Ультразвуковой расходомер с дренажной системой для отведения жидкости
Иллюстрации
Показать всеУльтразвуковой расходомер для измерения потока текучей среды в трубопроводе содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя. Посадочное гнездо преобразователя проходит вдоль центральной оси от открытого конца в сквозном отверстии к закрытому концу, являющемуся удаленным по отношению к сквозному отверстию. Кроме того, расходомер содержит акустический преобразователь, расположенный в посадочном гнезде преобразователя. Преобразователь содержит пьезоэлектрический элемент. Кроме того, расходомер содержит дренажное отверстие, сообщающееся посредством текучей среды с посадочным гнездом преобразователя. Дренажное отверстие расположено в осевом направлении между открытым концом и закрытым концом посадочного гнезда преобразователя. Кроме того, расходомер содержит дренажную трубку, имеющий впускной конец, присоединенный к дренажному отверстию, и выпускной конец, противоположный впускному концу. Дренажное отверстие выполнено с возможностью отведения жидкости из посадочного гнезда преобразователя во впускной конец дренажной трубки. Технический результат - возможность установления ультразвукового расходомера в большем количестве разнообразных положений и ориентаций с одновременной минимизацией накапливания жидкости, по меньшей мере, в одном посадочном гнезде преобразователя. 3 н. и 17 з.п. ф-лы, 8 ил.
Реферат
ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Данная заявка испрашивает приоритет патентной заявки США №61/317,313 «Ультразвуковой расходомер с дренажной системой для отведения жидкости», поданной 25 марта 2010 года и полностью включенной в настоящее описание посредством ссылки.
[0002]
ОБЛАСТЬ ТЕХНИКИ
[0003] Настоящее изобретение относится в целом к ультразвуковым расходомерам. В частности, настоящее изобретение относится к дренажным системам для отведения жидкости, предназначенным для ультразвуковых расходомеров.
УРОВЕНЬ ТЕХНИКИ
[0004] После извлечения углеводородов из земли, поток текучей среды (в жидкой или газовой фазе) транспортируется от одного места к другому посредством трубопроводов. Желательно иметь возможность точно определять протекающее количество текучей среды, в частности, точность особенно необходима при переходе текучей среды к другому владельцу или при передаче на ответственное хранение. Однако точность измерения желательна и в других ситуациях, при которых могут быть использованы ультразвуковые расходомеры.
[0005] Ультразвуковой расходомер содержит по меньшей мере два блока преобразователей, каждый из которых закреплен в посадочном гнезде корпуса расходомера. Кроме того, корпус расходомера может быть отнесен к патрубку. Для удержания перемещаемой текучей среды в расходомере, над внешним концом каждого из посадочных гнезд преобразователя в патрубке закреплен концевой соединитель. Таким образом, патрубок и концевые соединители создают границу давления и корпус, удерживающий текучую среду, текущую через расходомер.
[0006] Для измерения расхода текучей среды через расходомер, два блока преобразователей размещены вдоль внутренней поверхности патрубка, так что каждый из блоков преобразователя обращен друг к другу на противоположных сторонах потока текучей среды через отверстие патрубка. Каждый из блоков преобразователя содержит пьезоэлемент. При приложении переменного тока к пьезоэлементу первого блока преобразователя из двух блоков, пьезоэлемент реагирует путем излучения ультразвуковой волны через текучую среду, протекающую через расходомер. При падении этой волны на пьезоэлемент второго блока преобразователя, он реагирует путем создания электрического сигнала. Через некоторое время происходит приложение переменного тока к пьезоэлементу второго блока преобразователя, второй пьезоэлемент реагирует путем излучения ультразвуковой волны через текучую среду в расходомере к первому блоку преобразователя. При падении этой волны на пьезоэлемент первого блока преобразователя, первый блок преобразователя реагирует путем создания электрического сигнала. Таким образом, блоки преобразователей выдают и принимают сигналы в обе стороны через поток текучей среды.
[0007] Каждый из блоков преобразователя присоединен к кабелю, проходящему через концевой соединитель наружу из патрубка к удаленному положению, так, например, электронный блок обычно прикреплен к внешней части патрубка. Кабель передает электрический сигнал, создаваемый пьезоэлементом соответствующего блока преобразователя, на плату приема данных, расположенную в электронном блоке, в котором сигнал может быть обработан и затем использован для определения расхода текучей среды через расходомер.
