Плавучая опора или судно, оснащенное устройством обнаружения движения свободной поверхности тела жидкости

Иллюстрации

Показать все

Изобретение относится к области судостроения и касается судов или плавучих платформ, предназначенных для перевозки или хранения жидкости, в частности криогенной перевозки сжиженного природного газа или иных газов в сжиженном состоянии. Предлагается судно или плавучая платформа (1) для транспортировки или хранения жидкости (3), представляющей собой сжиженный газ, предпочтительно метан, этилен, пропан или бутан, охлажденный в по меньшей мере одном большом резервуаре (2), предпочтительно цилиндрической формы с многоугольным поперечным сечением, оборудованном термоизоляцией (2а) и имеющем большие размеры, причем по меньшей мере его наименьший размер в горизонтальной плоскости, в частности его ширина, превосходит 20 м, а предпочтительно составляет от 25 до 50 м, а объем превышает 10000 м3, причем указанный большой резервуар (2) установлен внутри корпуса (4) судна на несущей конструкции (11). Судно или плавучая платформа содержит множество устройств для обнаружения возмущения жидкости внутри указанного большого резервуара (указанных больших резервуаров), называемых «маячками» (5, 5-1, 5-2), содержащих: а) вибрационный датчик, представляющий собой вибрационный акселерометр, b) электронный вычислительный модуль, содержащий микропроцессор и встроенную память, выполненный с возможностью обработки сигнала, измеренного указанным вибрационным датчиком (5а), с целью, по меньшей мере, устранения собственных фоновых шумов судна, с) средства передачи указанного сигнала после его обработки указанным электронным вычислительным модулем в центральный модуль или контроллер (6), предпочтительно установленный на судовом мостике. Технический результат заключается в повышении безопасности перевозки или хранения жидкости на судне или плавучей платформе. 2 н. и 13 з.п. ф-лы, 13 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к судам или плавучим опорам или платформам для бестарной перевозки или хранения жидкости, оборудованных средствами обнаружения движения свободной поверхности жидкости внутри резервуаров, резервуаров судна для перевозки или хранения жидкости.

Более конкретно, изобретение касается судов для криогенной перевозки сжиженного природного газа (СПГ) или сжиженного метана, или же других газов, находящихся в сжиженном состоянии при крайне низкой температуре, например пропана, бутана, этилена или любого другого газа, плотность которого в сжиженном состоянии ниже плотности воды, перевозимого крупными партиями в жидком состоянии при по существу атмосферном давлении.

Уровень техники

При перевозке сжиженных газов при давлении, близком к атмосферному, их необходимо охлаждать до низких температур для сохранения их жидкого состояния. Они помещаются в резервуары большого размера, имеющие сферическую или цилиндрическую форму с поперечным сечением предпочтительно в виде многоугольника, имеющие, в частности, форму параллелепипеда, причем в указанных резервуарах предусмотрена чрезвычайно высокая термоизоляция, ограничивающая испарение газа и обеспечивающая поддержание приемлемой температуры стальных конструкций судна. Суда, как правило, совершают переход либо с полной загрузкой (95-98%), либо с незначительными остатками газа (3-5%) на дне резервуара, чтобы обеспечить постоянное поддержание резервуаров и системы термоизоляции в холодном состоянии для ускорения их загрузки путем устранения необходимости их постепенного и, следовательно, медленного и связанного со значительными затратами рабочего времени охлаждения.

Управление такими судами чрезвычайно сложно в связи с опасностями, связанными с хранением газа и соответствующей возможностью взрыва. Поэтому все техническое оборудование, имеющееся на борту, должно соответствовать крайне жестким стандартам безопасности, так как малейшая искра может вызвать воспламенение, причем такая искра может возникнуть от столкновения металлических предметов, в результате использования простого электрического выключателя или же вследствие передачи радиосигнала, уровень энергии которого превосходит установленное пороговое значение. Такие ограничения определены чрезвычайно жесткими правилами, в соответствии с которыми все элементы оборудования должны соответствовать условиям, определенным стандартами АТЕХ (от фр. «Atmosphere Explosive» - взрывоопасная атмосфера), известными специалистам в данной области.

