Способ определения коэффициента пропитки отверждаемым полимерным составом обмоток электрических машин

Иллюстрации

Показать все

Изобретение относится к области электротехники, а именно к неразрушающим способам контроля качества технологических процессов производства электротехнических изделий, в частности пропитки обмоток электрических машин. Согласно предлагаемому способу определения коэффициента пропитки отверждаемым полимерным составом обмоток электрических машин у каждой обмотки из данной партии до пропитки и после пропитки полимерным составом и сушки измеряют емкости Скдп и Скпп относительно корпуса. Затем после пропитки и сушки обмоток измеряют температуру у каждой обмотки Т1пп и через провод каждой контролируемой обмотки пропускают постоянный стабилизированный ток I0, величину которого выбирают в зависимости от площади сечения S жилы провода обмотки в интервале предельно допустимых для материала провода обмотки плотностей тока от jmin до jmax в диапазоне значений jminS ≤ I0 ≤ jmaxS. При этом упомянутый выбранный ток I0 пропускают через обмотку в течение определенного времени t0 и измеряют падение напряжения на обмотке U1п в момент подвода к ней стабилизированного тока и падение напряжения на обмотке U2п в момент упомянутого времени t0. После упомянутых выше операций у каждой контролируемой обмотки по результатам измерений определяют коэффициент пропитки прикорпусных полостей Кки обмотки и коэффициент пропитки Кмв межвитковых полостей обмотки по формулам

К к и = 1 ln ε п с × ln С к п п ( С э к в − С к д п ) С к д п ( С э к в − С к п п ) ,                                        ( 4 )

К м в = 1 m 0 м в с с { I 0 × t о [ U 1 п ( U 1 п + U 2 п ) α 2 ( U 2 п − U 1 п ) [ 1 + α ( Т 1 − 20 ] ] − [ 1 + α ( Т 1 − 20 ) ] B 2 U 1 п + B 1 } ,       ( 5 )

где С э к в = р S п ε 0 ε э ε к ( d э ε к + d к ε э ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции обмотки; р - количество пазов в магнитном сердечнике, в которые всыпается контролируемая часть обмотки; Sп - площадь поверхности паза; ε0=8,854187·10-12 - электрическая постоянная; εэ - диэлектрическая проницаемость эмалевой пленки провода обмотки; εк - диэлектрическая проницаемость корпусной изоляции; dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции провода; cс - удельная теплоемкость высохшего пропиточного состава;

m 0 м в = d c S c l w ( 1 − р 4 К з ) × р 2 − р S п 2 ε 0 ( С э к в − С д п С д п С э к в ) - предельная масса сухого пропиточного состава, которую можно разместить в межвитковых полостях обмотки при их 100% заполнении; dc - плотность высохшего пропиточного состава; Sс - площадь сечения паза; lw - длина витка обмотки; Кз - коэффициент заполнения паза; α - температурный коэффициент сопротивления провода обмотки; B1 = Сээм + Сэк - эквивалентная теплоемкость слоев теплоемкостей эмали С э э м = с э π ( D э 2 − D п р 2 ) 4 1 п р ρ э м и корпусной изоляции Сэк = Ски × П × dки × L × р × ски; сэ - удельная теплоемкость эмали; Dэ - диаметр эмалированного провода обмотки; Dпр - диаметр жилы провода обмотки; lпр - номинальная длина провода контролируемой части обмотки; ρэм - плотность эмали; ски - удельная теплоемкость корпусной изоляции; П - периметр паза; dки - толщина корпусной изоляции; L - длина паза; ρки - плотность корпусной изоляции; В 2 = с п р × ρ 2 0 × I 0 2 ρ п р l п р 2 - постоянный коэффициент; спр - удельная теплоемкость материала жилы провода обмотки; ρ20 - удельное сопротивление материала жилы провода обмотки при 20°С. Технический результат - упрощение способа за счет исключения необходимости у одной из произвольно выбранных обмоток измерять емкость относительно корпуса и собственную емкость до пропитки, затем погружать упомянутую обмотку в пропиточную жидкость с известной диэлектрической проницаемостью и вновь измерять емкость этой обмотки относительно корпуса и собственную емкость обмотки, не вынимая обмотку из пропиточной жидкости, а также исключения необходимости у каждой из контролируемых обмоток дважды измерять собственные емкости: до пропитки и после нее, повышение точности, так как значение коэффициента пропитки не зависит от взаимного расположения витков в пазу, а также повышение информативности контроля, так как данный способ позволяет определить, как пропиточный состав распределился внутри обмотки и каковы коэффициенты пропитки прикорпусных и межвитковых полостей обмоток. 1 табл., 2 ил.

