Пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их

Иллюстрации

Показать все

Изобретение относится к пористому углеродному композиционному материалу. Пористый углеродный композиционный материал образуется из (А) пористого углеродного материала, получаемого из материала растительного происхождения, имеющего содержание кремния (Si), составляющее 5 мас.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 мас.% или меньше, и (В) функционального материала, закрепленного на пористом углеродном материале, и имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР. Полученный углеродный материал можно использовать, например, в качестве медицинского адсорбента, композиционного фотокаталитического материала, носителя для лекарственного препарата, агента, поддерживающего выделение лекарственного препарата, для селективной адсорбции нежелательных веществ в организме, насадки для колонн очистки крови, водоочищающего адсорбента, адсорбирующего листа. Изобретение обеспечивает получение материала с высокой функциональностью. 6 н. и 13 з.п. ф-лы, 21 ил., 8 табл., 11 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к пористым углеродным композиционным материалам с использованием в качестве исходных материалов сырья растительного происхождения и к способу их получения, а также к адсорбентам, косметике, средствам очистки и композиционным фотокаталитическим материалам, которые все состоят из пористых углеродных композиционных материалов.

Уровень техники

Функциональные материалы, каждый из которых можно получать путем придания пористым материалам физических или физико-химических характеристик, таких как, например, магнитные свойства, способность поглощать свет, способность излучать свет или способность пористых материалов адсорбировать конкретные вещества, представляют собой весьма перспективные материалы, поскольку они обладают как большой удельной площадью поверхности, так и физическими свойствами, которые приданы функциональным материалам. Эти пористые материалы могут включать в себя оксид алюминия, углерод, диоксид кремния и тому подобные.

Функциональные материалы, каждый из которых обладает магнитными свойствами, свойством необычного поведения в отношении света (такое свойство в дальнейшем будет именоваться "оптическое свойство" с целью удобства) или свойством адсорбционной способности в отношении конкретных веществ, могут включать мелкие частицы или тонкие пленки металлов (Fe, Co, Ni, Au, Ag, Pt, Cu) и сплавов, оксидов (Fe2O3, Fe3O4, TiO2, ZnO2), соединений (CdS, CdSe, ZnS, СаСО3, Са(СН3СОО)2), или тому подобные, и высокомолекулярные пленки и мономолекулярные пленки, содержащие много аминогрупп.

Можно ожидать, что такие функциональные материалы найдут применение, например, в адсорбентах, катализаторах, электродах для энергетических устройств и чувствительных элементов (например, смотрите Выложенная заявка на патент Японии №2006-167694). Неиспользованные растительные отходы, такие как отходы от овощей и злаковых культур, главным образом, выбрасываются, однако эффективное использование этих отходов является весьма желательным для сохранения и улучшения всемирной окружающей среды. В качестве одного примера такого эффективного использования отходов можно упомянуть обработку путем карбонизации. Один пример использования углеродистого материала, который получается путем обработки такого материала растительного происхождения в условиях карбонизации, в качестве адсорбента красителя, известен, например, из журнала Dyes и Pigments (Красители и пигменты), т.66, с.123-128 (2005). Кроме того, из выложенной заявки на патент Японии №2000-211910 хорошо известен способ получения из растительного материала древесного угля, обладающего дезодорирующей способностью, ионообменной способностью или каталитической активностью.

В эвтрофных озерах, болотах или прудах, в течение летнего сезона сине-зеленые водоросли (Microcystis aeruginosa или тому подобные) могут аномально разрастаться, таким образом, может образоваться толстый слой, как будто поверхность воды посыпана зеленым порошком. Этот толстый слой называется "цветением воды". Известно, что такие сине-зеленые водоросли выделяют токсины, вредные для организма человека, и среди многих токсинов, особую настороженность вызывает токсин называемый "микроцистин LR". При попадании микроцистина LR в организм наносится значительный вред печени, причем эта токсичность также подтверждена экспериментами на мышах. Токсичное цветение воды, при котором выделяется микроцистин LR, происходит в озерах Австралии, Европы и Америки и в различных областях Азии. В сильно пораженных озерах Китая, взрывоподобный рост цветущей воды не исчезает круглый год. Поскольку озерная вода используется в качестве питьевой воды или сельскохозяйственной воды, токсины, выделенные сине-зелеными водорослями в озерах и болотах, представляют проблему для безопасности питьевой воды для человека, таким образом, возникает очень сильное стремление к решению этой проблемы.

