Сообщение запаса по мощности восходящей линии связи для агрегации несущих

Иллюстрации

Показать все

Изобретение относится к беспроводной связи. Техническим результатом является оценка и сообщение репрезентативной информации о запасе по мощности (PH), когда многочисленные несущие назначены на WTRU в системе LTE-A и улучшение передачи и сигнализации информации о РН для поддержки эффективного сообщения РН в LTE-A. Раскрыт способ для сообщения запаса по мощности. Запас по мощности может сообщаться для всех несущих (в широкой полосе), для конкретной несущей или для группы несущих. Формула, используемая для расчета запаса по мощности, зависит от того, имеет ли несущая (или несущая в группе несущих) действительное предоставление восходящей линии связи. Если несущая или группа несущих не имеет действительного предоставления восходящей линии связи, запас по мощности может рассчитываться на основании опорного предоставления. Запас по мощности рассчитывается блоком беспроводной передачи/приема и сообщается на eNodeB. 7 н. и 36 з.п. ф-лы, 7 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

Эта заявка испрашивает преимущество по предварительной заявке № 61/119,471 на выдачу патента США, поданной 3 декабря 2008 года, предварительной заявке № 61/119,799 на выдачу патента США, поданной 4 декабря 2008 года, которые включены в настоящий документ посредством ссылки так, как будто бы они были полностью изложены в материалах настоящей заявки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Эта заявка относится к беспроводной связи.

УРОВЕНЬ ТЕХНИКИ

Это раскрытие относится к сообщению запаса по мощности (PH) восходящей линии связи (UL) для агрегации несущих при беспроводной связи, в частности, со ссылкой на усовершенствованное долгосрочное развитие (LTE-A). Запас по мощности является разностью между максимальной мощностью передачи блока беспроводной передачи/приема (WTRU) и оцененной мощностью для передачи физического совместно используемого канала UL (PUSCH) в текущем подкадре. Сообщение о запасе по мощности (PHR) является указателем, сообщаемым посредством WTRU для указания оцененного PH. WTRU отправляет PHR на усовершенствованный Узел B (eNodeB или eNB), который может использовать PHR для определения, насколько большую полосу пропускания UL для каждого подкадра способен использовать WTRU.

Для поддержки более высоких скоростей передачи данных и спектральной эффективности, система долгосрочного развития (LTE) 3GPP (Проекта партнерства 3-его поколения) была введена в редакцию 8 (R8) 3GPP. Для дополнительного улучшения достижимой пропускной способности и покрытия основанных на LTE систем радиодоступа, и для удовлетворения требований развитых международных мобильных телекоммуникаций (IMT) по 1 Гбит/с и 500 Мбит/с в направлениях нисходящей линии связи (DL) и UL, соответственно, усовершенствованное LTE (LTE-A) в настоящее время находится на стадии рассмотрения в органе стандартизации 3GPP.

Схема передачи DL LTE основана на радиоинтерфейсе множественного доступа с ортогональным частотным разделением каналов (OFDMA). Что касается направления UL LTE, используется передача на одиночной несущей (SC), основанная на OFDMA с расширенным дискретным преобразованием Фурье (DFT) (DFT-S-OFDMA). Использование передачи на одиночной несущей в UL мотивировано более низким отношением пиковой мощности к средней мощности (PAPR) или кубической метрикой (относящейся к нелинейности усилителя мощности) сигнала по сравнению со схемой передачи на многих несущих, такой как OFDM (мультиплексирование с ортогональным частотным разделением каналов).

Для гибкого применения, системы LTE поддерживают масштабируемые полосы пропускания 1,4, 3, 5, 10, 15 или 20 МГц. Система LTE может работать в любом из режимов дуплекса с частотным разделением каналов (FDD), дуплекса с временным разделением каналов (TDD) или полудуплексного FDD.

