответствии с более предпочтительным примером осуществления настоящего изобретения в диапазоне от 7,0 до 20,0 г/10 мин, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения в диапазоне от 9,0 до 15,0 г/10 мин.

Как заявлено выше, в состав гетерофазного полипропилена (Н-РР1) по настоящему изобретению входит

(a) матрица (M1), состоящая из гомополимера пропилена, и

(b) эластомерный сополимер (Е1), в состав которого входят звенья, являющиеся производными

пропилена и

этилена и/или альфа-олефинов С4-С20.

В соответствии с предпочтительным примером осуществления настоящего изобретения массовое содержание пропилена в гетерофазном полипропилене (Н-РР1) составляет от 75,0 до 92,0%, в соответствии с более предпочтительным примером осуществления настоящего изобретения от 80,0 до 90,0% общего количества гетерофазного полипропилена (Н-РР1), в соответствии с более предпочтительным примером осуществления настоящего изобретения от содержания компонентов полимера гетерофазного полипропилена (Н-РР1), в соответствии с еще более предпочтительным примером осуществления настоящего изобретения от содержания матрицы (M1) и эластомерного сополимера (Е1) вместе. В оставшуюся часть входят сомономеры, в соответствии с предпочтительным примером осуществления настоящего изобретения - этилен.

Как определено в данном описании, в состав гетерофазного полипропилена (Н-РР1) в качестве полимерных компонентов входят только полипропиленовая матрица (M1) и эластомерный сополимер (Е1). Другими словами, в массовый состав гетерофазного полипропилена (Н-РР1) могут входить дополнительные добавки, но не другой полимер, в количестве, не превышающем 5%, в соответствии с более предпочтительным примером осуществления настоящего изобретения в количестве, не превышающем 3%, например, в количестве, не превышающем 1% от общего количества гетерофазного полипропилена (Н-РР1), в соответствии с более предпочтительным примером осуществления настоящего изобретения от общего количества полимеров в гетерофазном полипропилене (Н-РР1). Одним единственным полимером, который может присутствовать в таких малых количествах, является полиэтилен, который является продуктом реакции, получаемым при производстве гетерофазного полипропилена (Н-РР1). Соответственно, в частности, хорошо, если гетерофазный полипропилен (Н-РР1), как это определено в данном изобретении, содержит только полипропиленовую матрицу (M1), эластомерный сополимер (Е1) и, опционно, полиэтилен в таких количествах, как упомянуто в данном абзаце. Кроме того, в тексте настоящего изобретения нерастворимая в холодном ксилоле фракция (XCI) представляет матрицу (M1) и, опционно, полиэтилен гетерофазного полипропилена (Н-РР1), тогда как растворимая в холодном ксилоле фракция (XCS) представляет эластомерную часть гетерофазного полипропилена (Н-РР1), то есть эластомерный сополимер (Е1).

Соответственно массовое содержание матрицы (M1), то есть массовое содержание нерастворимой в холодном ксилоле фракции (XCI) в гетерофазном полипропилене (Н-РР1) в соответствии с предпочтительным примером осуществления настоящего изобретения должно находиться в диапазоне от 50,0 до 78,0%, в соответствии с более предпочтительным примером осуществления настоящего изобретения должно находиться в диапазоне от 55,0 до 75,0%. В том случае, если в гетерофазном полипропилене (Н-РР1) содержится полиэтилен, то массовое содержание матрицы (M1), но не массовое содержание нерастворимой в холодном ксилоле фракции (XCI), может быть немного уменьшено.

С другой стороны, массовое содержание эластомерного сополимера (Е1), то есть массовое содержание в гетерофазном полипропилене (Н-РР1) растворимых в холодном ксилоле веществ (XCS) в соответствии с предпочтительным примером осуществления настоящего изобретения должно находиться в диапазоне от 22,0 до 50,0%, в соответствии с более предпочтительным примером осуществления настоящего изобретения должно находиться в диапазоне от 25,0 до 45,0%.