Цеолиты и активированный углерод являются пористыми материалами, обладающими очень тонкой пористой структурой в несколько нанометров и применяются в различных отраслях. Их весьма разнообразные функции включают разделение, удаление, хранение, катализ и тому подобные. В последние годы, прогнозируется, что они также найдут применение в качестве носителей лекарства в системах доставки лекарственного вещества (DDS).

Известно, что пероксиды, гидроксильные радикалы, пероксид водорода и синглетный кислород, в широком смысле, представляют собой реакционноспособные кислородсодержащие частицы, и считаются причиной острого воспаления, повреждения тканей и старения. Компоненты антиоксидантов, которые традиционно применяются для борьбы с этими окисляющими веществами, могут включать витамин С (L-аскорбиновая кислота), астаксантин, кофермент Q10, и тому подобные. Однако для солей L-аскорбиновой кислоты, производных L-аскорбиновой кислоты и тому подобного имеется проблема стабильности, таким образом, они сами окисляются в результате одного акта восстановления. Для решения этой проблемы в последние годы предложены косметические средства, содержащие наноколлоид платины. Каждое из этих косметических средств предназначается для активирования рогового слоя эпидермиса кожи за счет приложения двойного электрического слоя, который имеется у высокоактивных коллоидных частиц платины, на кожу с целью ее защиты (например, смотрите Выложенную заявку на патент Японии №2005-139102). Наночастицы платины обладают тем преимуществом, что они сохраняют противоокислительную способность и высокую каталитическую активность в течение длительного времени, обладают высокой реакционной способностью поверхности и могут удалять различные реакционноспособные кислородсодержащие частицы, и поэтому они вводятся во многие косметические средства.

Многочисленные косметологические компоненты, которые в настоящее время доступны на рынке, содержатся в косметической воде и упаковываются пропитанными косметической водой. Многие из этих косметологических компонентов представляют собой гидрофобные молекулы, и поэтому, часто являются нерастворимыми или едва растворимыми в воде. Поэтому для солюбилизации этих косметологических компонентов используется ряд солюбилизаторов, и особенно широко применяются солюбилизаторы, обладающие отличной стабильностью. В качестве солюбилизаторов применяются неионогенные поверхностно-активные вещества, содержащие полиоксиэтиленовые цепи, такие как полиоксиэтилен-олеиловый эфир, полиоксиэтилен-сорбитовый олеат и гидрированное полиоксиэтиленовое касторовое масло; и анионные поверхностно-активные вещества, такие как лаурилсульфат натрия, додецилбензолсульфонат натрия и миристат калия.

Список цитирования

Патентная литература (ПЛ)

ПЛ 1: Выложенная заявка на патент Японии №2006-167694

ПЛ 2: Выложенная заявка на патент Японии №2000-211910

ПЛ 3: Выложенная заявка на патент Японии №2005-139102

Непатентная литература

не ПЛ 1: Dyes и Pigments, т.66, с.123-128 (2005)

Раскрытие изобретения

Техническая проблема

Как описано выше, известны функциональные материалы, которые получены из неорганических материалов, в сочетании с пористыми углеродными материалами, в которых в качестве исходного сырья используются материалы растительного происхождения. Однако технология обработки таких материалов растительного происхождения в условиях карбонизации считается недостаточно разработанной. Следовательно, существует сильное стремление к улучшению характеристик и функциональных возможностей функциональных материалов (композиционные материалы из пористого углерода) на основе пористых углеродных материалов.

При удалении токсинов, выделенных сине-зелеными водорослями и имеющих молекулярную массу 500 или выше, применение традиционных адсорбционных методов с использованием активированного углерода приводит к очень малой величине адсорбции токсинов на единицу веса углерода, в связи с очень малым размером пор активированного углерода. Следовательно, желательно дополнительное улучшение функциональных возможностей способа, в котором токсины удаляются с использованием углеродного материала. С другой стороны, в качестве требования для практического применения можно отметить, что:

a) способ удаления может быть осуществлен на практике, как система, в которой можно надежно детоксифицировать микроцистины, то есть токсичные компоненты, которые выделяются в раствор при удалении цветения воды, кроме того, желательно также, чтобы:

b) способ удаления не приводил к вторичному загрязнению окружающей среды применяемым материалом или тому подобным, и

c) система обработки должна быть экономичной и простой в эксплуатации, в случае необходимости могла быть регенерирована, и не должна вносить возмущения в окружающую экосистему.