[0008] В большинстве применений обычным является наличие относительно небольшого количества жидкости в газовом потоке, протекающем через расходомер. Через некоторое время может произойти сбор или накопление некоторого объема жидкости в посадочном гнезде преобразователей. Однако накопление чрезмерного количества жидкости в посадочном гнезде преобразователя может оказать нежелательное воздействие на передачу и/или прием сигналов посредством блока преобразователя, расположенного в посадочном гнезде. В частности, накопленная жидкость может привести к акустическому замыканию акустического сигнала от блока преобразователя, расположенного в посадочном гнезде. Другими словами, акустический сигнал, созданный посредством блока преобразователя, может проходить в жидкость и/или корпус расходомера вместо прохождения исключительно через текучую среду, протекающую через корпус расходомера до соответствующего блока преобразователя. В итоге, акустический сигнал не поступает в соответствующий блок преобразователя, что приводит к возникновению ошибок при измерении потока. Кроме того, накопление жидкости в посадочном гнезде преобразователя может привести к замыканию или коррозии проводов или других электрических компонентов блока преобразователя, что потенциально приводит к неисправности блока преобразователя.
[0009] Для минимизации накапливания текучей среды в посадочных гнездах преобразователя и связанных с этим проблем, ультразвуковым расходомерам обычно обычно придают конкретную ориентацию, обеспечивающую возможность самоотведения накопленной жидкости из посадочных гнезд преобразователей, под действием силы тяжести, обратно в основное поточное отверстие корпуса расходомера. Например, ультразвуковые расходомеры, в которых пути прохождения сигналов преобразователей между двумя блоками преобразователей пересекают поточное отверстие расходомера, обычно рекомендуют устанавливать в горизонтальном трубопроводе (то есть поточной линии с горизонтальной частью трубопровода) и располагать их таким образом, чтобы посадочные гнезда преобразователей были ориентированы горизонтально. Горизонтальная ориентация посадочных гнезд преобразователей обеспечивает возможность самоотведения жидкости, накопленной в этих посадочных гнездах, под действием силы тяжести, обратно в основное поточное отверстие расходомера, поскольку диаметр посадочного гнезда выполнен равномерным по всей его длине или происходит увеличение диаметра посадочного гнезда по направлению к основному поточному отверстию корпуса расходомера. В качестве еще одного примера, ультразвуковые расходомеры, в которых пути прохождения сигналов преобразователей проходят от внутренней поверхности расходомера, обычно рекомендуют устанавливать в горизонтальном трубопроводе (то есть поточной линии с горизонтальной частью трубопровода) с посадочным гнездом преобразователя (посадочными гнездами преобразователей), расположенным на верхней стороне расходомера и ориентированным вертикально или под углом менее 90 градусов от вертикали. Вертикальная или почти вертикальная ориентация посадочного гнезда преобразователя (посадочных гнезд преобразователей) на верхней стороне корпуса расходомера обеспечивает возможность самоотведения любой жидкости, накопленной в посадочных гнездах, по направлению вниз под действием силы тяжести, обратно в основное поточное отверстие корпуса расходомера.
[0010] Согласно приведенному ранее описанию, для уменьшения накапливания жидкостей в посадочных гнездах преобразователей, расходомеры и соответствующие посадочные гнезда преобразователей обычно располагают и ориентируют конкретным образом. В итоге, размещение расходомера вдоль трубопровода может быть ограничено конкретными положениями, в которых трубопровод выполнен горизонтальным. Однако в некоторых применениях может быть невозможно, нецелесообразно или экономически не эффективно ориентировать расходомер согласно рекомендациям. Таким образом, в рассматриваемой области техники существует потребность в ультразвуковых расходомерах, которые могли бы быть установлены в большем количестве разнообразных положений и ориентации с одновременной минимизацией накапливания жидкости по меньшей мере в одном посадочном гнезде преобразователя.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
[0011] Эти и другие потребности в уровне техники удовлетворены в одном из примеров реализации посредством ультразвукового расходомера для измерения потока текучей среды в трубопроводе. В одном из примеров реализации расходомер содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя. Посадочное гнездо преобразователя проходит вдоль центральной оси в сквозном отверстии от открытого конца к закрытому концу, являющемуся дальним по отношению к сквозному отверстию. Кроме того, расходомер содержит акустический преобразователь, расположенный в посадочном гнезде преобразователя. Преобразователь содержит пьезоэлектрический элемент. Кроме того, расходомер содержит дренажное отверстие, сообщающееся посредством текучей среды с посадочным гнездом преобразователя. Дренажное отверстие расположено в осевом направлении между открытым концом и закрытым концом посадочного гнезда преобразователя. Кроме того, расходомер содержит дренажную трубку, имеющую впускной конец, присоединенный к дренажному отверстию, и выпускной конец, противоположный впускному концу. Дренажное отверстие выполнено с возможностью отведения жидкости из посадочного гнезда преобразователя во впускной конец дренажной отводящей трубки.