В системе LTE, каждый кадр радиосвязи (10 мс) состоит из десяти подкадров равного размера в 1 мс. Каждый подкадр состоит из двух временных интервалов равного размера в 0,5 мс каждый. Может быть семь или шесть символов OFDM на каждый временной интервал. Семь символов используются с нормальной длиной циклического префикса, а шесть символов на каждый временной интервал в альтернативной конфигурации системы могут использоваться с расширенной длиной циклического префикса. Разнесение поднесущих для системы LTE имеет значение 15 кГц. Также возможен альтернативный режим уменьшенного разнесения поднесущих, использующий 7,5 кГц. Элемент ресурса (RE) соответствует в точности одной поднесущей в течение одного интервала символа OFDM. Двенадцать следующих одна за другой поднесущих в течение временного интервала 0,5 мс составляют один блок ресурсов (RB). Поэтому, при семи символах на каждый временной интервал, каждый RB состоит из 12×7=84 RE. Несущая DL может состоять из масштабируемого количества блоков ресурсов (RB), находящегося в диапазоне от минимум шести RB вплоть до максимум 110 RB. Это соответствует полной масштабируемой полосе пропускания приблизительно от 1 МГц вплоть до 20 МГц, но обычно предписан набор общепринятых полос пропускания, например, 1,4, 3, 5, 10, 15 или 20 МГц. Базовой единицей временной области для динамического планирования в LTE является один подкадр, состоящий из двух следующих один за другим временных интервалов. Это называется пара RB. Определенные поднесущие в некоторых символах OFDM выделены для переноса контрольных сигналов в частотно-временной сетке. Данное количество поднесущих на краях ширины полосы пропускания не передается, чтобы соблюдать требования спектральной маски.

В направлении DL, WTRU может быть назначено, посредством eNodeB, принимать свои данные везде, где угодно по всей полосе пропускания, например, когда используется схема OFDMA. DL имеет неиспользуемую поднесущую смещения постоянного тока (DC) в центре спектра.

В направлении UL, LTE основано на передаче DFT-S-OFDMA или, эквивалентно, SC-FDMA. Цель состоит в том, чтобы добиваться более низкого PAPR по сравнению с форматом передачи OFDMA. По идее, тогда как в направлении DL LTE, WTRU может принимать свои сигналы везде, где угодно, по всей частотной области на всей полосе пропускания LTE, WTRU в UL может передавать только в ограниченном смежном наборе назначенных поднесущих в компоновке FDMA. Этот принцип называется (SC)-FDMA на одиночной несущей. Например, если полный сигнал OFDM или полоса пропускания системы в UL состоит из поднесущих, пронумерованных от 1 до 100, первому WTRU может быть назначено передавать свои собственные сигналы на поднесущих 1-12, второй WTRU может передавать на поднесущих 13-24, и так далее. eNodeB принимает составной сигнал UL по всей полной полосе пропускания с одного или более WTRU одновременно, но каждый WTRU может передавать только в подмножестве имеющейся в распоряжении полосы пропускания. В принципе, OFDM DFT-S в UL LTE, поэтому может рассматриваться в качестве традиционной формы передачи OFDM с дополнительным ограничением, что частотно-временной ресурс, назначенный на WTRU, состоит из набора следующих друг за другом по частоте поднесущих. В UL LTE нет поднесущей DC (в отличие от DL). Скачкообразная перестройка частоты может применяться в одном из режимов работы в отношении передач UL посредством WTRU.

Одним из усовершенствований, предложенных LTE-A, является агрегация и поддержка несущих для гибкой полосы пропускания. Одна из мотивировок для этих изменений состоит в том, чтобы предоставить возможность превышать максимум полосы пропускания DL и UL в 20 МГц LTE R8, например, чтобы предоставлять возможность полосы пропускания 40 МГц. Вторая мотивировка состоит в том, чтобы предусмотреть более гибкое использование для имеющегося в распоряжении спаренного спектра. Например, тогда как LTE R8 ограничено, чтобы работать в режиме симметричного или спаренного FDD, например, DL и UL обе имеют значение 10 МГц или 20 МГц по полосе пропускания каждая, LTE-A может работать в несимметричных конфигурациях, таких как 10 МГц DL, спаренная с 5 МГц UL. В дополнение, составные агрегируемые полосы пропускания также могут быть возможны при LTE-A, например, в DL, первая несущая 20 МГц и вторая несущая 10 МГц, спаренные с несущей 20 МГц UL, и так далее. Составные агрегируемые полосы пропускания могут не обязательно быть смежными в частотной области, например, первая составляющая несущая 10 МГц в вышеприведенном примере может быть разнесена на 22,5 МГц в полосе DL от второй составляющей несущей DL 5 МГц. В качестве альтернативы, также может быть возможна работа в смежных агрегируемых полосах пропускания, например, первая составляющая несущая DL в 20 МГц агрегируется со смежной составляющей несущей DL 10 МГц и спаривается с несущей UL в 20 МГц.