Для систем доставки лекарственного вещества (DDS) весьма важно отправлять лекарство в нужное место или область в необходимом количестве. Однако для традиционных пористых материалов невозможно регулировать десорбцию, хотя эти материалы обладают отличными адсорбционными характеристиками. Кроме систем доставки лекарственного вещества, в различных областях техники и промышленности требуются механизмы, отличительные признаки и/или структуры, которые обеспечивают возможность регулирования выделения доставляемых веществ на основе различных внешних стимулов, таких как температура и влажность.

В вышеупомянутых косметических средствах, в которых содержатся коллоидные наночастицы платины, необходимо использовать защитный коллоидный агент для формирования наночастиц платины в коллоидной системе. Однако поверхность этих частиц покрыта защитным коллоидным агентом, поэтому в некоторых случаях их эффект нельзя предсказать. Поэтому можно ожидать еще больший противоокислительный эффект, если бы можно было сохранять размер наночастиц, без использования поверхностного защитного агента.

Вышеупомянутые поверхностно-активные вещества, используемые в косметической воде и тампонах, пропитанных косметической водой, не обладают достаточной безопасностью. В настоящее время исследуются способы применения высокомолекулярных соединений, которые считаются более безопасными, чем традиционные поверхностно-активные вещества. Однако применение этих высокомолекулярных соединений сопровождается такими проблемами, как сложная стадия солюбилизации и высокая стоимость производства.

Поэтому целью настоящего изобретения является разработка

пористого углеродного композиционного материала, который образуется из пористого углеродного материала и функционального материала и которому можно придать хорошие функциональные характеристики, и

способа его получения, а также адсорбента, косметического средства, средства очистки и композиционного фотокаталитического материала, которые состоят из пористого углеродного композиционного материала.

Решение проблем

Согласно настоящему изобретению, пористый углеродный композиционный материал для достижения указанных выше соответствующих целей включает в себя:

A) пористый углеродный материал, получаемый из материала растительного происхождения, имеющего содержание кремния (Si), составляющее 5 масс.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния (Si), составляющее 1 масс.% или меньше, и

B) функциональный материал, закрепленный на пористом углеродном материале,

в котором пористый углеродный композиционный материал имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР.

Согласно настоящему изобретению способ получения пористого углеродного композиционного материала и достижение указанной выше соответствующей цели включает следующие стадии: карбонизация материала растительного происхождения при температуре от 800°С до 1400°С, обработка карбонизированного материала кислотой или щелочью, чтобы получить пористый углеродный материал, и затем осуществляют закрепление функционального материала на пористом углеродном материале.

Согласно настоящему изобретению адсорбент для достижения указанной выше соответствующей цели включает:

A) пористый углеродный материал, получаемый из материала растительного происхождения, имеющего содержание кремния, составляющее 5 масс.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 масс.% или меньше, и

B) магнитный материал, закрепленный на пористом углеродном материале,

в котором адсорбент имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР, и

в котором адсорбент может адсорбировать микроцистин.

Согласно настоящему изобретению композиционный фотокаталитический материал для достижения указанной выше соответствующей цели включает пористый углеродный композиционный материал, который содержит:

(A) пористый углеродный материал, получаемый из материала растительного происхождения, имеющего содержание кремния, составляющее 5 масс.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 масс.% или меньше, и

(B) фотокаталитический материал, закрепленный на пористом углеродном материале,

в котором пористый углеродный композиционный материал имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР.

Согласно настоящему изобретению косметическое средство для достижения указанной выше соответствующей цели включает пористый углеродный композиционный материал, который содержит:

(А) пористый углеродный материал, получаемый из материала растительного происхождения, имеющего содержание кремния, составляющее 5 масс.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 масс.% или меньше, и

(В) материал на основе металла, закрепленный на пористом углеродном материале и обладающий свойством удалять реакционноспособный кислород,

в котором пористый углеродный композиционный материал имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР.

Согласно настоящему изобретению средство очистки для достижения указанной выше соответствующей цели включает пористый углеродный композиционный материал, который содержит:

(A) пористый углеродный материал, получаемый из материала растительного происхождения, имеющего содержание кремния, составляющее 5 масс.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 масс.% или меньше, и

(B) фотокаталитический материал, закрепленный на пористом углеродном материале,

в котором пористый углеродный композиционный материал имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и Методом МР.