Во время транспортировки содержимое резервуаров ведет себя как жидкость со свободной поверхностью, в результате чего внутри резервуара могут возникнуть явления сильного волнения, или «плескания» жидкости (также обозначаемые английским термином «sloshing»), в частности, при ударах волн о вертикальные стенки резервуара и о стенки трехгранного угла, образуемого на стыке двух вертикальных стенок и потолка указанного резервуара. Такие явления особенно значительны вследствие того, что транспортируемые жидкости имеют крайне низкую вязкость, меньшую вязкости воды.

Опасность возникновения таких явлений существует как на танкерах для перевозки сжиженного метана, так и на стоящих на якоре платформах для хранения сжиженного газа, обозначаемых аббревиатурой FPSO (от англ. Floating Production Storage & Offloading), т.е. на плавучих платформах для добычи, хранения и отгрузки продукта, при наличии волнения на море и даже при практически спокойном море, когда груз сжиженного газа входит в резонанс с возмущением, создаваемым даже слабым волнением, воздействующим на судно. В случае возникновения такого резонанса «плескание» может стать чрезвычайно сильным и привести к выплескиванию жидкости на вертикальные стенки или в углы резервуара, что может привести к повреждению системы хранения сжиженного газа или системы термоизоляции, расположенной непосредственно за указанной системой хранения.

Такие явления «плескания» могут возникать в условиях относительно спокойного моря, но как правило, возникают лишь при определенных уровнях заполнения резервуаров, причем любое состояние моря (определяемое эффективной высотой волнения, периодичностью волн, углом падения волн, балластировкой судна и т.д.) может стать опасным при определенной высоте заполнения резервуара.

Раскрытие изобретения

Задача, на решение которой направлено настоящее изобретение, заключается в предотвращении явлений волнения жидкости типа «плескания» в резервуарах судов для транспортировки или хранения сжиженного газа, в частности, сжиженного метана или СПГ, путем обнаружения явлений, предшествующих возникновению указанного «плескания». В нижеследующем описании термин «СПГ» использован для обозначения метана в сжиженном состоянии, т.е. сжиженного природного газа, а термины «метан» или «газообразный метан» обозначают его газообразное состояние.

Обнаружение таких явлений, предшествующих возникновению указанного «плескания», позволяет капитану судна внести необходимые изменения в движение судна, например, изменив его курс или скорость, чтобы ослабить резонансные явления, которые могут привести к возникновению «плескания», опасного для целостности судна. Аналогичным образом, если судно оборудовано средствами статического или динамического гашения «плескания», например, внешними стабилизаторами (добавочными рулями) или активным балластом, или же средствами гашения, предусмотренными непосредственно в резервуарах указанного судна, то обнаружение таких явлений, предшествующих возникновению указанного «плескания», обеспечивает возможность тонкой регулировки и настройки параметров указанных систем с целью ослабления или полного прекращения опасных явлений.

Авторы изобретения испытали различные средства обнаружения движения свободной поверхности жидкости внутри резервуаров судов или плавучих платформ, но чувствительность таких средств не позволяет получать полезную информацию, в частности, чувствительность детектирующих устройств, основанных на измерении свободной поверхности внутренней стенки резервуара, содержащего указанную свободную поверхность жидкости, при помощи сонаров или ультразвуковых устройств.

Проблема обнаружения движения вызвана трудностями определения положения свободной поверхности СПГ в связи с условиями чрезвычайно низкой температуры; кроме этого для корректного анализа свободной поверхности в зонах, важных с точки зрения возможной опасности возникновения «плескания», способного привести к разрушительным последствиям, требуется установка слишком большого количества датчиков.

В рамках настоящего изобретения авторы используют устройства для обнаружения движения свободной поверхности жидкости, приспособленные для указанных обстоятельств, и основанные в частности на принципе работы датчиков вибрации стенки, находящейся в прямом или непрямом контакте с указанной жидкостью, т.е. стенки, которой передается вибрация стенок резервуара, предпочтительно с помощью вибрационных акселерометров, регистрирующих изменения ускорения g как функцию от времени.