Примеры разных конфигураций для агрегации и поддержки несущих LTE-A для гибкой полосы пропускания проиллюстрированы на фиг.1. Фиг.1a изображает три составляющих несущих, две из которых являются смежными, а третья из которых не является смежной. Фиг.1b и 1c обе изображают три смежных составляющих несущих. Есть два варианта выбора для расширения структуры/формата передачи R8 LTE для задействования агрегированных составляющих несущих. Один из вариантов выбора состоит в том, чтобы применять прекодер с DFT для агрегирования полосы пропускания, например, по всем составляющим несущим, если сигнал является смежным, как показано на фиг.1b и правой стороне фиг.1a. Второй вариант выбора состоит в том, чтобы применять прекодер с DFT только для каждой составляющей несущей, как показано на фиг.1c. Следует отметить, что разные несущие могут иметь разные наборы модуляции и кодирования (MCS; то есть, MCS для конкретной несущей), как показано на фиг.1c.

В направлении UL системы LTE R8, WTRU передает свои данные (а в некоторых случаях, свою управляющую информацию) по PUSCH. Передача PUSCH планируется и управляется посредством eNodeB с использованием предоставления планирования UL, которое переносится в формате 0 физического канала управления DL (PDCCH). В качестве части предоставления планирования UL, WTRU принимает управляющую информацию, включающую в себя набор модуляции и кодирования (MCS), команду управления мощностью передачи (TPC), выделение ресурсов UL (то есть, указатели выделенных блоков ресурсов) и т.д. WTRU передает свой PUSCH на выделенных ресурсах UL с соответствующим MCS на мощности передачи, регулируемой командой TPC.

Для планирования передач WTRU UL, планировщику в eNodeB необходимо выбирать надлежащий формат транспортировки (то есть, MCS) для определенного выделения ресурсов. Для этого, планировщику необходимо быть способным оценивать качество линии связи UL для планируемого WTRU.

Это требует, чтобы eNodeB обладал сведениями о мощности передачи WTRU. В LTE, оцененная мощность передачи WTRU рассчитывается согласно формуле, где eNodeB имеет сведения обо всех компонентах в формуле за исключением оценки потерь в тракте DL WTRU. В LTE, WTRU измеряет и сообщает свою оценку потерь в тракте DL обратно на eNodeB в виде сообщающей измерение PH величины. Это подобно концепции сообщения PH в редакции 6 широкополосного множественного доступа с кодовым разделением каналов (WCDMA), где PH также сообщается, чтобы eNodeB выполнял надлежащее планирование UL.

В LTE, процедура сообщения PH используется для снабжения обслуживающего eNodeB информацией о разности между мощностью передачи WTRU и максимальной мощности передачи WTRU (для положительных значений PH). Информация также может включать в себя разность между максимальной мощностью передачи WTRU и рассчитанной мощностью передачи WTRU согласно формуле управления мощностью UL, когда она превышает мощность передачи WTRU (для отрицательных значений PH).

Как пояснено выше, в LTE используется одиночная составляющая несущая; поэтому определение PH WTRU основано на одной несущей. Мощность PPUSCH передачи WTRU для передачи PUSCH в подкадре задается согласно:

Уравнение (1)

где PCMAX - сконфигурированная максимально допустимая мощность передачи WTRU. PCMAX зависит от класса мощности WTRU, разрешенных допустимых отклонений и настроек, а также максимально допустимой мощности передачи, сигнализируемых на WTRU посредством eNodeB.

MPUSCH(i) - полоса пропускания назначения ресурсов PUSCH, выраженная в количестве блоков ресурсов, действительных для подкадра i.

PO_PUSCH(j) - сумма номинальной составляющей PO_NOMINAL_PUSCH(j) для конкретной соты и составляющей PO_UE_PUSCH(j) для конкретного WTRU. PO_NOMINAL_PUSCH(j) сигнализируется с верхних уровней для j=0 и 1 в диапазоне [-126, 24] дБм с разрешением 1 дБ, и PO_UE_PUSCH(j) конфигурируется управлением радиоресурсами (RRC) для j=0 и 1 в диапазоне [-8, 7] дБ с разрешением 1 дБ. Для (повторных) передач PUSCH, соответствующих сконфигурированному предоставлению планирования, j=0, а для (повторных) передач PUSCH, соответствующих принятому PDCCH с форматом 0 DCI, ассоциативно связанным с новой пакетной передачей, j=1. Для (повторных) передач PUSCH, соответствующих предоставлению ответа произвольного доступа, j=2. PO_UE_PUSCH(2)=0 и PO_NOMINAL_PUSCH(2) = PO_PRE + ΔPREAMBLE_MSG3, где PO_PRE и ΔPREAMBLE_MSG3 сигнализируются с верхних уровней.