[0012] Эти и другие потребности в уровне техники удовлетворены еще в одном примере реализации посредством способа отведения накопленной жидкости из посадочного гнезда преобразователя ультразвукового расходомера. В одном из примеров реализации согласно способу (а) перемещают текучую среду через сквозное отверстие в расходомере. Посадочное гнездо преобразователя проходит от сквозного отверстия и сообщается посредством текучей среды со сквозным отверстием. Кроме того, согласно способу (b) передают акустический сигнал через сквозное отверстие расходомера к преобразователю, расположенному в посадочном гнезде преобразователя. Кроме того, согласно способу (с) накапливают жидкость в посадочном гнезде преобразователя на этапе (а). Кроме того, согласно способу (d) отводят накопленную жидкость из посадочного гнезда преобразователя через дренажное отверстие, сообщающееся посредством текучей среды с посадочным гнездом преобразователя после этапа (с). Кроме того, согласно способу (е) перемещают текучую среду из дренажного отверстия в дренажную трубку на этапе (а). Кроме того, согласно способу (f) смещают клапан в дренажной трубке в закрытое положение, ограничивающее протекание жидкости через клапан. Кроме того, согласно способу (g) перемещают клапан в открытое положение после этапа (с) для обеспечения возможности протекания жидкости через клапан.
[0013] Эти и другие потребности в уровне техники удовлетворены еще в одном примере реализации посредством способа идентификации неисправного акустического преобразователя в ультразвуковом расходомере. В одном из примеров реализации согласно способу (а) перемещают текучую среду через сквозное отверстие расходомера. Кроме того, согласно способу (b) передают акустический сигнал через сквозное отверстие расходомера к акустическому преобразователю, расположенному в посадочном гнезде преобразователя, проходящем от сквозного отверстия в расходомере. Кроме того, согласно способу (с) принимают акустический сигнал, проходящий через сквозное отверстие расходомера с помощью акустического преобразователя. Кроме того, согласно способу (d) используют дренажное отверстие, сообщающееся посредством текучей среды с посадочным гнездом преобразователя. Дренажная трубка, присоединенная к дренажному отверстию, содержит клапан. Кроме того, согласно способу (е) непрерывно контролируют акустические сигналы с помощью электронного блока, присоединенного к преобразователю. Кроме того, согласно способу (f) определяют достоверность акустических сигналов с помощью электронного блока на этапе (е). Кроме того, согласно способу (g) удерживают клапан в закрытом положении с помощью электронного блока в случае достоверности акустического сигнала на этапе (f). Кроме того, согласно способу (h) перемещают клапан в открытое положение на этапе (g) с помощью электронного блока, в случае достоверности акустического сигнала на этапе (f).
[0014] Таким образом, примеры реализации, описанные в настоящей заявке, содержат сочетание особенностей и преимуществ, предназначенных для решения различных недостатков, связанных с конкретными устройствами, системами и способами, известными из уровня техники. После прочтения представленного далее подробного описания, приведенного согласно прилагаемым чертежам, для специалиста в данной области техники будут полностью очевидны различные особенности, описанные выше, и другие особенности.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0015] Далее будет приведено подробное описание пояснительных примеров реализации настоящего изобретения согласно прилагаемым чертежам, на которых;
[0016] на фиг.1 показан вид сверху ультразвукового расходомера, в одном из примеров его реализации, в разрезе вдоль линии 1-1 по фиг.2;
[0017] на фиг.2 показан вид с торца расходомера по фиг.1, на которой схематически показаны пути акустических сигналов и соответствующие акустические сигналы, созданные и принятые блоками преобразователей по фиг.1 и 3;
[0018] на фиг.3 схематически показан вид сверху расходомера по фиг.1;
[0019] на фиг.4 показан увеличенный вид расходомера по фиг.1 в частичном разрезе по линии 4-4 по фиг.1 и показан один из примеров реализации дренажной системы для отведения жидкости;
[0020] на фиг.5 показана блок-схема, отражающая один из примеров реализации способа для управления работой дренажной системы для отведения жидкости по фиг.4;
[0021] на фиг.6 показан вид сбоку ультразвукового расходомера по фиг.1 с выпускным отверстием дренажной трубки для отведения жидкости дренажной системой для отведения жидкости по фиг.4, размещенной для отведения накопленной жидкости обратно в сквозной проход расходомера;
[0022] на фиг.7 показан частичный вид сбоку ультразвукового расходомера по фиг.1 с выпускным отверстием дренажной трубки для отведения жидкости дренажной системой по фиг.4, размещенной для отведения накопленной жидкости в накопительную емкость.