Точнее, в соответствии с настоящим изобретением предлагается судно или плавучая платформа для транспортировки или хранения жидкости, представляющей собой сжиженный газ, предпочтительно метан, этилен, пропан или бутан, охлажденный в, по меньшей мере, одном большом резервуаре, предпочтительно цилиндрической формы с многоугольным поперечным сечением, оборудованном термоизоляцией и имеющем большие размеры, причем, по меньшей мере, его наименьший размер в горизонтальном направлении, в частности его ширина, превосходит 20 м, и предпочтительно составляет от 25 м до 50 м, а объем превышает 10000 м3; причем указанный большой резервуар 2 удерживается внутри корпуса судна несущей конструкцией, отличающееся тем, что содержит множество устройств для обнаружения возмущения жидкости внутри указанного большого резервуара (резервуаров), далее называемых «маячками», которые содержат:

a) вибрационный датчик, представляющий собой вибрационный акселерометр, выполненный с возможностью измерения амплитуды ускорения (д) как функции от времени (t) вибрационных перемещений стенки указанного большого резервуара или стенки судна, не находящейся в соприкосновении с морской водой, причем указанная стенка судна может представлять собой палубу судна или стенку внутренней конструкции судна, предпочтительно стенку части внутренней конструкции, несущей указанный большой резервуар; причем указанные датчики прикреплены к такой стенке снаружи указанного большого резервуара,

b) электронный вычислительный модуль, содержащий микропроцессор и встроенную память, выполненный с возможностью обработки сигнала, измеренного указанным вибрационным датчиком, с целью, по меньшей мере, устранения собственных фоновых шумов судна и обнаружения движения жидкости внутри указанного большого резервуара путем сравнения значений обработанного таким образом сигнала с заранее определенными пороговыми значениями, по превышении которых возмущение свободной поверхности жидкости считается представляющим опасность повреждения и разрушительной деформации указанной стенки, и

c) средства передачи указанного сигнала после его обработки указанным электронным вычислительным модулем в центральный модуль или контроллер, предпочтительно установленный на судовом мостике.

Под «стенкой внутренней конструкции судна» следует понимать, в частности, внутреннюю стенку корпуса судна с двойным корпусом или стенку системы поддержки и/или изоляции указанного большого резервуара внутри корпуса.

Собрав различные данные сигналов от разных маячков в указанном центральном модуле, специалист в данной области может ввести эти данные в математическую модель, предоставляющую инструкции по управлению судном и/или по уровню наполнения резервуара (резервуаров), причем указанные инструкции предназначены для уменьшения или устранения опасности возникновения «плескания», т.е. повреждения или разрушительной деформации указанной стенки. В частности, речь идет об инструкциях, касающихся курса или скорости движения судна в случае транспортного судна или об инструкциях, касающихся уровней наполнения его резервуара (резервуаров) в случае, если судно используется как судно-хранилище, описанное ниже.

Говоря точнее, каждый из маячков содержит:

указанный электронный вычислительный модуль, выполненный с возможностью осуществления следующих этапов обработки сигнала:

1.1) использования в режиме реального времени преобразования Фурье, предпочтительно быстрого преобразования Фурье, сигналов изменения амплитуды ускорения (д) указанной стенки как функции от времени (t), измеренных указанным в пункте а) вибрационным акселерометром, с целью вычисления изменения амплитуды ускорения (д) как функции от частоты F вибрационных колебаний сигнала, полученного в пункте а), в течение заданного периода At времени, предпочтительно с последующим вычислением спектральной плотности энергии и/или спектральной плотности мощности,

1.2) устранения путем фильтрации сигнала фоновых шумов, вызванных собственной вибрацией судна,

1.3) вычисления максимальных временных значений ускорения, получаемых при помощи обратного преобразования Фурье, предпочтительно обратного быстрого преобразования Фурье, изменений амплитуды ускорения (g) как функции от частоты (F), полученных на этапе 1.1), после фильтрации на этапе 1.2), и вычисления максимальных значений спектральной плотности энергии (е1, е2) и/или максимальных значений спектральной плотности мощности (Р0), и, предпочтительно, вычисления значений спектральной энергии и значений спектральной мощности, соответственно, по измерениям спектральной плотности энергии и/или спектральной плотности мощности, полученным на этапе 1.1), после фильтрации на этапе 1.2), и

1.4) сравнения указанных максимальных временных значений ускорения и, предпочтительно, указанных максимальных значений спектральной плотности энергии и/или максимальных значений спектральной плотности -мощности и, также предпочтительно, указанных значений спектральной энергии и спектральной мощности, соответственно, полученных на этапе 1.3), с соответствующими заранее определенными пороговыми значениями S1, emax, pmах, по превышении которых возмущение свободной поверхности жидкости считается представляющим опасность повреждения и разрушительной деформации указанной стенки, и