Для j=0 или 1, α ∈ {0, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 1} является трехбитным параметром для конкретной соты, предоставляемым верхними уровнями. Для j=2, α(j)=1.

PL - оценка потерь в тракте DL, рассчитанная WTRU.

для KS=1,25, и ΔTF(i)=0 для KS=0, где KS - параметр для конкретного WTRU, заданный посредством RRC. для управляющих данных, отправленных через PUSCH без данных совместно используемого канала UL (UL-SCH), где OCQI - количество битов CQI, включая биты CRC (контроля циклическим избыточным кодом), а NRE - количество элементов ресурсов. для других случаев, где C - количество кодовых блоков, а K r - размер для кодового блока r. для управляющих данных, отправленных через PUSCH без UL-SCH, и для других случаев.

, если накопление команд TPC не разрешено на основании параметра Accumulation-enabled (Накопление разрешено) для конкретного WTRU, предоставляемого верхними уровнями. δPUSCH - значение поправки для конкретного WTRU, также называемое как команда TPC, и сигнализируется на WTRU в PDCCH. KPUSCH - смещение подкадра, из условия чтобы значение f(i) в текущем подкадре i было значением δPUSCH, принятым за KPUSCH кадров до текущего кадра i. Для FDD, KPUSCH = 4, а для TDD, значение KPUSCH меняется.

PH WTRU для подкадра i задается согласно:

Уравнение (2)

Мощность передачи WTRU для PUSCH в покадре i, требуемая предоставлением планирования UL (включающим в себя выделение однонаправленного радиоканала (RB), MCS и команду управления мощностью), без учета каких бы то ни было ограничений максимальной мощности передачи, обозначена как PPUSCH_UG(i) и задается как:

Уравнение (3)

В таком случае, действующая мощность передачи WTRU по PUSCH в уравнении 1 может быть переписана как:

Уравнение (4)

Формула PH для LTE в уравнении 2 может быть перезаписана в качестве:

Уравнение (5)

Существующее задание PH в LTE было предназначено для конкретного случая радиоинтерфейса SC-FDMA (или DFT-S OFDMA), предусмотренного LTE R8. По существу, оно применяется конкретно только к одной составляющей несущей и имеет следствием только одно единственное значение, измеренное и сообщенное обратно посредством WTRU для его полного направления UL и для схемы множественного доступа на одиночной несущей (SC-FDMA с одной передающей антенной). Но этот подход неприменим к системе LTE-A, использующей агрегацию несущих, новым схемам множественного доступа, схемам MIMO, или при работе в компоновках гибкой полосы пропускания, где eNodeB необходимо знать информацию о PH для многочисленных составляющих несущих и/или многочисленных усилителей мощности (PA), чтобы планировать и назначать передачи UL для WTRU с надлежащими уровнями мощности передачи.

Например, предположим, что три несущие агрегированы и используются в системе LTE-A. WTRU может иметь разные максимальные мощности передачи на разных несущих или иметь разные значения потерь в тракте и/или параметры управления мощностью по незамкнутому контуру, приводящие к разным уровням мощности передачи на разных несущих. В одном подкадре, eNodeB может планировать WTRU для передачи на двух несущих (например, несущих 1 и 2). При условии, что две несущих имеют разные мощности передачи, одиночное значение PH было бы неспособным указывать разность между максимальной мощностью передачи WTRU и рассчитанной мощностью передачи (согласно формуле управления мощностью) на каждой из двух несущих. Более того, когда eNodeB требуется планировать будущую передачу UL на несущей 3, он не будет знать информацию о PH на несущей 3 (так как PH может не сообщаться, согласно концепции в LTE). Если несущая 3 не является смежной с несущими 1 и 2, потери в тракте DL на несущей 3 могут не выводиться надежно из PH на несущих 1 и 2. Разность потерь в тракте при несмежной агрегации несущих может быть большой, например, больше, чем 7 или 9 дБ. Это делает трудным для eNodeB планировать передачи UL с оптимизированными уровнями мощности, так как измеренное и сообщенное WTRU значение PH не является представляющим метрику, равным образом действительную для всех несущих UL, назначенных на такой WTRU.