[0023] на фиг.8 показан увеличенный вид в частичном разрезе одного из примеров реализации расходомера, содержащего электронный блок, который осуществляет непрямое управление дренажной системой для отведения жидкости из посадочного гнезда преобразователя.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
[0024] Далее приведено описание различных примеров реализации настоящего изобретения. Несмотря на то что по меньшей мере один из этих примеров реализации в настоящее время может представлять собой предпочтительный пример реализации, раскрытые примеры реализации не следует рассматривать в качестве ограничения объема настоящего изобретения, включающего формулу изобретения. Кроме того, специалисту в уровне техники ясно, что приведенное далее описание имеет широкое применение, а описание любого из примеров реализации приведено только для пояснения такого примера реализации и не предназначено для ограничения объема настоящего изобретения, определяемого формулой изобретения.
[0025] В настоящем описании и формуле изобретения использованы конкретные термины для обращения к конкретным элементам или компонентам. Специалисту в области техники будет понятно, что разные люди могут использовать различные названия для обращения к аналогичному элементу или компоненту. Данная заявка не предназначена для проведения различий между компонентами или элементами, которые имеют различное название, а не функцию. В масштабировании фигур на чертежах нет необходимости. Конкретные элементы и компоненты в настоящей заявке могут быть могут быть показаны в увеличенном виде или несколько схематично, а некоторые части обычных элементов могут быть не показаны для обеспечения ясности и краткости.
[0026] В приведенном далее описании и формуле изобретения, термины "включающий" и "содержащий" использованы в неограничительной форме, поэтому их следует интерпретировать как "включающий, но не ограниченный …". Кроме того, термин "соединяют" или "соединяет" предназначен для описания непрямого или прямого соединения. Таким образом, если первое устройство "соединено" со вторым устройством или присоединено к нему, то такое соединение может быть выполнено путем прямого соединения или непрямого соединения посредством других устройств, компонент и соединений. Кроме того, использованные в данной заявке термины "осевой" и "в осевом направлении" в общем смысле означают вдоль или параллельно центральной оси (например, центральной оси корпуса или посадочного гнезда), а термины "радиальный" и "радиально" в общем смысле означают перпендикулярно относительно центральной оси. Например, осевое расстояние относится к расстоянию, измеренному вдоль или параллельно центральной оси, а радиальное расстояние соответствует расстоянию, измеренному перпендикулярно центральной оси.
[0027] На фиг.1-3 схематически показан один из примеров реализации ультразвукового расходомера 10. Расходомер 10 содержит корпус расходомера или патрубок 11, подходящий для размещения между сегментами трубопровода. Патрубок 11 проходит вдоль центральной оси 15 между первым или расположенным выше по течению концом 11а и вторым или расположенным ниже по течению концом 11b, противоположным первому концу 11a. Согласно фиг.1 и 2, в данном примере реализации, каждый конец 11а, b содержит соответственно крепежный фланец 12, 13. Кроме того, патрубок 11 имеет установленный размер и задает центральный сквозной проход 14, который проходит между концами 11а, b и через который протекает измеряемая текучая среда (например, газ и/или жидкость).
[0028] Согласно фиг.2 и 3, в данном примере реализации, расходомер 10 содержит четыре пары преобразователей, расположенных в посадочных гнездах преобразователя, расположенного по длине патрубка 11: первую пару преобразователей 20а, 20b, расположенных соответственно в посадочных гнездах преобразователя 30а, 30b, вторую пару преобразователей 20c, 20а, расположенных соответственно в посадочных гнездах преобразователя 30c, 30a, третью пару преобразователей 20е, 20f, расположенных в соответствующих посадочных гнездах преобразователя 30е, 30f, и четвертую пару преобразователей 20g, 20h, расположенных в соответствующих посадочных гнездах преобразователя 30g, 30h.