- указанные средства передачи, выполненные с возможностью их активации указанным электронным вычислительным модулем и с возможностью передачи указанных максимальных временных значений ускорения и, предпочтительно, указанных максимальных значений спектральной плотности энергии и/или максимальных значений спектральной плотности мощности и, более предпочтительно, указанных значений спектральной энергии и спектральной мощности, соответственно, полученных на этапе 1.3), в центральный модуль, предпочтительно установленный на судовом мостике и обеспечивающий сбор данных, передаваемых всеми указанными маячками; причем указанные данные передаются в центральный модуль, предпочтительно установленный на судовом мостике и собирающий данные, передаваемые всеми указанными маячками, если, по меньшей мере, один из маячков зарегистрирует превышение одного из указанных на этапе 1.4) пороговых значений.

Способы производимых на этапах 1.1) и 1.3) вычислений для преобразования временного сигнала при помощи преобразования Фурье и вычисления спектральной мощности и спектральной плотности известны специалистам в области обработки сигналов. Способы вычислений спектральной энергии и спектральной мощности, которым соответствуют интегралы кривых спектральной плотности энергии и спектральной плотности мощности, соответственно, также известны специалистам в области обработки сигналов.

На этапе 1.4) вероятность деформации или повреждения указанной стенки, связанная с указанным пороговым значением, соответствует вероятности возникновения резонанса движения свободной поверхности жидкости.

При использовании данного способа все вычисления в режиме реального времени производит указанный вычислительный модуль, предусмотренный в составе маячка, который передает в центральный контроллер только результаты вычислений, представляющие собой более компактные и быстро передаваемые данные в сравнении с временным сигналом, передача которого привела бы к постоянной загрузке средств передачи, энергопотребление которых вносит основной вклад в энергопотребление маячка. Таким образом, передачу результатов обработки сигнала производят только в случае превышения пороговых значений.

На этапе 2) указанные средства передачи, исходно находящиеся в режиме ожидания, активируются командой, поступающей от указанного вычислительного модуля, если пороговое значение было превышено.

Подразумевается, что указанный вычислительный модуль содержит встроенную память, выполненную с возможностью сохранения данных, получаемых от датчиков с течением времени, в результате чего вычислительный модуль может впоследствии анализировать глобальное поведение свободной поверхности жидкости с течением времени, в частности, когда судно находится на защищенной стоянке или во время перехода в спокойных условиях, т.е. в отсутствие опасности движения свободной поверхности жидкости и, в частности, опасности возникновения «плескания», причем такие наблюдения могут быть увязаны со значениями бортовой и/или килевой качки судна, что позволяет оценить фоновые шумы, создаваемые самим судном в отсутствие значительного движения свободной поверхности жидкости, и, таким образом, определить указанные пороговые значения, упомянутые выше.

Более конкретно, указанный вибрационный акселерометр представляет собой пьезорезистивный акселерометр.

Такие пьезорезистивные регистрационные акселерометры позволяют регистрировать частоты в диапазоне от 0 до 5-10 кГц с точностью измерений порядка 3%-5%. Пьезорезистивные акселерометры такого типа обеспечивают возможность определения состояния полного покоя, т.е. нулевого ускорения.

Также могут быть использованы и акселерометры других типов, например, пьезоэлектрические акселерометры, емкостные акселерометры, индуктивные акселерометры, измерители напряжения типа тензометров и др.

Указанный вибрационный датчик предпочтительно представляет собой трехосевой вибрационный акселерометр. Такие трехосевые акселерометры выполнены с возможностью измерения амплитуды вибрации стенки в трех пространственных направлениях как функции от времени.

Указанные средства передачи предпочтительно содержат антенну и приемопередатчик, выполненный с возможностью преобразования электрических сигналов, поступающих из указанного вычислительного модуля, в радиоволны, которые передаются антенной.

В соответствии с другим вариантом осуществления изобретения указанные средства передачи содержат проводные средства передачи, включающие кабели, соединенные с интерфейсом для преобразования сигнала, выполненным с возможностью преобразования сигнала в нужный для передачи по указанным кабелям вид, предпочтительно оптоволоконные кабели, соединенные с интерфейсами, которые преобразуют указанные данные из электрического сигнала, поступающего из указанного электронного вычислительного модуля, в световые сигналы.