Реферат

Изобретение относится к электротехнике, а именно к неразрушающим способам контроля качества технологических процессов производства электротехнических изделий, в частности пропитки обмоток электрических машин.

Известен способ контроля качества пропитки обмоток электрических машин, предложенный в работе [2], который заключается в измерении емкости обмотки относительно магнитного сердечника до пропитки Сдп и емкости относительно магнитного сердечника после пропитки и сушки обмотки Спп, а о качестве пропитки предложено судить по коэффициенту пропитки Кпр, определяемому из выражения

К к п р = С п п С д п .                                         ( 1 )

Недостатком способа-аналога является низкая точность контроля, так как величины Сдп и Спп зависят от расположения витков в обмотке, а также от того, как распределился состав по корпусным полостям обмотки. При попадании одинакового количества (массы) пропиточного состава в две разные однотипные обмотки одной партии Кпр, определяемый по формуле (1), может давать существенно отличающиеся друг от друга значения. Поэтому формула (1) не позволяет объективно судить о насыщенности полостей обмотки пропиточным составом.

Известен способ определения коэффициента пропитки обмоток, описанный в работе [2], частично устраняющий указанные выше недостатки аналога.

Способ-аналог, по которому у каждой обмотки из данной партии измеряют емкости относительно корпуса до пропитки и после пропитки и сушки, одну из обмоток, произвольно выбранную из данной партии, после измерения емкости относительно корпуса до пропитки погружают в пропиточную жидкость с известной диэлектрической проницаемостью обмотки и измеряют емкость относительно корпуса, не вынимая обмотку из пропиточной жидкости, а коэффициент пропитки для каждой из оставшихся обмоток данной партии определяют по формуле

К к п р = 1 ln   ε 2 ln ε 1 С п п ( С п п * С д п * − 1 ) С п п * С д п * С д п ( ε 1 − 1 ) − С п п ( ε 1 − С п п * С д п * ) ,                                      ( 2 )

где Сдп, Спп - емкости обмотки относительно корпуса соответственно до пропитки и после пропитки и сушки; С д п * - емкость произвольно выбранной обмотки относительно корпуса до пропитки; С п п * - емкость произвольно выбранной обмотки относительно корпуса после выдержки в пропиточной жидкости с известной диэлектрической проницаемостью до полного заполнения ею полостей обмотки; ε1 - диэлектрическая проницаемость пропиточной жидкости; ε2 - диэлектрическая проницаемость отвержденного пропиточного состава.

Недостатком способа является необходимость у одной из произвольно выбранных обмоток измерять емкость относительно корпуса до пропитки, затем, после измерения емкости относительно корпуса до пропитки, погружать упомянутую обмотку в пропиточную жидкость с известной диэлектрической проницаемостью и измерять емкость обмотки относительно корпуса, не вынимая обмотку из пропиточной жидкости. Введение этой операции и необходимость двойного измерения емкости до пропитки и после нее усложняет способ.

Кроме того, по упомянутому способу определяют только усредненный коэффициент пропитки прикорпусных полостей обмоток Ккпр. Между тем, не меньшее влияние на качество обмоток оказывает и коэффициент пропитки межвитковых полостей обмоток Кмпр, который по указанному способу не определяют.