[0029] Каждый преобразователь (например, преобразователь 20а, 20b, 20c, 20а, 20е, 20f, 20g, 20h) представляет собой акустический приемопередатчик, в частности ультразвуковой приемопередатчик, это означает, что каждый преобразователь создает и принимает акустическую энергию с частотами выше приблизительно 20 кГц. Акустическая энергия может быть создана и принята пьезоэлементом в каждом из преобразователей. Для создания акустического сигнала, пьезоэлемент электрически возбуждают посредством синусоидального сигнала, на который он реагирует путем вибрации. Вибрация пьезоэлемента создает акустический сигнал, который проходит через измеряемую текучую среду к соответствующему преобразователю из пары преобразователей. Аналогично, после приема акустической энергии (то есть акустического сигнала и других шумовых сигналов), принимающий пьезоэлемент совершает вибрации и создает синусоидальный электрический сигнал, регистрируемый, оцифровываемый и анализируемый посредством электронных устройств, связанных с расходомером.
[0030] Преобразователи каждой пары преобразователей расположены напротив друг друга через сквозной проход 14 и передают акустические сигналы назад и вперед друг к другу. В частности, преобразователи 20а, 20b расположены напротив друг друга через сквозной проход 14 и передают акустические сигналы назад и вперед друг к другу; преобразователи 20c, 20а расположены напротив друг друга через сквозной проход 14 и передают акустические сигналы назад и вперед друг к другу; преобразователи 20е, 20f расположены напротив друг друга через сквозной проход 14 и передают акустические сигналы назад и вперед друг к другу; и преобразователи 20g, 20h расположены напротив друг друга через сквозной проход 14 и передают акустические сигналы назад и вперед друг к другу. Отрезок 22, 23, 24, 25 акустического сигнала, иногда называемый "хордой" или "хордовым отрезком," проходит между каждой парой соответствующих противолежащих преобразователей 20а, 20b; 20c, 20а; 20е, 20f; и 20g, 20h.
[0031] Каждая пара преобразователей и соответствующие посадочные гнезда преобразователей соответствуют одной хорде. Каждая хорда 22, 23, 24, 25 расположена приблизительно Х-образно относительно другой хорды 22, 23, 24, 25 на виде сверху. Согласно фиг.2, каждая пара преобразователей и их соответствующие хорды 22, 23, 24, 25 расположены на различном "уровне" в патрубке 11. Согласно фиг.2 и 3, пары преобразователей расположены таким образом, что нижние две пары преобразователей 20а, 20b и 20 с, 20а, соответствующие хордам 22 и 23, расположены Х-образно на виде сверху, а верхние две пары преобразователей 20е, 20f и 20g, 20h, соответствующие хордам 24 и 25, также расположены Х-образно.
[0032] Согласно фиг.1, будет более подробно описана первая пара преобразователей 20а, 20b, однако следует понимать, что каждая пара преобразователей расходомера 10 выполнена и расположена аналогичным образом. Хорда 22 расположена под острым углом 6 относительно центральной оси 15 на виде сверху. Длина хорды 22 соответствует расстоянию между торцами соответствующих двух преобразователей 20а, 20b. Согласно фиг.1, на которой показаны два преобразователя 20а, 20b, точки 26 и 27 определяют положения, в которых акустические сигналы, создаваемые соответственно преобразователями 20а, 20b, входят в текучую среду, протекающую через через проход 14 патрубка 11 (то есть на перечечении посадочных гнезд 30a, 30b и прохода 14 патрубка 11). Положение преобразователей 20а, 20b может быть определено углом 9, первой длиной L, измеренной между преобразователями 20а, 20b, второй длиной X, соответствующей осевому расстоянию между точками 26, 27, и третьей длиной "d", соответствующей внутреннему диаметру патрубка 11. В большинстве случаев расстояния d, Х и L точно заданы при производстве расходомера (например, расходомера 10). Кроме того, пара преобразователей 20а, 20b в целом расположена на конкретном расстоянии соответственно от точек 26, 27 вне зависимости от размера расходомера (то есть размера патрубка). Текучая среда, такая как природный газ, течет в направлении 2 и ее скорость описывается профилем 3 скоростей. Показанные на чертеже векторы скорости 4-9 иллюстрируют тот факт, что скорость прохождения газа через патрубок 11 увеличивается при приближении к центральной оси 15. В большинстве случаев текучая среда, текущая через проход 14, будет содержать небольшое количество жидкости.