Выражение «гомополимер пропилена», используемое в данном изобретении, относится к полипропилену, массовое содержание звеньев пропилена в котором составляет больше 99,5%, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения, по крайней мере, 99,7%, например, по крайней мере, 99,8%. В соответствии с предпочтительным примером осуществления настоящего изобретения в гомополимере пропилена можно обнаружить только звенья пропилена. Массовое содержание сомономера можно определить с помощью инфракрасной спектроскопии с использованием преобразования Фурье, как описано ниже в примерах.

Используемое в тексте настоящего изобретения выражение «многомодальный» или «бимодальный» относится к модальности полимера, то есть

к форме кривой распределения его молекулярной массы, которая является кривой доли молекулярной массы как функции его молекулярной массы,

и/или к форме кривой распределения массового содержания сомономера, которая является кривой массового содержания сомономера как функции молекулярной массы полимерных фракций.

Как будет объяснено ниже, гетерофазные полипропилены, также как и их отдельные компоненты (матрица и эластомерный сополимер), могут быть произведены путем смешивания полимеров разных типов, то есть полимеров разной молекулярной массы и/или с разным содержанием сомономеров. Однако в соответствии с предпочтительным примером осуществления настоящего изобретения гетерофазные полипропилены, также как и их отдельные компоненты (матрица и эластомерный сополимер), получают с помощью последовательных технологических этапов в последовательно установленных реакторах, работающих при разных реакционных условиях. В результате, каждая фракция, полученная в каждом конкретном реакторе, будет обладать своим собственным молекулярно-массовым распределением и/или распределением содержания сомономера.

Матрица (M1) гетерофазного полипропилена (Н-РР1), состоящая из гомополимера пропилена, может быть многомодальной или бимодальной с точки зрения молекулярной массы.

Кроме того, хорошо, если скорость течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР1) принимает средние значения. Как заявлено выше, скорость течения расплава MFR2 (230°С) матрицы (M1) равняется скорости течения расплава MFR2 (230°С) нерастворимой в холодном ксилоле фракции (XCI) гетерофазного полипропилена (Н-РР1). Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения скорость течения расплава MFR2 (230°С) нерастворимой в холодном ксилоле фракции (XCI) гетерофазного полипропилена (Н-РР1), измеренная согласно ISO 1133, составляет от 20,0 до 150,0 г/10 мин, в соответствии с более предпочтительным примером осуществления настоящего изобретения от 25,0 до 90,0 г/10 мин, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения от 30,0 до 75,0 г/10 мин.

В соответствии с предпочтительным примером осуществления настоящего изобретения полипропиленовая матрица (M1) изотактична. Таким образом, хорошо, если полипропиленовая матрица (M1) имеет довольно высокую концентрацию пентад, то есть выше 80%, в соответствии с более предпочтительным примером осуществления настоящего изобретения выше 85%, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения выше 90%, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения выше 92%, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения выше 93%, например, выше 95%.

Вторым компонентом гетерофазного полипропилена (Н-РР1) является эластомерный сополимер (Е1).

