Композиция для изготовления жаростойких композитов
Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно содержит шлак от выплавки ферротитана с содержанием, мас.%: SiO2 - 2,5; Al2O3 - 72,18; TiO2 - 10,3; Fe2O3 - 0,34; CaO - 11,4; MgO - 3,5 при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, ортофосфорная кислота H3PO4 10-15, шлак от выплавки ферротитана 24-30. 4 табл.
Реферат
Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химическим связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.
Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас. %: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 / пат. Российской Федерации №2440312, МПК C04B 14/24. Композиция для производства пористого заполнителя. / Абдрахимова B.C., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. №2010122114. заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2/[1].
Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.
Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас. %: глиноземсодержащий шлам - 10,5-10,53 (220 кг/м3); отработанный катализатор ИМ-2201 - 10,5-10,53 (220 кг/м3); щебень - 35,88-35,89 (750 кг/м3); песок - 30,62-30,63 (640 кг/м3); H3PO4 - 12,44-12,45 (260 кг/м3) / Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих / А.И. Хлыстов, С.В. Соколова, А.В. Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - №9. - С.38-42. / [2].
Недостатком указанного состава керамической массы является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°C и низкая термостойкость.
Задача изобретения - повышение качества жаростойкого композита.
Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов.
Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно вводят шлаки от выплавки ферротитана с содержанием, мас. %: SiO2 - 2,5; Аl2O3 - 72,18; TiO2 - 10,3; Fe2O3 - 0,34; CaO - 11,4; MgO - 3,5 при следующем соотношении компонентов, мас. %:
отработанный катализатор ИМ-2201 | 10-15 |
щебень | 33-40 |
песок | 10-13 |
H3PO4 | 10-15 |
шлаки от выплавки ферротитана с | |
содержанием, мас. %: SiO2 - 2,5; Al2O3 - 72,18; | |
TiO2 - 10,2; Fe2O3 - 0,30; CaO - 11,4; MgO - 3,3 | 24-30 |
Шлаки от выплавки ферротитана имеют плотную структуру, прочность при сжатии более 100 МПа, огнеупорность выше 1770°C, температура под нагрузкой 0,2 МПа выше 1700°C.
Ферротитан - это ферросплав, содержащий до 35 или более 60% Ti, 1-7% Al, 1-4,5% Si, до 3% Сu (остальное Fe и примеси); получают внепечным алюминотермическим способом из ильменитового концентрата и титановых отходов (низкопроцентный ферротитан) или сплавлением в электрической печи железных и титановых отходов (высокопроцентный ферротитан). Ферротитан применяют для раскисления и легирования стали.
Химический оксидный состав шлаков представлен в таблице 1, а поэлементный в таблице 2.
Таблица 1 | ||||||||
Химические составы алюмосодержащих отходов производств | ||||||||
Компонент | Содержание оксидов, мас., % | |||||||
SiO2 | Al2O3 | Fe2O | CaO | MgO | Cr2O3 | R2O | П.п.п. | |
1. Шлаки от выплавки ферротитана | 2,5 | 72,18 | 0,30 | 11,4 | 3,3 | - | - | - |
2. Отработанный катализатор ИМ-2201 | 7,90 | 74,5 | 0,15 | - | 0,10 | 14,8 | 1,57 | - |
Таблица 2 | ||||||||
Поэлементный химический состав компонентов | ||||||||
Компонент | Концентрация, % масс. | |||||||
O | Аl | Mg | Na | Ca | Fe | Si | Cr | |
1. Шлаки от выплавки ферротитана | 56,64 | 27,2 | 0,82 | - | 6,1 | 0,24 | 1,8 | - |
Катализатор ИМ-2201 | 60,74 | 26,58 | - | 2,81 | - | - | 2,82 | 8,1 |
Введение в составы жаростойких композитов шлака от выплавки ферротитана за счет повышенного содержания в нем Al2O3 позволит значительно повысить термостойкость и кислотостойкость кислотоупоров.
В качестве фосфатных связующих использовалась ортофосфорная кислота H3PO4 в чистом виде, но можно использовать однозамещенный фосфорнокислый алюминий Al(H2PO4)3, двухзамещенный фосфорнокислый алюминий Al2(H2PO4)3, хромалюминий фосфорнокислый или алюмохромофосфатное связующее (АХФС) с общей формулой CrnAl4-n(H2PO4)2, где n=1, 2, 3.
Сведения, подтверждающие возможность осуществления изобретения. Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.
Следует отметить, что для своего затвердевания и набора марочной прочности жаростойкие бетоны требуют особую термообработку.
Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 3 - нагревание до 500°C с подъемом температуры до 200°C со скоростью 60°C/час и до 500°C - 150°C/час, выдерживание в течение 4 часов, охлаждение вместе с печью.
Таблица 3 | |||
Составы для получения жаростойких бетонов | |||
Компоненты | Содержание компонентов, мас. % | ||
1 | 2 | 3 | |
Отработанный катализатор ИМ-2201 | 10 | 12 | 15 |
Щебень | 40 | 38 | 33 |
Песок | 10 | 11 | 13 |
H3PO4 | 10 | 12 | 15 |
Шлаки от выплавки ферротитана | 30 | 27 | 24 |
В таблице 4 представлены физико-механические показатели жаростойкого бетона.
Таблица 4 | ||||
Физико-механические показатели жаростойкого бетона после твердения и нагревания до температуры 1200°C | ||||
Показатели | Составы | Прототип | ||
1 | 2 | 3 | ||
Термостойкость, °C | 38 | 42 | 44 | 29 |
Механическая прочность на сжатие, МПа | 52 | 55 | 57 | 46 |
Огнеупорность, °C | 1580 | 1620 | 1650 | - |
Температура под нагрузкой 0,2 МПа, °C. | 1420 | 1450 | 1480 | - |
Как видно из таблицы 4 жаростойкий бетон из предложенных составов имеет более высокие показатели по механической прочности и термостойкости, чем прототип.
Полученное техническое решение при использовании шлаков от выплавки ферротитана позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона.
Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.
Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, отличающаяся тем, что она дополнительно содержит шлак от выплавки ферротитана с содержанием, мас.%: SiO2 - 2,5; Al2O3 - 72,18; TiO2 - 10,3; Fe2O3 - 0,34; CaO - 11,4; MgO - 3,5, при следующем соотношении компонентов, мас.%:
отработанный катализатор ИМ-2201 | 10-15 |
щебень | 33-40 |
песок | 10-13 |
ортофосфорная кислота (H3PO4) | 10-15 |
шлак от выплавки ферротитана с | |
содержанием, мас.% SiO2 - 2,5; Al2O3 - 72,18; | |
TiO2 - 10,3; Fe2O3 - 0,34; CaO - 11,4; MgO - 3,5 | 24-30 |