[0033] Согласно фиг.1, на которой показана пара преобразователей 20а, 20b, преобразователь 20а, расположенный ниже по потоку, создает акустический сигнал, распространяющийся через текучую среду в патрубке 11, а затем падает на преобразователь 20b, расположенный выше по потоку, и регистрируется им. Через короткий промежуток времени (например, через в пределах нескольких миллисекунд), преобразователь 20b, расположенный выше по потоку, создает отраженный акустический сигнал, распространяющийся обратно через текучую среду в патрубке 11, падает на преобразователь 20а, расположенный ниже по потоку, и регистрируется им. Таким образом, преобразователи 20а и 20b выполняют функцию "питчера и кетчера" в отношении акустического сигнала 22а, проходящего вдоль хорды 22. В процессе работы устройства данная последовательность может происходить тысячи раз в минуту.
[0034] Время передачи акустического сигнала 22а между преобразователями 20а, 20b зависит отчасти от направления перемещения акустического сигнала 22а вверх по потоку или вниз по потоку относительно потока текучей среды. Время перемещения акустического сигнала вниз по потоку (то есть в направлении потока текучей среды) меньше времени его перемещения вверх по потоку (то есть против направления потока текучей среды). Время перемещения вверх и вниз по потоку может быть использовано для расчета средней скорости сигнала по хорде и скорости звука в измеряемой текучей среде.
[0035] Обычно ультразвуковые расходомеры могут иметь по меньшей мере одну хорду акустического сигнала. Например, согласно фиг.2 и 3, в данном примере реализации, ультразвуковой расходомер 10 фактически содержит четыре хорды 22, 23, 24, 25 и соответствующие акустические сигналы 22а, 23а, 24а, 25а на различных уровнях в патрубке 11. Каждый хордовый путь 22, 23, 24, 25 соответствует паре преобразователей, работающих попеременно в качестве передатчика и приемника аналогично первой паре преобразователей 20а, 20b, описанной ранее. На фиг.2 показан управляющий электронный блок или устройство 80, которое управляет созданием акустического сигнала, получает и обрабатывает данные по четырем хордам 22, 23, 24, 25. Скорость потока текучей среды может быть определена в каждой хорде 22, 23, 24, 25 для получения скоростей потока по хордам, причем скорости потока по хордам могут быть объединены для определения средней скорости потока по всей трубе. На основании средней скорости потока может быть определено количество текучей среды, протекающей в патрубке и, таким образом, в трубопроводе.
[0036] Согласно приведенному ранее описанию, во многих применениях, текучая среда, протекающая через ультразвуковой расходомер (например, расходомер 10), будет содержать небольшое количество жидкости. Большинство обычных ультразвуковых расходомеров размещены в конкретном положении и ориентации для минимизации накопления жидкости. В частности, большинство обычных ультразвуковых расходомеров размещены таким образом, что любая жидкость, накапливаемая в каждом посадочном гнезде преобразователя, автоматически отводится под действием силы тяжести обратно в сквозной проход в расходомере. Это обычно требует такой ориентации ультразвукового расходомера, чтобы каждое посадочное гнездо преобразователя расходомера располагалось горизонтально, было наклонено вниз при прохождении от внешней части патрубка к сквозному проходу расходомера и/или расположено на верхней половине расходомера. В итоге, количество секций по длине трубопровода, в которых может быть установлен расходомер, может быть в значительной степени ограничено. Однако, согласно приведенному далее подробному описанию, устройство, раскрытое в примерах реализации, содержит дренажное отверстие (дренажные отверстия) по меньшей мере на одном посадочном гнезде преобразователя, подверженном накоплению в нем жидкости и связанными с этим проблемами.
[0037] На фиг.4 схематически показаны патрубок 11 в разрезе, выполненном по линии 4-4 по фиг.1 через посадочное гнездо 30a преобразователя и соответствующий преобразователь 20а. Несмотря на то, что на фиг.4 показано только одно посадочное гнездо преобразователя (то есть посадочное гнездо преобразователя 30a) и соответствующий ему преобразователь (например, преобразователь 20а), по меньшей мере одно из оставшихся посадочных гнезд преобразователей 30b, 30c, 30d, 30e, 30f, 30g, 30h может быть выполнено аналогичным образом, в зависимости от применения и предусмотренного накопления жидкости в каждом посадочном гнезде 30b, 30c, 30d, 30e, 30f, 30g, 30h. В частности, на основании установки расходомера 10 и ориентации посадочных гнезд преобразователей, каждое посадочное гнездо, подверженное накоплению жидкости, предпочтительно выполнено идентично посадочному гнезду 30a, описанному далее.