В соответствии с предпочтительным примером осуществления настоящего изобретения в состав эластомерного сополимера (Е1) входят звенья, являющиеся производными (i) пропилена и (ii) этилена и/или, по крайней мере, другого альфа-олефина С4-С20, например, альфа-олефина С4-С10, в соответствии с более предпочтительным примером осуществления настоящего изобретения звенья, являющиеся производными (i) пропилена и (ii) этилена и, по крайней мере, другие альфа-олефины, выбираемые из группы, в состав которой входят 1-бутен, 1-пентен, 1-гексен, 1-гептен и 1-октен. В состав эластомерного сополимера (Е1) могут также входить звенья, являющиеся производными сопряженного диена, например, бутадиена или несопряженного диена, однако в соответствии с предпочтительным примером осуществления настоящего изобретения в состав эластомерного сополимера входят звенья, являющиеся производными (i) пропилена и (ii) этилена и/или только альфа-олефинов С4-С20. В случае использования несопряженных диенов они состоят из таких неразветвленных и разветвленных ациклических диенов, как, например, 1,4-гексадиен, 1,5-гексадиен, 1,6-октадиен, 5-метил-1,4-гексадиен, 3,7-диметил-1,6-октадиен, 3,7-диметил-1,7-октадиен, и смешанные изомеры дигидромирцена и дигидрооцимена, и в случае алициклических одноядерных диенов из таких, как 1,4-циклогексадиен, 1,5-циклооктадиен, 1,5-циклододекадиен, 4-винил циклогексен, 1-аллил-4-изопропилиден циклогексан, 3-аллил циклопентен, 4-циклогексен и 1-изопропенил-4-(4-бутенил) циклогексан. Многоядерные алициклические конденсированные и мостиковые диены также подходят, включая тетрагидроинден, метилтетрагидроинден, дициклопентадиен, бицикло (2,2,1) гепта-2,5-диен, 2-метил бициклогептадиен, и алкенил, алкилиден, циклоалкенил и циклоалкилиден норборнены, например, 5-метилен-2-норборнен, 5-изопропилиден норборнен, 5-(4-циклопентенил)-2-норборнен; и 5-циклогексилиден-2-норборнен. В соответствии с предпочтительным примером осуществления настоящего изобретения в качестве несопряженных диенов используются: 5-этилиден-2-норборнен, 1,4-гексадиен и дициклопентадиен.

Соответственно в состав эластомерного сополимера (Е1) входят, по крайней мере, звенья, являющиеся производными пропилена и этилена, и могут входить другие звенья, являющиеся производными еще одного альфа-олефина, как говорится в предыдущем абзаце. Однако, в частности, в соответствии с предпочтительным примером осуществления настоящего изобретения в состав эластомерного сополимера (Е1) входят звенья, являющиеся производными только пропилена и этилена и, опционно, сопряженного диена, например, бутадиена или несопряженного диена, как говорится в предыдущем абзаце, например, 1,4-гексадиен. Таким образом, в соответствии с особо предпочтительным примером осуществления настоящего изобретения в качестве эластомерного сополимера (Е1) используется полимер - этилен-пропилен-несопряженный-диен-мономер (EPDM1) и/или этилен-пропиленовый каучук (EPR1), последний вариант наиболее предпочтителен.

Как и матрица (M1), эластомерный сополимер (Е1) может быть унимодальным или многомодальным, например, бимодальным, последнее предпочтительнее. Что касается определения «унимодальный» и «многомодальный», например, «бимодальный», то оно дается выше.

В настоящем изобретении массовое содержание звеньев, являющихся производными пропилена в эластомерном сополимере (ЕР1), выравнивается с массовым содержанием пропилена, который может быть обнаружен в растворимой в холодном ксилоле фракции (XCS). Соответственно массовая доля пропилена, которая может быть обнаружена в растворимой в холодном ксилоле фракции (XCS), составляет от 50,0 до 75,0%, в соответствии с более предпочтительным примером осуществления настоящего изобретения от 55,0 до 70,0%. Таким образом, в соответствии с конкретным примером осуществления настоящего изобретения в массовый состав эластомерного сополимера (Е1), то есть в растворимую в холодном ксилоле фракцию (XCS), входит от 25,0 до 50,0 мас.%, в соответствии с более предпочтительным примером осуществления настоящего изобретения от 30,0 до 45,0%, звеньев, являющихся производными этилена. В соответствии с предпочтительным примером осуществления настоящего изобретения в качестве эластомерного сополимера (Е1) используется полимер - этилен-пропилен-несопряженный-диен-мономер (EPDM1), или этилен-пропиленовый каучук (EPR1), последний особенно предпочтителен, при этом массовое содержание пропилена и/или этилена определяется в соответствии с данным абзацем.