Наиболее близким к заявляемому является способ определения коэффициента пропитки отверждаемым полимерным составом обмоток электрических машин, описанный в работе [3].

В способе-прототипе у каждой обмотки из данной партии измеряют емкости относительно корпуса до пропитки и после пропитки полимерным составом и сушки, а одну произвольно выбранную обмотку после измерения емкости относительно корпуса до пропитки погружают в пропиточную жидкость с известной диэлектрической проницаемостью, выдерживают до полного заполнения ею полостей обмотки и измеряют емкость относительно корпуса, не вынимая обмотку из пропиточной жидкости и по результатам измерений определяют коэффициент пропитки прикорпусных полостей обмоток Ккпр, затем у всех обмоток из данной партии и произвольно выбранной обмотки после каждого из всех упомянутых измерений изменяют их собственные емкости, а коэффициент пропитки определяют по выражению

К п р = 1 ln   ε ln С к д п С в д п С в п п С к п п ε 1 [ 1 − А в ) − С в д п ( А к − А в ) ] С 0 д п С к д п А к { ε 1 ( 1 − А в ) + ( А в − ε 1 ) × × 1 [ С к д п С в д п С к п п − С к д п С в п п С к п п − С в д п С к д п С в п п + С в д п С в п п С к п п ] + [ А к ( 1 − А в ) С к д п С в д п С в п п С к п п ] }         ( 3 )

где ε - диэлектрическая проницаемость отвержденного (сухого) пропиточного состава;

Скдп, Скпп - емкости обмотки относительно корпуса соответственно до и после пропитки полимерным составом и сушки; Свдп, Свпп - собственные емкости обмотки, соответственно до и после пропитки полимерным составом и сушки; ε1 - диэлектрическая проницаемость пропиточной жидкости; А к = С к д п 1 С к п п 1 - постоянный коэффициент; С к д п 1 , С к п п 1 - емкости произвольно выбранной обмотки относительно корпуса соответственно до пропитки и после выдержки в пропиточной жидкости; А в = С в д п 1 С в п п 1 - постоянный коэффициент, С в д п 1 , С в п п 1 - собственные емкости произвольно выбранной обмотки соответственно до пропитки и после выдержки в пропиточной жидкости.

Недостатками способа-прототипа являются:

- необходимость у одной из произвольно выбранных обмоток измерять емкость относительно корпуса и собственную емкость до пропитки, затем погружать упомянутую обмотку в пропиточную жидкость с известной диэлектрической проницаемостью и вновь измерять емкость этой обмотки относительно корпуса и собственную емкость, не вынимая обмотку из пропиточной жидкости, что усложняет способ;

- необходимость у каждой из контролируемых обмоток дважды измерять собственные емкости: до пропитки и после нее, что приводит к дополнительному усложнению способа;

- низкая точность контроля, обусловленная большим разбросом собственных емкостей от одной обмотки к другой, что связано со случайным расположением витков в обмотке, и зависимостью значения собственной емкости обмоток от того, каким образом распределился пропиточный состав, между какими витками обмотки;

- низкая информативность контроля, обусловленная тем, что по формуле (3) определяют усредненный коэффициент пропитки только межвитковых полостей обмотки, а как он распределился внутри обмотки и каков коэффициент пропитки прикорпусных полостей, способом-прототипом не определяют.

Технической задачей, на которую направлено изобретение, является упрощение способа, повышение его информативности и точности.