[0038] Согласно фиг.4, посадочное гнездо 30a, сообщающееся посредством текучей среды с проходом 14 и проходящее вдоль центральной оси 35а от первого или открытого конца 30а-1 в проходе 14 и второго или закрытого конца 30а-2, являющегося дальним по отношению к проходу 14. В данном примере реализации посадочное гнездо 30а задано корпусом 40а преобразователя, проходящим от патрубка 11 вдоль центральной оси 45а между первым концом 40а-1, являющимся ближним по отношению к проходу 14, и вторым концом 40а-2, являющимся дальним по отношению к проходу 14. В данном примере реализации первый конец 40а-1 корпуса 40а выполнен как единое целое с патрубком 11. Посадочное гнездо 30а задает центральное отверстие или проход, проходящий (относительно осей 25а, 35а) через корпус 40а преобразователя соосно с ним между концами 40а-1, 40а-2. Другими словами, ось 35а посадочного гнезда 30а совпадает с осью 45а посадочного гнезда 40а. Концевая заглушка 41а присоединена к концу 40а-2 и перекрывает второй конец 30а-2 посадочного гнезда 30а.
[0039] Согласно фиг.4, преобразователь 20а расположен в посадочном гнезде 30а преобразователя и корпусе 40а преобразователя соосно с ними и соединен с корпусом 40а с возможностью отсоединения. В частности, преобразователь 20а проходит вдоль центральной оси 25а между первым концом 20а-1, являющимся ближним по отношению к проходу 14 патрубка 11, и вторым концом 20а-2, являющимся дальним по отношению к проходу 14. Пьезоэлектрический элемент, который создает и принимает акустический сигнал 22а вдоль хорды 22, описанный ранее, расположен в преобразователе 20а ближе к первому концу 20а-1. Кабель 21а проходит через концевую заглушку 41а и электрически присоединен к преобразователю 20а на втором конце 20а-2. Кабель 21а передает электрические сигналы и данные между преобразователем 20а и описанным ранее электронным блоком 80, который присоединен к внешней стороне патрубка 11.
[0040] В данном примере реализации преобразователь 20а разъемно прикреплен к корпусу 40а в посадочном гнезде 30а с использованием сопрягаемых резьб, при этом преобразователь 20а содержит внешнюю резьбу 20а-3, которая взаимодействует с внутренней резьбой 40а-3 корпуса 40а. Резьбовое взаимодействие между преобразователем 20а и корпусом 40а обеспечивает возможность удержания преобразователя 20а, размещаемого в посадочном гнезде 30а, в необходимом осевом положении относительно осей 25а, 35а, 45а, и извлечение его из посадочного гнезда 30а, которое необходимо для выполнения обслуживания и/или ремонта. Несмотря на то что в данном примере реализации для разъемного присоединения преобразователя 20а к корпусу 40а использованы сопрягаемые резьбы 20а-3, 40а-3, в других примерах реализации, преобразователь (например, преобразователь 20а) может быть размещен в корпусе (например, корпусе 40а) посредством любых подходящих средств, включающих, без ограничения, посадку с натягом, прессовую посадку, болты, сварное соединение или их сочетания.
[0041] При работе расходомера 10, текучая среда, протекающая через проход 14 (указан стрелкой 2 по фиг.1), может содержать небольшое количество жидкости. Со временем в посадочном гнезде 30а может накапливаться некоторое количество жидкости. Если посадочное гнездо 30а и ось 35а выполнены горизонтальными, то жидкость будет стремиться протекать под действием силы тяжести по направлению к открытому концу 30а-1 и в проход 14 расходомера, поскольку происходит увеличение уровня жидкости в отверстии 30а. Другими словами, при расположении закрытого конца 30а-2 над или на более высоком уровне по сравнению с открытым концом 30а-1 (например, ось 35а наклонена книзу при перемещении от конца 30а-1 к концу 30а-2), любая жидкость, накопленная в отверстии 31а, потечет под действием силы тяжести к открытому концу 30а-1 и в проход 14 расходомера. Однако при расположении закрытого конца 30а-2 ниже или на более низком уровне по сравнению с открытым концом 30а-1 (например, ось 35а наклонена книзу при перемещении от конца 30а-1 к концу 30а-2), жидкость, накопленная в отверстии 31а, не будет течь под действием силы тяжести к открытому концу 30а-1 и в проход 14. Накопление значительного количества жидкости в отверстии 31а, это может нежелательно повлиять на передачу акустических сигналов вдоль хорды 22 между преобразователями 20а, 20b по фиг.1. Однако в данном примере реализации дренажная система для отведения жидкости 50 расположена таким образом, что она сообщается посредством текучей среды с посадочным гнездом 30а преобразователя с возможностью отведения из него накопленной жидкости с обеспечением, таким образом, уменьшения количества накапливаемой жидкости в отверстии 30а и уменьшения возможности акустического шунтирования.