В соответствии с предпочтительным примером осуществления настоящего изобретения характеристическая вязкость (IV) растворимой в холодном ксилоле фракции (XCS) гетерофазного полипропилена (Н-РР1) является довольно высокой. Довольно высокие значения характеристической вязкости улучшают ударную вязкость. Таким образом, хорошо, если характеристическая вязкость растворимой в холодном ксилоле фракции (XCS) гетерофазного полипропилена (Н-РР1) больше 2,5 дл/г, в соответствии с более предпочтительным примером осуществления настоящего изобретения, по крайней мере, 2,8 дл/г, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения, по крайней мере, 3,0 дл/г, например, по крайней мере, 3,3 дл/г. С другой стороны, характеристическая вязкость должна быть не слишком высока, иначе уменьшается текучесть. Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения характеристическая вязкость растворимой в холодном ксилоле фракции (XCS) гетерофазного полипропилена (Н-РР1) находится в диапазоне от 2,5 до 4,5 дл/г, в соответствии с более предпочтительным примером осуществления настоящего изобретения должна находиться в диапазоне от 3,0 до 4,1 дл/г, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения от 3,3 до 4,0 дл/г. Характеристическая вязкость измерялась согласно ISO 1628 в декалине при 135°С.

В соответствии с предпочтительным примером осуществления настоящего изобретения гетерофазный полипропилен (Н-РР1) является альфа-нуклеированным. К числу подходящих альфа-нуклеирующих агентов относятся такие неорганические добавки, как тальк, кварц или каолин, соли монокарбоксильных или поликарбоксильных кислот, т.е. бензоат натрия или алюминий трет-бутилбензоат, дибензилиденсорбитол или его С18-алкил-замещенные производные, например, метилдибензилиденсорбитол, этилдибензилиденсорбитол или диметилдибензилиденсорбитол или соли диэстеров ортофосфорной кислоты, т.е. натрий 2,2'-метиленбис(4,6,-ди-трет-бутилфенил)фосфат или производные нонитола, например, 1,2,3-тридеокси-4,6:5,7-бис-O-[(4-пропилфенил)метилен]-нонитол.

Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения альфа-нуклеирующие агенты выбираются из группы, в состав которой входят:

(i) соли монокарбоксильных кислот и поликарбоксильных кислот, например, бензоат натрия или алюминий трет-бутилбензоат, и

(ii) дибензилиденсорбитол (например, 1,3:2,4 дибензилиденсорбитол) и C1-C8-алкил-замещенные производные дибензилиденсорбитола, такие как, например, метилдибензилиденсорбитол, этилдибензилиденсорбитол или диметилдибензилиденсорбитол (например, 1,3:2,4 ди(метилбензилиден)сорбитол), нонитол, 1,2,3,-тридеокси-4,6:5,7-бис-O-[(4-пропилфенил)метилен]-нонитол, и

(iii) соли диэстеров ортофосфорной кислоты, например, натрий 2,2'-метиленбис(4,6,-ди-трет-бутилфенил)фосфат или алюминий-гидрокси-бис[2,2'-метилен-бис(4,6-ди-т-бутилфенил)фосфат], и

(iv) такие полимеры, как винилциклоалкан и винилалкан.

В соответствии с предпочтительным примером осуществления настоящего изобретения массовое содержание нуклеирующего агента гетерофазного полипропилена (Н-РР1) составляет до 5%.

Вообще, такие добавки коммерчески доступны и описаны, например, в Справочнике по добавкам к пластмассам (Plastics Additives Handbook), авт. Гачтер/Мюллер (Gachter/Muller), 4-ое издание, издательство Ганза «Hansa», Мюнхен, 1993 г.

В соответствии с предпочтительным примером осуществления настоящего изобретения в массовый состав гетерофазного полипропилена (Н-РР1) входит от 0,1 до 1%, в соответствии с предпочтительным примером осуществления настоящего изобретения от 0,15 до 0,25% нуклеирующего агента, в частности, соли диэстеров ортофосфорной кислоты, например, натрий 2,2'-метиленбис(4,6,-ди-трет-бутилфенил)фосфат или алюминий-гидрокси-бис[2,2'-метилен-бис(4,6-ди-т-бутилфенил)фосфат]. В соответствии с другим предпочтительным примером осуществления настоящего изобретения гетерофазный полипропилен (Н-РР1) нуклеирован с помощью BNT, о чем говорится ниже.