Поставленная техническая задача решается тем, что в способе определения коэффициента пропитки отверждаемым полимерным составом обмоток электрических машин, при котором у каждой обмотки из данной партии до пропитки и после пропитки полимерным составом и сушки измеряют емкости Скдп и Скпп относительно корпуса дополнительно после измерения емкости относительно корпуса у каждой контролируемой обмотки Скпп после пропитки и сушки, измеряют температуру обмотки T1пп, затем через провод каждой контролируемой обмотки пропускают постоянный стабилизированный ток I0, величину которого выбирают в зависимости от площади сечения S жилы провода обмотки в интервале предельно допустимых для материала провода обмотки плотностей тока от jmin до jmax, в диапазоне значений jminS≤I0≤jmaxS, причем упомянутый ток I0 пропускают через обмотку в течение определенного времени t0 и измеряют падение напряжения на обмотке U1п в момент подвода к ней стабилизированного тока и падение напряжения на обмотке U2п в момент упомянутого времени t0, после чего у каждой контролируемой обмотки по результатам измерений определяют коэффициент пропитки прикорпусных полостей Кки обмотки и коэффициент пропитки Кмв межвитковых полостей обмотки по формулам

К к и = 1 ln   ε пс × ln С к п п ( С э к в − С к д п ) С к д п ( С э к в − С к п п ) ,                                   ( 4 )

К м в = 1 m 0 м в c с { I 0 × t о [ U 1 п ( U 1 п + U 2 п ) α 2 ( U 2 п − U 1 п ) [ 1 + α ( Т 1 − 20 ) ] − [ 1 + α ( Т 1 − 20 ) ] B 2 U 1 п + B 1 } ,     ( 5 )

где С э к в = p S п ε 0 ε э ε к ( d э ε к + d к ε э ) - эквивалентная емкость последовательно соединенных емкостей эмали и корпусной изоляции обмотки; р - количество пазов в магнитном сердечнике, в которые всыпается контролируемая часть обмотки; Sп - площадь поверхности паза; ε0=8,854187·10-12 - электрическая постоянная; еэ - диэлектрическая проницаемость эмалевой пленки провода обмотки; ек - диэлектрическая проницаемость корпусной изоляции, dэ - толщина эмалевой изоляции провода; dк - толщина корпусной изоляции провода, cс - удельная теплоемкость высохшего пропиточного состава,

m 0 м в = d c S c l w ( 1 − р 4 К з ) × р 2 − p S п 2 e 0 ( С э к в − С д п С д п С э к в ) - предельная масса сухого пропиточного состава, которую можно разместить в межвитковых полостях обмотки при их 100% заполнении; dc - плотность высохшего пропиточного состава; Sс - площадь сечения паза; lw - длина витка обмотки; Кз - коэффициент заполнения паза; α - температурный коэффициент сопротивления провода обмотки; В1ээмэк - эквивалентная теплоемкость слоев теплоемкостей эмали С э э м = с э р ( D э 2 − D п р 2 ) 4 l п р с э м и корпусной изоляции Сэкки×П×dки×L×р×ски; cэ - удельная теплоемкость эмали; Dэ - диаметр эмалированного провода обмотки; Dпр - диаметр жилы провода обмотки; lпр - номинальная длина провода контролируемой части обмотки; сэм - плотность эмали; ски - удельная теплоемкость корпусной изоляции, П - периметр паза; dки - толщина корпусной изоляции; L - длина паза; ски - плотность корпусной изоляции,

В 2 = с п р × ρ 20 × I 0 2 c п р l п р 2 - постоянный коэффициент; спр - удельная теплоемкость материала жилы провода обмотки; ρ20 - удельное сопротивление материала жилы провода обмотки при 20°С.

На фиг.1 представлено сечение обмотки в одном из пазов, представляющее слоистую систему.

Она состоит из проводов обмотки 1, покрытых слоем эмали 2, корпусной изоляции 3, поверхности паза 4, воздушных полостей между поверхностью обмотки и корпусной изоляцией 5 и воздушных полостей между корпусной изоляцией и поверхностью паза 6, магнитного сердечника (корпус) 7, межвитковых полостей 8.