В первом варианте осуществления изобретения указанный маячок дополнительно содержит вспомогательное устройство, выполненное с возможностью обнаружения собственных движений судна и активации указанного электронного вычислительного модуля указанного маячка и других электронных вычислительных модулей других маячков того же резервуара и других резервуаров судна или плавучей платформы для осуществления обработки по указанным этапам 1.1)-1.3) и 2); причем активация указанных электронных вычислительных модулей происходит в случае превышения заранее определенного порогового значения амплитуды движений судна, предпочтительно значения угла наклона стенки корпуса судна.

Вспомогательное устройство типа инклинометра или инерциального блока позволяет обнаруживать собственные движения судна, такие как бортовую и килевую качку, рыскание, вертикальную, продольную и поперечную качку и др.

В соответствии с другим вариантом осуществления изобретения маячок не содержит каких-либо вспомогательных устройств для обнаружения собственных движений судна.

В частности, указанное устройство для обнаружения движений судна представляют собой инклинометр маятникового типа или инерциальный блок, предпочтительно выполненные с возможностью определения угла бортовой качки бортовой стенки корпуса судна или плавучей платформы, причем указанное пороговое значение угла бортовой качки составляет, по меньшей мере, 5°, а предпочтительно от 5° до 10° относительно вертикали.

В режиме ожидания устройство потребляет крайне малое количество энергии, т.к. вычислительный модуль работает в режиме ожидания по чрезвычайно простому циклу. Однако в случае возникновения потенциально критических условий вычислительный модуль анализирует все данные, поступающие от вибрационного датчика, и производит обработку сигнала, а результаты указанной обработки передаются в центральный контроллер в случае превышения, по меньшей мере, одного из пороговых значений.

В случае активации одного из маячков соответствующим ему инклинометром в оптимальном варианте также производится активация всех остальных маячков так, чтобы все маячки заведомо находились в рабочем режиме. Таким образом, обеспечивается высокий уровень избыточности системы активированных маячков, т.к. каждый из них может активироваться собственным инклинометром и передавать информацию о переходе в рабочий режим во все другие маячки, а также в центральный контроллер. Это позволяет радикально уменьшить вероятность того, что какой-либо из маячков останется в режиме ожидания.

В приведенном выше описании двух режимов активации электронного вычислительного модуля под «активацией электронного вычислительного модуля» следует понимать ситуацию, в которой такой модуль исходно находился в режиме ожидания, а затем автоматически перешел в рабочий режим для осуществления обработки и передачи данных по вышеописанным этапам b) и с); причем активация указанных средств 5d передачи производится указанным электронным вычислительным модулем 5b.

В соответствии с другим вариантом осуществления изобретения указанный электронный вычислительный модуль выполнен с возможностью активации согласно измерению порогового значения амплитуды ускорения (д) как функции от времени.

В оптимальном варианте на каждый из указанных маячков подается питание от источника питания, содержащего аккумуляторную батарею или ионистор (конденсатор чрезвычайно большой емкости), или предпочтительно литиевый гальванический элемент, который обеспечивает питание указанного вибрационного акселерометра, электронного вычислительного модуля, средств передачи и предпочтительно указанных устройств для обнаружения движений судна.

Также в оптимальном варианте указанный источник питания дополнительно содержит термопару, действующую по принципу эффекта Зеебека, холодный спай которой установлен между холодной внутренней стенкой резервуара и указанным маячком, который образует горячий спай термопары, причем указанная термопара позволяет генерировать постоянный ток, питающий указанный маячок и предпочтительно постоянно заряжающий указанную аккумуляторную батарею или ионистор.

В соответствии с предпочтительным вариантом осуществления изобретения указанные маячки жестко прикреплены к палубе судна и/или к боковой стенке системы поддержки и изоляции стенок указанного большого резервуара внутри корпуса судна и напротив бортовой стенки корпуса, причем указанные маячки расположены вблизи углов указанного большого резервуара на его продольных концах.

В соответствии с другими характеристиками указанных маячков:

- указанные маячки расположены напротив двугранного угла, образованного на стыке вертикальной продольной боковой стенки, вертикальной поперечной стенки и потолочной стенки указанного большого резервуара, или трехгранного угла, образованного двумя плоскостями потолочной стенки указанного большого резервуара, расположенными под углом друг к другу, и поперечной вертикальной стенкой указанного большого резервуара,

- указанные маячки прикреплены к указанной стенке сваркой или приклеиванием,

- каждый из указанных маячков содержит контейнер, в котором заключены указанные вибрационные датчики, электронный вычислительный модуль, средства передачи сигнала и, предпочтительно, вспомогательное устройство обнаружения, причем указанный контейнер прикреплен к указанной стенке и указанному источнику питания.