Ниже приводится более подробное определение гетерофазного полипропилена (Н-РР2):

В частности, гетерофазный полипропилен (Н-РР2) характеризуется довольно высокой скоростью течения расплава. Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения скорость течения расплава MFR2 (230°С) гетерофазного полипропилена (Н-РР2) находится в диапазоне от 40,0 до 1000,0 г/10 мин, в соответствии с более предпочтительным примером осуществления настоящего изобретения в диапазоне 60,0 до 500,0 г/10 мин, в соответствии с еще более предпочтительным примером осуществления настоящего изобретения в диапазоне от 70,0 до 200,0 г/10 мин.

Кроме того, как заявлено выше, в состав гетерофазного полипропилена (Н-РР2) по настоящему изобретению входит

(a) матрица (М2), состоящая из гомополимера пропилена, и

(b) эластомерный сополимер (Е2), в состав которого входят звенья, являющиеся производными

пропилена и

этилена и/или альфа-олефинов С4-С20.

В соответствии с предпочтительным примером осуществления настоящего изобретения массовое содержание пропилена в гетерофазном полипропилене (Н-РР2) соствавляет от 85,0 до 96,0%, в соответствии с более предпочтительным примером осуществления настоящего изобретения от 88,0 до 94,0% от общего количества гетерофазного полипропилена (Н-РР2), в соответствии с более предпочтительным примером осуществления настоящего изобретения от содержания компонентов полимера гетерофазного полипропилена (Н-РР2), в соответствии с еще более предпочтительным примером осуществления настоящего изобретения от содержания матрицы (М2) и эластомерного сополимера (Е2) вместе. В оставшуюся часть входят сомономеры, в соответствии с предпочтительным примером осуществления настоящего изобретения - этилен.

Что касается определения гетерофазного полипропилена, то информация о нем представлена при обсуждении гетерофазного полипропилена (Н-РР1). Соответственно в качестве полимерных компонентов в состав гетерофазного полипропилена (Н-РР2) входят только полипропиленовая матрица (М2) и эластомерный сополимер (Е2). Другими словами в массовый состав гетерофазного полипропилена (Н-РР2) могут входить дополнительные добавки, но не другой полимер, в количестве, не превышающем 5%, в соответствии с более предпочтительным примером осуществления настоящего изобретения в количестве, не превышающем 3%, например, в количестве, не превышающем 1% от общего количества гетерофазного полипропилена (Н-РР2), в соответствии с более предпочтительным примером осуществления настоящего изобретения от общего количества полимеров в гетерофазном полипропилене (Н-РР2). Одним единственным полимером, который может присутствовать в таких малых количествах, является полиэтилен, который является продуктом реакции, получаемым при производстве гетерофазного полипропилена (Н-РР2). Соответственно, в частности, хорошо, если гетерофазный полипропилен (Н-РР2), как это определено в данном изобретении, содержит только полипропиленовую матрицу (М2), эластомерный сополимер (Е2) и, опционно, полиэтилен в таких количествах, как упомянуто в данном абзаце. Кроме того, в тексте настоящего изобретения нерастворимая в холодном ксилоле фракция (XCI) представляет матрицу (М2) гетерофазного полипропилена (Н-РР2) и, опционно, полиэтилен, тогда как растворимая в холодном ксилоле фракция (XCS) представляет эластомерную часть гетерофазного полипропилена (Н-РР2), то есть эластомерный сополимер (Е2).

Таким образом, в соответствии с предпочтительным примером осуществления настоящего изобретения массовое содержание матрицы (М2), то есть массовое содержание нерастворимой в холодном ксилоле фракции (XCI), в гетерофазном полипропилене (Н-РР2) находится в диапазоне от 80,0 до 93,0%, в соответствии с более предпочтительным примером осуществления настоящего изобретения в диапазоне от 82,0 до 91,0%, например, от 83,0 до 89,0%. В случае, если полиэтилен присутствует в гетерофазном полипропилене (Н-РР2), массовое содержание матрицы (М2), но не массовое содержани