На фиг.2 изображены емкости обмотки относительно корпуса, которым является магнитный сердечник статора электрической машины, представлены в виде слоистого плоского конденсатора до пропитки (фиг.2А) и после нее (фиг.2Б). На фиг.2А и фиг.2Б введены те же обозначения, только на фиг.2Б вместо позиций 5 и 6 введены позиции 9 и 10, так как воздушные полости обмотки 5 и 6 после пропитки и сушки частично заполняются пропиточным составом. В связи с этим позициями 9 и 10 обозначены те же слои 5 и 6, но заполненные статистически распределенными по этим слоям частицами пропиточного состава. Фиг.1, фиг.2 служат для пояснения сущности изобретения.

Сущность способа заключается в следующем.

Корпусная часть обмотки электрической машины, размещенной в пазы магнитного сердечника, представляет собой слоистую систему (см. фиг.1). Так как толщина dэ эмалевой изоляции 2 провода 1, толщина dк корпусной изоляции 3 и суммарная толщина dв воздушных полостей между поверхностью обмотки и корпусной изоляцией 5 и воздушных полостей между корпусной изоляцией и поверхностью паза 6 пренебрежительно малы и составляют несколько микрон, то емкость обмотки относительно корпуса можно с пренебрежительно малой погрешностью представить в виде слоистого плоского конденсатора (см. фиг.2). Емкость непропитанной обмотки относительно магнитного сердечника (корпуса) до пропитки Сдп в соответствии с фиг.2А можно представить в виде следующего соотношения:

1 С к д п = 1 С э + 1 С к + 1 С в ,                                                      ( 6 )

где Сэ, Ск, Св - емкости слоя эмальизоляции, емкости слоя корпусной изоляции, суммарные емкости воздушных слоев 5 и 6 (фиг.2) соответственно.

Следует отметить, что разброс толщин эмалевой и корпусной изоляции однотипных обмоток пренебрежительно мал, поэтому эквивалентные емкости этих слоев в однотипных обмотках можно, с пренебрежительно малой погрешностью, считать одинаковыми и постоянными от одной обмотки к другой обмотке. Разброс емкостей непропитанных Скдп обмоток в основном обусловлен разбросом эквивалентных емкостей Св от одной обмотки к другой и связан с разбросом от обмотки к обмотке воздушных полостей 5 и 6 (фиг.1 и фиг.2А).

Эквивалентную емкость Сэкв последовательно соединенных слоев эмали и корпусной изоляции можно записать в виде

С э к в = С э С к С э + С к . ( 7 )

С учетом того, что емкости слоев эмали в соответствии с фиг.2А можно представить в виде соединенных последовательно плоских конденсаторов и с учетом толщины эмали dэ и корпусной изоляции dк и их диэлектрических проницаемостей еэ и ек, выражение 7 можно записать

С э к в = p S п ε 0 ε э ε к d э ε к + d к ε э ,        ( 8 )

где e0=8,854187817·10-12 - электрическая постоянная.

Эквивалентную емкость воздушных слоев 5 и 6 (фиг.2А) можно записать

С в = р × ε 0 ε в S п d в ,        ( 9 )

где dв - суммарная толщина воздушных слоев 5 и 6.

Учитывая выражения (6), (7) и (9), а также тот факт, что диэлектрическая проницаемость воздуха εв=1, можно записать формулу для определения суммарной толщины воздушного зазора dв

d в = р S п ε 0 ( 1 С д п − 1 С э к в ) = р S п ε 0 ( С э к в − С д п С д п С э к в ) . ( 10 )

После пропитки и сушки обмоток объемы полостей 5 и 6 частично заполняются пропиточным составом, имеющим диэлектрическую проницаемость εп (см. фиг.2А и фиг.2Б)). Так как пропиточный состав не полностью заполняет объемы полостей 9 и 10, а статистически распределен по этим полостям, то в упомянутых полостях образуется бинарная статистическая смесь, состоящая из частиц пропиточного состава и частиц воздуха, с диэлектрической проницаемостью ε*. Диэлектрическая проницаемость бинарной смеси е* подчиняется распределению Лихтенеккера-Ротера [4], в соответствии с которым можно записать

ln ε * = V п V 0 к и ln ε п + V 0 к и − V п 12 V 0 к и ln ε в ,           ( 11 )

где Vп - объем, который занимают частицы пропиточного состава в слоях 9 и 10,

V0ки-Vп - объем воздуха в слоях 9 и 10, ε* - диэлектрическая проницаемость статистической смеси в слоях 9 и 10.