Преимущества изобретения

Что касается пористого углеродного композиционного материала согласно настоящему изобретению или пористого углеродного композиционного материала, получаемого по способу производства согласно настоящему изобретению, или адсорбента, косметического средства, средства очистки или композиционного фотокаталитического материала согласно настоящему изобретению, то кремний содержится в количестве 5 масс.% или больше в материале растительного происхождения, из которого они получены. Однако за счет карбонизации материала растительного происхождения при температуре от 800°С до 1400°С при его превращении в предшественник пористого углеродного материала [1] или углеродистый материал [1], который будет описан в последующем, кремний, содержащийся в материале растительного происхождения, не превращается в карбид кремния (SiC), а превращается в кремниевые компоненты (окисленные соединения кремния), такие как диоксид кремния (SiOx), оксид кремния и соли оксида кремния. Таким образом, за счет проведения обработки кислотой или щелочью (основанием) на последующей стадии, удаляются кремниевые компоненты (окисленные соединения кремния), такие как диоксид кремния, оксид кремния и соли оксида кремния. В результате, можно получить материал с большой удельной площадью поверхности, которую определяют по адсорбции азота методом BET.

Описывая в частности, что можно получить пористый углеродный материал, имеющий значение удельной площади поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, содержание кремния составляет 1 масс.% или меньше, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР. За счет осуществления закрепления функционального материала на таком пористом углеродном материале, можно закрепить повышенное количество функционального материала на один грамм пористого углеродного материала, таким образом, становится возможным получение пористого углеродного композиционного материала, обладающего отличными свойствами и большими функциональными возможностями.

При закреплении магнитного материала на таком пористом углеродном материале, можно закрепить повышенное количество магнитного материала на единице массы пористого углеродного материала, таким образом, становится возможным получение адсорбента, обладающего отличными свойствами и большими функциональными возможностями, например, адсорбента, который можно легко отделить от воды с помощью оборудования магнитного разделения. В результате, микроцистины, содержащиеся как токсичные компоненты в цветущей воде, в озерной или болотной воде, речной воде или тому подобном, могут легко, надежно и экономично адсорбироваться, и кроме того, не вызывая вторичного загрязнения окружающей среды и нарушения биосистемы окружающей среды.

Как отмечено выше, пористый углеродный материал настоящего изобретения представляет собой экологически совместимый материал, произведенный из природного продукта, и его микроструктура может быть получена путем обработки кислотой или щелочью и удаления кремниевых компонентов (окисленных соединений кремния), которые по существу содержатся в материале растительного происхождения в качестве исходного материала. Поэтому поры материала имеют размер, который не может быть реализован в традиционном активированном углероде, то есть, размеры в мезо-диапазоне (от 2 до 50 нм), и расположение пор еще сохраняет биологическую регулярность растения. В композиционном фотокаталитическом материале согласно настоящему изобретению, осуществляется весьма эффективное закрепление фотокаталитического материала на пористом углеродном материале, таким образом, благодаря такому размеру и расположению пор, создается возможность эффективно инициировать разложение под действием фотокаталитического эффекта. В косметическом средстве согласно настоящему изобретению, материал на основе металла, обладающего свойством удалять реакционноспособный кислород, весьма эффективно наносится на пористый углеродный материал, благодаря такому размеру и расположению пор. Следовательно, уже отпадает необходимость использования защитного коллоидного агента, например, для формирования в коллоидной системе наночастиц платины, таким образом, обеспечивается возможность получения высокого противоокислительного эффекта в отношении реакционноспособных частиц кислорода, таких как пероксиды, гидроксильные радикалы, пероксид водорода и синглетный кислород, которые считаются ответственными за острое воспаление, повреждение и старение тканей. В средстве очистки согласно настоящему изобретению, то есть, в материале для очищения окружающей среды, также считается, что такие размер и расположение пор способствуют эффективной адсорбции токсичного вещества, и в то же время, могут привести к весьма эффективному закреплению фотокаталитического материала на пористом углеродном материале, таким образом, создается возможность эффективно инициировать разложение и дезактивацию токсинов под действием фотокаталитического эффекта. Более того, можно улучшить распределение токсичных веществ внутри средства очистки, таким образом, обеспечивается возможность более эффективно инициировать разложение под действием фотокаталитического эффекта и весьма эффективного осуществления очистки воды или очистки воздуха.