Поскольку маячки установлены в потенциально взрывоопасной атмосфере, они должны соответствовать жестким стандартам, известным как стандарты АТЕХ. Данные стандарты точно определяют конструктивные правила, касающиеся электрических контуров, герметичности контейнеров, уровней мощности передачи радиоантенны и т.д., исключающие возможность возникновения любых искр, которые могли бы привести к воспламенению газовой среды и, следовательно, к взрыву.

В особо предпочтительном варианте осуществления изобретения указанное судно представляет собой старое транспортное судно типа танкера для транспортировки сжиженного метана, переделанное в плавучее хранилище и поставленное на якорь в постоянном местоположении, причем уровень наполнения, по меньшей мере, одного из его резервуаров определяется как функция возмущения жидкости, которую он содержит, определенная и рассчитанная указанным устройством для обнаружения возмущения жидкости.

В соответствии с настоящим изобретением также предлагается способ обнаружения возмущения свободной поверхности жидкости внутри резервуара (резервуаров) судна, включающий в себя последовательные этапы, на которых:

1) осуществляют указанную обработку сигнала, предпочтительно после активации указанного электронного вычислительного модуля, когда движения судна достигают порогового значения, и

2) осуществляют указанную передачу значений, полученных на этапе 1), из электронного вычислительного модуля в центральный модуль.

Краткое описание чертежей

Другие особенности и преимущества настоящего изобретения станут ясны из нижеследующего описания, приведенного в качестве примера, не накладывающего каких-либо ограничений и содержащего ссылки на прилагаемые чертежи. На чертежах:

- на фиг.1 представлена в поперечном разрезе во фронтальной проекции плавучая платформа типа FSRU (Floating Storage and Regaseification Unit) для хранения и регазификации СПГ, оборудованная устройствами обнаружения движения свободной поверхности жидкости внутри резервуара 2 прямоугольного вертикального сечения, предусмотренного в указанной плавучей платформе,

- на фиг.2 представлено в поперечном разрезе во фронтальной проекции судно (танкер) для транспортировки СПГ, оборудованное устройствами обнаружения движения свободной поверхности жидкости внутри резервуара 2 с восьмиугольным сечением, предусмотренного в указанном судне,

- на фиг.3 представлено в виде сверху судно (танкер) для транспортировки СПГ, содержащее три резервуара, оборудованное устройствами обнаружения движения свободной поверхности жидкости внутри указанных резервуаров,

- на фиг.4 представлена в поперечном разрезе в боковой проекции нижняя часть резервуара, в правой части которого предусмотрено устройство обнаружения движения свободной поверхности жидкости груза с питанием, обеспечиваемым термопарой, действующей по принципу эффекта Зеебека,

- на фиг.4А представлено в увеличенном виде устройство по фиг.4,

- на фиг.5 представлены в виде сверху два резервуара СПГ, оборудованные устройствами обнаружения движения свободной поверхности жидкости с радиопередатчиками,

- на фиг.6 представлены в виде сверху два резервуара СПГ, оборудованные устройствами обнаружения движения свободной поверхности жидкости, соединенные между собою и с судовым мостиком судна локальной проводной сетью,

- фиг.7А-7В подробно иллюстрируют работу устройств для обнаружения «плескания», соответственно, в беспроводном варианте (7А) и в варианте с подсоединением к локальной проводной сети (7В),

- фиг.8А-8В подробно иллюстрируют режим работы устройств обнаружения движения свободной поверхности жидкости, или маячков, на основе информации о собственном движении судна,

- фиг.9А-9В подробно иллюстрируют режим срабатывания устройств обнаружения движения свободной поверхности жидкости на основе информации о срабатывании какого-либо из указанных устройств обнаружения движения свободной поверхности жидкости,

- фиг.10А-10В подробно иллюстрируют режим срабатывания устройств обнаружения движения свободной поверхности жидкости на основе информации о возникновении явлений движения свободной поверхности жидкости,

- на фиг.11A-11D представлены диаграммы сбора и обработки сигналов с проведением быстрого преобразования Фурье (БПФ) на разных этапах в процессе осуществления изобретения,

- на фиг.12А и 12В представлены диаграммы обработки сигналов с вычислением спектральной плотности мощности (СПМ) на разных этапах в процессе осуществления изобретения,

- на фиг.13А и 13В представлены диаграммы обработки сигналов с вычислением спектральной плотности энергии (СПЭ) на разных этапах в процессе осуществления изобретения.