Учитывая, что диэлектрическая проницаемость воздуха εв=1, a ln εв=0, выражение (11) можно записать в виде

ln е * = V п V 0 к и ln ε п = К к и ln ε п .                  ( 12 )

В выражении (12) отношение V п V 0 к и есть ничто иное, как коэффициент пропитки Кпр прикорпусных полостей 9 и 10, характеризующий степень заполнения объема полостей V0ки пропиточным составом.

Если учесть, что после пропитки и сушки пропиточный состав, диэлектрическая проницаемость которого еп статистически распределился по объемам слоев 9 и 10, то эквивалентная емкость этих слоев можно представить выражением

С п = р × ε 0 ε * S п d в .                        ( 13 )

Подставив в уравнение (6) вместо Св величины Сп из выражения (13), можно записать выражение для емкости Скпп

1 С к п п = 1 С э к в + d в р ε 0 ε * S п ,                         ( 14 )

Из соотношения (14) выразим суммарную толщину dв слоев 9 и 10

d в = р ε 0 ε * 12 S п ( С э к в − С к п п С к п п С э к в ) .                              ( 15 )

Так как после пропитки и сушки толщина dв слоев 9 и 10 в каждой контролируемой обмотке осталась равной суммарной толщине воздушного зазора dв в непропитанной обмотке, то можно приравнять правые части выражения (10) к правой части выражения (15) и получить

е * р ε 0 S п ( С э к в − С к п п С к п п С э к в ) = р S п ε 0 ( С э к в − С к д п С к д п С э к в ) .                           ( 16 )

Из соотношения (16) выразим е* и, преобразовав полученное выражение, запишем

ε * = С к п п ( С э к в − С к д п ) С к д п ( С э к в − С к п п ) .                           ( 17 )

Выразим из соотношения (12) коэффициент пропитки прикорпусных полостей обмотки Кки, получим

К к и = ln ε * ln ε п .                            ( 18 )

Подставив в выражение (18) значение е* из соотношения (17), получим

К к и = 1 ln ε п с × ln С к п п ( С э к в − С к д п ) С к д п ( С э к в − С к п п ) .                              ( 19 )

Таким образом, для определения степени насыщенности прикорпусных полостей обмоток пропиточным составом достаточно у каждой из контролируемых обмоток до пропитки и после пропитки и сушки измерить емкости относительно корпуса Скдп и Скпп и определить коэффициенты пропитки прикорпусных полостей обмоток по вышеприведенной формуле (19).

Рассмотрим принцип измерения степени насыщенности пропиточным составом межвитковых 8 (фиг.1) полостей обмотки. Для этого сначала покажем, как, используя тепловой метод, определить общую суммарную массу пропиточного состава, находящегося в межвитковых и прикорпусных полостях обмотки.

До пропитки эквивалентная теплоемкость обмотки Сэдп равняется сумме теплоемкостей

С э д п = С э п р + С э э м + С э к и ,                                      ( 20 )

где Сэпрпр×mпр - эквивалентная теплоемкость провода контролируемой обмотки; Сээмэ×m - эквивалентная теплоемкость эмалевой изоляции провода; Сэкики×mки - эквивалентная теплоемкость провода эмали; спр, сэм, ски - удельные теплоемкости материала провода, эмали, корпусной изоляции соответственно; mпрi, m, miки - массы жилы провода, эмали и корпусной и изоляции соответственно.