Краткое описание чертежей

На фигуре 1 (А) и (В) приведены графики распределения пор по размеру для мезопор и распределения пор по размеру для микропор в пористом углеродном композиционном материале примера 1 и в пористом углеродном материале сравнительного примера 1, соответственно.

На фигуре 2 (А) и (В) приведены графики распределения пор по размеру для мезопор и распределения пор по размеру для микропор в пористом углеродном композиционном материале примера 2 и в пористом углеродном материале сравнительного примера 2, соответственно.

На фигуре 3 (А) и (В) приведены графики распределения пор по размеру для мезопор и распределения пор по размеру для микропор в пористом углеродном композиционном материале примера 3 и в пористом углеродном материале сравнительного примера 3, соответственно.

На фигуре 4 (А) и (В) приведены графики распределения пор по размеру для мезопор и распределения пор по размеру для микропор в пористом углеродном композиционном материале примера 4 и в пористом углеродном материале сравнительного примера 4, соответственно.

На фигуре 5 (А) и (В) приведены графики распределения пор по размеру для мезопор и распределения пор по размеру для микропор в пористом углеродном композиционном материале примера 5 и в пористом углеродном материале сравнительного примера 5, соответственно.

На фигуре 6 (А) и (В) приведены графики распределения пор по размеру для мезопор и распределения пор по размеру для микропор в пористом углеродном композиционном материале примера бив пористом углеродном материале сравнительного примера 6, соответственно.

На фигуре 7 приведены результаты исследования методом дифракции рентгеновских лучей композиционных пористых углеродных материалов из примера 1 и примера 2 и пористых углеродных материалов из сравнительного примера 1 и сравнительного примера 2, полученных методом порошковой рентгеновской дифрактометрии, соответственно.

На фигуре 8 приведены результаты исследования методом дифракции рентгеновских лучей композиционных пористых углеродных материалов из примера 3 и примера 4 и пористых углеродных материалов из сравнительного примера 3 и сравнительного примера 4, полученных методом порошковой рентгеновской дифрактометрии, соответственно.

На фигуре 9 приведены результаты исследования методом дифракции рентгеновских лучей композиционных пористых углеродных материалов из примера 5 и примера 6 и пористых углеродных материалов из сравнительного примера 5 и сравнительного примера 6, полученных методом порошковой рентгеновской дифрактометрии, соответственно.

На фигуре 10 (А) и (В) показаны кривые намагничивания композиционного пористого углеродного материала из примера 1 и пористого углеродного материала из сравнительного примера 1 и кривые намагничивания композиционного пористого углеродного материала из примера 2 и пористого углеродного материала из сравнительного примера 2, соответственно.

На фигуре 11 приведены спектры поглощения в ультрафиолетовой-видимой области для композиционного пористого углеродного материала из примера 3 и для пористого углеродного материала из сравнительного примера 3 и спектры поглощения в ультрафиолетовой-видимой области для композиционного пористого углеродного материала из примера 4 и для пористого углеродного материала из сравнительного примера 4, соответственно.

На фигуре 12 (А) и (В) показаны кривые намагничивания композиционного пористого углеродного материала из примера 5 и пористого углеродного материала из сравнительного примера 5 и кривые намагничивания композиционного пористого углеродного материала из примера 6 и пористого углеродного материала из сравнительного примера 6, соответственно.

На фигуре 13 (А), (В), (С) и (D) приведены результаты исследования методом дифракции рентгеновских лучей материалов из сравнительного примера 7, TiO2, примера 7-А и примера 7-В, полученных методом порошковой рентгеновской дифрактометрии, соответственно.

На фигуре 14 (А), (В), (С) показаны результаты дифференциального термического анализа материалов из сравнительного примера 7, примера 7-А и примера 7-В, соответственно.

На фигуре 15 (А) и (В) показаны результаты определения изменений степени разложения метилоранжа во времени, когда образцы из примера 7-А, примера 7-В и сравнительного примера 7 были добавлены к аликвотам водного раствора метилоранжа, и полученные смеси были облучены ультрафиолетовым излучением, и на графике показаны результаты определения изменений степени разложения микроцистина во времени, когда образцы из примера 7-А и TiO2 были добавлены к аликвотам водного раствора микроцистина, и полученные смеси были облучены ультрафиолетовым излучением.