Осуществление изобретения

На фиг.1 представлено в поперечном разрезе судно 1 типа FSRU, стоящее на якорях, с которыми оно связано концами (тросами) 1b, соединенными с лебедками 1с; судно установлено в районе нефтяного месторождения и принимает поступающий по трубопроводам (не представлены) газ, получаемый из устьев подводных скважин, причем указанный газ обрабатывают на борту судна в установках 1d с целью его охлаждения до температуры ниже -163°С и хранят в виде жидкости 3 в резервуарах 2 вплоть до его перегрузки в танкеры, которые обеспечивают перевозку указанного газа, по-прежнему в жидком виде, к потребителю. Резервуары 2 в форме прямоугольных параллелепипедов имеют объем 24000 м3, причем их ширина составляет 20 м, длина - 40 м, а высота - 30 м, а объем наиболее крупных резервуаров может достигать 60000 м3 и более. Судно оборудовано устройствами для обнаружения движения свободной поверхности жидкости, в дальнейшем описании называемыми «маячками» или же «устройствами для обнаружения "плескания"» согласно изобретению, а именно четырьмя автономными маячками 5-1, расположенными вблизи углов резервуаров на их продольных концах, соответственно, слева (по бакборту) в районе палубы 4а и внизу, внутри корпуса судна, в контакте со стенкой 2а-1 системы 2а термоизоляции резервуара 2, и справа (по штирборту) сверху и снизу внутри корпуса судна, в контакте со стенкой 2а-1 системы 2а термоизоляции резервуара 2.

Точнее, маячки 5-1 расположены вблизи:

- углов 2d, образующих двугранный угол на стыке продольной боковой стенки 2f и поперечной боковой стенки 2g, и

- углов 2d при дне, образующих двугранный угол на стыке донной стенки 2h, продольной боковой стенки 2f и поперечной боковой стенки 2g на продольном конце резервуара.

Резервуары 2 жестко прикреплены к корпусу 4а, 4b судна несущими конструкциями 11 в виде металлических двутавровых балок, равномерно распределенных и обеспечивающих соединение между, с одной стороны, поверхностями внешней стенки 2а-1 оболочки 2а резервуара 2 (в свою очередь, жестко прикрепленной к стенкам 2f, 2h резервуара 2) и, с другой стороны, внутренними стенками корпуса судна.

Маячки, находящиеся вблизи верхних углов 2d, расположены либо на палубе 4а плавучей платформы, либо у продольной боковой стенки 2а-1 изоляционной системы напротив бортовой стенки 4b корпуса судна.

Маячки, находящиеся вблизи нижних углов 2g, предпочтительно расположены у боковой стенки 2а-1 системы 2а изоляции резервуара 2 внутри корпуса судна и напротив его бортовой стенки 4b.

Работа маячков раскрыта более подробно в дальнейшем описании изобретения.

Свободная поверхность 3а сжиженного метана (СПГ), находящегося в резервуаре 2, в общем случае бывает несколько возмущена в соответствии с возмущением свободной поверхности жидкости, вызываемым волнением, ветром и течением, воздействующими на судно. В случае ухудшения гидрометеорологических условий такое возмущение может возрастать и приводить к возникновению значительного размера волн, бьющихся и отражающихся от стенок резервуара, и способных их повредить.

Во время перехода или стоянки на якоре судно подвержено воздействию гидрометеорологических условий, т.е. волнения, течений и ветра, в результате чего содержимое резервуаров подвержено постоянному возмущению, вызываемому указанными волнением, течениями и ветром. Таким образом, в пределах резервуара 2 возникает своего рода волнение, которое отражается от боковых стенок 2f, сохраняя при таком отражении собственную энергию, т.е. период и амплитуду волнения. Это приводит к возникновению возмущения поверхности, которое может быть более или менее сильным в зависимости от состояния моря. Волны, отражающиеся таким образом от стенок, складываются между собой, причем уровень возмущения может постепенно спадать, если сложение волн происходит в разной фазе, или возрастать, если происходит сложение волн, совпадающих по фазе.