[0042] Согласно фиг.4, в данном примере реализации, дренажная система для отведения жидкости 50 имеет дренажное отверстие или отверстие 51, сообщающееся посредством текучей среды с посадочным гнездом 30а преобразователя и дренажной трубкой 52, проходящей от дренажного отверстия 51. Дренажное отверстие 51 представляет собой сквозное отверстие, проходящее в радиальном направлении (относительно осей 25а, 35а, 45а) через корпус 40а преобразователя к посадочному гнезду 30а преобразователя. Еще в одних примерах реализации, в которых посадочное гнездо преобразователя (например, посадочное гнездо 30а) проходит через патрубок (например, патрубок 11) и задано им, дренажное отверстие (например, дренажное отверстие 51) может проходить через часть патрубка.
[0043] Дренажное отверстие 51 предпочтительно расположено и ориентировано таким образом, что жидкость в посадочном гнезде 30а преобразователя автоматически отводится под действием силы тяжести из посадочного гнезда преобразователя 30а в дренажное отверстие 51. Другими словами, дренажное отверстие 51 предпочтительно расположено в положении, в котором происходит накопление жидкости в посадочное гнездо 30а преобразователя. Такое положение будет полностью зависеть от положения и ориентации расходомера 10 и посадочного гнезда 30а преобразователя, однако обычно на относительно более низких частях посадочное гнездо 30а преобразователя (то есть частях посадочного гнезда преобразователя, которые расположены на более низком уровне, чем открытый конец посадочного гнезда преобразователя).
[0044] Согласно фиг.4, дренажная трубка 52 имеет первый или впускной конец 52а, присоединенный к корпусу 40а и сообщается посредством текучей среды с дренажным отверстием 51, и второй или выпускной конец 52b, противоположный впускному концу 52а. Жидкость, накопленная в посадочном гнезде 30а, выводится из него через дренажное отверстие 51 и впускной конец 52а в трубке 52 и покидает трубки 52 через выпускной конец 52b. В данном примере реализации клапан 53 расположен вдоль трубки 52 между концами 52а, 52b. Клапан 53 управляет потоком жидкости, отводимой через трубку 52. В частности, при расположении клапана 53 в открытом положении, отводимая жидкость свободно протекает через дренажное отверстие 51, впускной конец 52а, трубку 52 и клапан 53 к выпускному концу 52b. Однако при расположении клапана в закрытом положении протекание отводимой жидкости через клапан 53 от впускного конца 52а к выпускному концу 52b ограничено и/или предотвращено.
[0045] При нормальной работе расходомера 10, клапан 53 предпочтительно удерживают в закрытом положении. В частности, в зависимости от конструкции расходомера (например, расходомера 10) и/или места отведения жидкости (например, положения выпускного конца 52b), жидкостной и/или газовый поток через дренажную трубку (например, трубку 52) может воздействовать на акустические сигналы, совершающие перемещение к соответствующему преобразователю (например, преобразователю 20а) и от него, что потенциально приводит к ошибкам при измерении потока, в частности, если некоторое количество газа, протекающего через корпус расходомера, протекает в посадочное гнездо преобразователя (например, посадочное гнездо 30а) и через дренажное отверстие (например, дренажное отверстие 51). Однако при обнаружении неисправности преобразователя 20а посредством электронного блока 80, клапан 53 перемещают в открытое положение для отведения любых накопленных жидкостей из посадочного гнезда 30а, которые могли вызвать ошибку преобразователя. После отведения жидкости из посадочного гнезда преобразователя 30а, клапан 53 перемещают обратно в закрытое положение для обеспечения возможности точного измерения потока. При отсутствии возврата к точным измерениям потока после отведения жидкости из посадочного гнезда преобразователя 30а и закрытия клапана 53, велика вероятность, что накопленная в посадочном гнезде 30а жидкость не была причиной повреждения преобразователя. Таким образом, клапан 53 может быть использован в качестве приспособления для установления неисправности преобразователя 20а.
[0046] Обычно клапан 53 может представлять собой клапан любого подходящего типа, включая, без ограничения, клапан с ручным управлением, шаровой клапан, электрически управляемый клапан или их сочетания. В данном примере реализации исполнительный механизм 54 перемещает клапан 53 между открытым и закрытым положениями. В частности, исполнительный механизм 54 представляет собой электрически управляемый соленоид и, таким образом, может быть рас