На фигуре 16 приведены результаты исследования методом дифракции рентгеновских лучей материалов из примера 9-А, примера 9-В, сравнительного примера 9-А и сравнительного примера 9-В, полученных методом порошковой рентгеновской дифрактометрии.

На фигуре 17 (А) и (В) представлены электронные микрофотографии материалов из примера 9-А и сравнительного примера 9-А.

На фигуре 18 показаны изменения во времени процента остатка радикалов в материалах из примера 9-А, примера 9-В, сравнительного примера 9-А и сравнительного примера 9-В.

На фигуре 19 показаны результаты исследования во времени поглощения при 605 нм, когда пористый углеродный композиционный материал из примера 10 подвергают облучению ультрафиолетовым излучением при 365 нм, при использовании красителя ализариновый зеленый G в качестве высвобождаемого вещества.

На фигуре 20 показаны результаты исследования влияния поглощения при 605 нм, на зависящую от температуры степень выделения высвобождаемого вещества из пористого углеродного композиционного материала из примера 10, при использовании красителя ализариновый зеленый G в качестве высвобождаемого вещества.

На фигуре 21 показаны результаты исследования зависящей от влажности степени выделения высвобождаемого вещества из пористого углеродного композиционного материала из примера 10, при использовании лимонена в качестве высвобождаемого вещества.

Осуществление изобретения

Со ссылкой на чертежи настоящее изобретение в последующем будет описано, основываясь на примерах. Однако следует иметь в виду, что настоящее изобретение не ограничивается этими примерами и что различные данные и материалы в примерах являются иллюстративными. Изобретение описано в следующем порядке.

1. Общее описание пористого углеродного композиционного материала и способа его производства, а также адсорбента, согласно настоящему изобретению.

2. Пример 1 (пористый углеродный композиционный материал и способ его производства, по настоящему изобретению)

3. Пример 2 (модификация примера 1)

4. Пример 3 (другая модификация примера 1)

5. Пример 4 (модификация примера 3)

6. Пример 5 (дополнительная модификация примера 1)

7. Пример 6 (модификация примера 5)

8. Пример 7 (еще одна модификация примера 1, композиционный фотокаталитический материал и средство очистки, по настоящему изобретению)

9. Пример 8 (адсорбент настоящего изобретения)

10. Пример 9 (параллельный дополнительный вариант осуществления примера 1, и др.)

11. Пример 10 (еще один параллельный дополнительный вариант осуществления примера 1, и др.)

Общее описание пористого углеродного композиционного материала и способа его производства, а также адсорбента, косметики, средства очистки и композиционного фотокаталитического материала, согласно настоящему изобретению

Согласно настоящему изобретению пористый углеродный композиционный материал может быть получен не только по указанному выше способу производства согласно настоящему изобретению для пористого углеродного композиционного материала, но также с помощью способа производства, который включает в себя проведение термической обработки материала растительного происхождения (предварительная карбонизационная обработка) при температуре (например, от 400°С до 700°С) ниже, чем температура карбонизации, которая будет проведена на следующей стадии, и в условиях отсутствия кислорода, обработку термообработанного материала кислотой или щелочью, проведение карбонизации при температуре от 800°С до 1400°С, чтобы получить пористый углеродный материал, и затем проведение закрепления функционального материала на пористом углеродном материале. Следует отметить, что такой способ производства может называться "второй способ производства" с целью удобства, и кроме того, способ производства пористого углеродного композиционного материала согласно настоящему изобретению может называться "первый способ производства" с целью удобства.