Таким образом, при воздействии на судно 1 внешнего волнения 10, которое может возникать в открытом море или быть вызвано ветром или течением, или движения бортовой и килевой качки, рыскания, а также поперечной, продольной и вертикальной качки вызывают возмущение свободной поверхности жидкости, содержащейся в резервуаре 2, в результате чего внутри указанного резервуара могут возникнуть резонансные явления, порождаемые вышеописанным сложением множественных отражений от стенок резервуара.

Такие явления могут быть значительными и связаны с опасностью повреждения систем хранения и изоляции сжиженного газа. Такие явления могут возникать не только во время шторма, но и в умеренную погоду, в случае совпадения некоторых параметров, связанных с поведением судна, формой его резервуаров и уровнем наполнения указанных резервуаров.

Например, поперечное волнение малой амплитуды, например, с эффективной высотой волны Hs=1,25 м, при определенном периоде волнения, например, Т=8-10 с, не представляет никакой опасности при полностью заполненных или пустых резервуарах, а также на промежуточных уровнях заполнения; однако для некоторого точного значения уровня заполнения, например, равного 70-80%, именно в таких конкретных условиях могут возникнуть резонансные явления, вызывающие опасное поведение груза сжиженного газа, которое может привести к чрезвычайно сильному резонансному прибою на стенках резервуаров. Такие прибойные волны могут повредить или даже разрушить системы хранения или изоляции, что связано со значительной опасностью для судна и всей его команды.

Наиболее сильные движение и турбулентность обычно в большей степени возникают в вертикальных углах на продольных концах резервуара; в частности, наиболее сильные удары наблюдаются в трехгранных углах, образованных двумя вертикальными стенками, боковой и поперечной, и потолком резервуара.

Вертикальные углы 2d при потолке резервуара представляют собой зоны, в которых, благодаря форме трехгранного угла, образованного двумя вертикальными стенками и потолком резервуара, при наличии прибойной волны возникает опасность чрезвычайно сильных соударений; поэтому в оптимальном варианте маячки 5-1, 5-2 устанавливают вблизи указанных углов резервуара.

На фиг.2 представлено в поперечном разрезе другое судно 1 типа танкера для перевозки сжиженного метана, оборудованное устройствами 5-1,5-2 для обнаружения движения свободной поверхности жидкости или «плескания» по изобретению, причем явление «плескания» возникает здесь на поверхности 3b и в данном случае порождает прибойную волну в верхней части левой стенки 2f резервуара СПГ.

В левой части (по бакборту) палубы судна установлены два маячка 5-1 автономного типа, соединенные радиосвязью, с одной стороны, с центральным контроллером 6, предпочтительно представляющим собой персональный компьютер (ПК), установленный в центре управления, предпочтительно на судовом мостике, а с другой стороны, с другими маячками 5-1, как будет подробно разъяснено ниже. В правой части (по штирборту) палубы судна установлены два маячка 5-2 проводного типа, соединенные с тем же центральным контроллером 6 посредством локальной вычислительной сети 5d-3.

Более конкретно, в поперечном восьмиугольном сечении резервуара 2 потолочная стенка образована горизонтальной центральной стенкой 2е-2 и двумя наклонными боковыми потолочными стенками 2е-1, идущими вниз к продольным боковым стенкам 2f.

Таким образом, такой резервуар содержит трехгранные углы, расположенные на его продольных концах, а именно:

- первые трехгранные углы 2d, образованные продольной боковой стенкой 2f, концевой поперечной стенкой 2g и смежной с ними наклонной потолочной стенкой 2е-1, и

- трехгранные углы 2 с, образованные концевой поперечной стенкой 2g и двумя смежными с нею потолочными стенками 2е-1, 2е-2, расположенными под углом одна к другой.

Как подробно показано на фиг.7А и 7В, маячки 5-1 и 5-2 образованы следующими элементами:

1. вибрационный датчик 5а, представляющий собой вибрационный акселерометр, а точнее, акселерометр, обеспечивающий возможность измерения изменений вибрационного ускорения g вибрации стенки, на которой он установлен, в зависимости от времени. Такая вибрация стенки палубы 1а, на которой установлены такие датчики, связана с вибрацией стенок резервуара 2, поскольку резервуар установлен в корпусе судна или плавучей платформы и жестко прикреплен к нему несущей конструкц