Так как mпр>>mэ и mпр>>mки, а эквивалентная теплоемкость непропитанной обмотки из выражения (20) определяется, в основном, величиной Сэпр, то именно эту величину необходимо определять (измерять) с минимальной погрешностью, а допущение о том, что величины Сээм и Сэки постоянны для всех однотипных обмоток и равны номинальным значениям, не привносят заметных ошибок в контроль качества пропитки. Исходя из этого, можно положить, что

С э э м = с э π ( D э 2 − D п р 2 ) 4 l п р ρ э м = c o n s t ,                        ( 21 )

С э к и = с к и × П × d к и × L × р × ρ к и = c o n s t ,                      ( 22 )

где Dэ, Dпр - номинальные диаметры эмалированного и оголенного проводов; lпр - номинальная длина провода контролируемой части обмотки; ρэм - плотность эмали; dки - номинальная толщина корпусной изоляции; П - периметр паза, L - длина паза; р - число пазов, в которые всыпана обмотка; ρки - плотность корпусной изоляции.

Обозначим сумму Сээм и Сэки буквой B1ээмэки=const. С введенным обозначением B1 выражение (22) можно переписать в виде

С э д п = С э п р + В 1 .               ( 23 )

Наибольшую погрешность в величину Сэдп, как это отмечено выше, может внести нестабильность (разброс) от обмотки к обмотке величины mпрi за счет разбросов от обмотки к обмотке сечения провода, потому именно величину mпрi в каждой из контролируемых обмоток необходимо контролировать. Покажем, как это можно осуществить. Пусть контроль осуществляется при температуре Т=20°С. Тогда сопротивление обмотки в момент подвода к ней электрической энергии равно R20. Обычно же, особенно после пропитки и сушки обмоток их температура (обозначим ее Т1) отличается от 20°С. Если температура обмотки в момент подключения к ней греющего тока I0, равна Т1 и отличается от Т=20°С, то сопротивление R20 можно определить по формуле

R 20 = R 1 1 + α ( Т 1 − 20 ) ,                             ( 24 )

где α - температурный коэффициент сопротивления.

Разогревать пропитанную обмотку наиболее рационально постоянным стабилизированным током I0. Величину постоянного стабилизированного тока I0, выбирают, исходя из допустимых плотностей тока j. Которая, например, для медного провода лежит в диапазоне от jmin=6 А/мм2 до jmax=10 А/мм2 [5] и площади сечения провода S.

При этом нижняя граница плотность тока, равная, например, для медного провода, jmin=6 А/мм2 считается нормальной плотностью, взятой с запасом, а плотность тока верхней границы, равная, например, для медного провода jmax=10 А/мм2 - это максимально допустимая плотность, которая пригодна только для кратковременной эксплуатации. В нашем случае, при кратковременном воздействии постоянного стабилизированного тока I0 на объект контроля (обмотку), целесообразно выбирать плотность тока, близкую к максимально допустимой плотности тока, равной jmax=10 А/мм2. Это обусловлено тем, что, во-первых, воздействие тока на провод обмотки в процессе контроля пропитки кратковременно, и, во- вторых тем, что чем выше плотность тока, тем быстрее происходит изменение температуры провода, что сокращает время контроля. Поэтому для разрабатываемого способа контроля качества пропитки обмоток электротехнических изделий следует обузить интервал плотностей тока до значений от jmin=6 А/мм2 до jmах=10 А/мм2. Указанный выбранный интервал тока для контроля пропитки обмоток электротехнических изделий, изготовленных из медного провода, обусловлен следующими причинами. Плотность тока для медных проводов более jmax=10 А/мм2 не допустима. Значение плотностей тока меньше jmin=6 А/мм2 приводит к увеличению времени контроля и точности измерений коэффициентов пропитки.

Для алюминиевого провода пределы допустимых плотностей тока лежат в диапазоне 4-6 ампер на квадратный миллиметр [5]. Поэтому если контролируются обмотки, провод которых выполнен из алюми