Первый способ производства может дополнительно включать стадию, на которой применяется активационная обработка после обработки кислотой или щелочью, но до закрепления функционального материала на пористом углеродном материале. В первом способе производства, включающем такой предпочтительный вариант осуществления, может применяться термическая обработка (предварительная карбонизационная обработка), в зависимости от используемого материала растительного происхождения, этого материала при температуре (например, от 400°С до 700°С) ниже, чем температура карбонизации и в условиях отсутствия кислорода, до карбонизации материала растительного происхождения. За счет этой термической обработки, или второго способа производства, в результате того, что смолистые компоненты, которые иначе могли бы образоваться в ходе карбонизации, могут экстрагироваться, количество указанных смолистых компонентов может быть снижено или удалено. Следует отметить, что условия отсутствия кислорода могут быть реализованы, например, за счет использования атмосферы инертного газа, такого как газообразный азот или аргон или вакуума или путем формирования материала растительного происхождения в состоянии обработки паром и горячей сушки. В первом способе производства или втором способе производства материал растительного происхождения может быть погружен, в зависимости от используемого материала растительного происхождения, в спирт (например, метиловый спирт, этиловый спирт или изопропиловый спирт) с целью снижения содержания минеральных компонентов и воды, в материале растительного происхождения, а также для предотвращения выделения неприятного запаха в ходе карбонизации. Следует отметить, что в первом способе производства, предварительная карбонизационная обработка может быть проведена последовательно. В качестве материалов, для которых предпочтительно может использоваться термическая обработка в инертном газе, могут быть упомянуты, например растения, которые обильно выделяют древесный уксус (смолистые компоненты и фракции легкого масла). В качестве материалов, для которых предпочтительно может использоваться предварительная обработка спиртом, могут быть упомянуты, например, морские водоросли, которые имеют значительное содержание йода и различных минералов. Во втором способе производства может быть включена стадия с использованием активационной обработки после карбонизации, но до осуществления закрепления функционального материала на пористом углеродном материале.

Первый способ производства или второй способ производства, которые включают указанные выше различные предпочтительные варианты осуществления, могут быть воплощены таким образом, чтобы содержание кремния (Si) в материале растительного происхождения составляло 5 масс.% или выше, а содержание кремния (Si) в пористом углеродном материале составляло 1 масс.% или меньше, величина удельной площади поверхности пористого углеродного композиционного материала, которую определяют по адсорбции азота методом BET, составляла 10 м2/г или больше, и объем пор пористого углеродного композиционного материала, который определяют методом BJH и методом МР, составлял 0,1 см3/г или больше.

Пористый углеродный композиционный материал и способ его производства согласно настоящему изобретению, включая указанные выше различные предпочтительные варианты осуществления и признаки, а также адсорбент согласно настоящему изобретению, косметическое средство согласно настоящему изобретению, средства очистки согласно настоящему изобретению, и композиционный фотокаталитический материал согласно настоящему изобретению обобщенно могут называться просто "настоящее изобретение". Пористый углеродный композиционный материал согласно настоящему изобретению и пористый углеродный композиционный материал, полученный по способу производства согласно настоящему изобретению или второму способу производства, включая указанные выше различные предпочтительные варианты осуществления и признаки, обобщенно могут называться просто "пористый углеродный композиционный материал согласно настоящему изобретению" или тому подобные. Пористый углеродный композиционный материал согласно настоящему изобретению и пористый углеродный композиционный материал, полученный по способу производства согласно настоящему изобретению или второму способу производства, включая указанные выше различные предпочтительные варианты осуществления и признаки, а также адсорбент согласно настоящему изобретению, косметическое средство согласно настоящему изобретению, средства очистки согласно настоящему изобретению и композиционный фотокаталитический материал согласно настоящему изобретению обобщенно могут называться просто "пористый углеродный композиционный материал согласно настоящему изобретению" или тому подобные. Материал, полученный путем карбонизации материала растительного происхождения при температуре от 800°С до 1400°С, но еще не подвергнутый обработке кислотой или щелочью в первом способе производства, будет называться "предшественник [1] пористого углеродного материала" или "углеродистый материал [1]". Кроме того, материал после предварительной карбонизационной обработки, но до обработки кислотой или щелочью во втором способе производства, будет называться "предшественник [2] пористого углеродного материала".

В пористом углеродном композиционном материале согласно настоящему изобретению, функциональный материал может быть магнитным материалом. В этом случае, или в случае адсорбента согласно настоящему изобретению, магнитный материал может содержать, в качестве составного элемента, по меньшей мере, элемент, из группы, содержащей железо (Fe), кобальт (Со) и никель (Ni). Кроме того, может быть желательно, чтобы магнитный материал составлял 1 масс.% или больше, предпочтительно 10 масс.% или больше в составе пористого углеродного композиционного материала или тому подобного согласно настоящему изобретению, чтобы материал проявлял магнитные свойства. Верхний предел содержания магнитного материала в составе пористого углеродного материала можно определить на основе характеристик, которые необходимы для пористого углеродного композиционного материала или тому подобного согласно настоящему изобретению. Говоря конкретно, может быть желательно, чтобы величина магнитного насыщения массы пористого углеродного композиционного материала или

тому подобного согласно настоящему изобретению составляла 1 А·