В дополнение к существующим сообщаемым значениям PH, не являющимся достаточными для приспосабливания многочисленных несущих, сигнализация, относящаяся к сообщению PH, также недостаточна. В системе LTE, передача посредством WTRU одиночного значения PHR для полной полосы пропускания соты инициируется одним из следующих способов: периодически (под управлением PERIODIC_PHR_TIMER (таймера периодического PHR)), если потери в тракте изменились больше, чем на DL_PathlossChange (изменение потерь в тракте DL) дБ, после последнего PHR, и предварительно заданное время истекло после последнего сообщения (под управлением PROHIBIT_PHR_TIMER (таймера запрета PHR)), или при конфигурировании и реконфигурировании периодического PHR. Даже если многочисленные события возникают ко времени, когда PHR может передаваться, только одно PHR включается в модуль данных протокола (PDU) MAC (управления доступом к среде).

Необходимы способы и процедуры для оценки и сообщения репрезентативной информации о PH, когда многочисленные несущие назначены на WTRU в системе LTE-A, заключающей в себе агрегацию несущих. Более того, также необходимо улучшить передачу и сигнализацию информации о PH для поддержки эффективного сообщения PH в LTE-A.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Раскрыт способ для сообщения запаса по мощности. Запас по мощности может сообщаться для всех несущих (в широкой полосе), для конкретной несущей или для группы несущих. Формула, используемая для расчета запаса по мощности, зависит от того, имеет ли несущая (или несущая в группе несущих) действительное предоставление восходящей линии связи. Если несущая или группа несущих не имеет действительного предоставления восходящей линии связи, запас по мощности может рассчитываться на основании опорного предоставления. Запас по мощности рассчитывается блоком беспроводной передачи/приема и сообщается на eNodeB.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Более детальное понимание может быть получено из последующего описания, приведенного в качестве примера, совместно с прилагаемыми чертежами, на которых:

фиг.1a-1c показывают разные примерные конфигурации для агрегации несущих LTE-A;

фиг.2 - блок-схема последовательности операций способа для сообщения PH в широкой полосе;

фиг.3 - блок-схема последовательности операций способа для сообщения PH для конкретной несущей или для конкретной группы несущих;

фиг.4 показывает систему беспроводной связи/сеть беспроводного доступа LTE; и

фиг.5 - примерная структурная схема системы беспроводной связи LTE по фиг.4.

ПОДРОБНОЕ ОПИСАНИЕ

Используемый в дальнейшем термин «блок беспроводной передачи/приема (WTRU)» включает в себя, но не ограничиваясь этим, пользовательское оборудование (UE), мобильную станцию, стационарный или мобильный абонентский блок, пейджер, сотовый телефон, персональный цифровой ассистент (PDA), компьютер, или любой другой тип пользовательского устройства, способного к работе в беспроводной среде. Используемый в дальнейшем термин «базовая станция» включает в себя, но не ограничиваясь этим, eNode B, контроллер узла сети, точку доступа (AP) или любой другой тип осуществляющего интерфейс устройства, способного к работе в беспроводной среде.

Максимальная мощность передачи WTRU может быть ограничена любой комбинацией следующего: задания класса мощности WTRU, допустимого значения или значений, предоставляемых конфигурацией верхнего уровня или ограничения PA WTRU. eNodeB может конфигурировать максимальную мощность передачи WTRU для каждой несущей, для каждой группы несущих или для всех несущих с использованием сигнализации верхнего уровня (например, сигнализации RRC).

Что касается группировки несущих, одним из способов группировки является такой, что вместе группируются смежные несущие. Второй способ является таким, что, когда многочисленные несущие совместно используют один и тот же PA, несущие могут быть группой. Если WTRU имеет разные PA, управляющие разными несущими UL, то WTRU может быть необходимо сообщать ассоциативную связь PA с несущими при начальном доступе к сети (установлении соединения RRC), эстафетной передаче обслуживания (реконфигурировании соединения RRC) или других событиях повторного установления RRC.

В качестве альтернативы, ассоциативная связь PA с несущими (например, отображение CC в PA) может предоставляться посредством eNodeB через сигнализацию верхнего уровня, если отображение определено на eNodeB. Например, рассмотрим случай WTRU, осуществляющий передачу на J составляющих несущих (CC) (где J ≥ 1) с использованием L PA (где L ≥ 1). Отображение J CC в L PA может сигнализироваться из WTRU на eNodeB, если отображение определено в WTRU. В качестве альтернативы, отображение может сигнализироваться из eNodeB в WTRU, если отображение определено в eNodeB. В качестве альтернативы, отображение может выводиться независимо обоими, WTRU и eNodeB, на основании предварительно заданных правил, которые являются функцией конфигурации, такой как категория WTRU и/или выделение несущих. Количество PA в WTRU может быть выводимым посредством eNodeB из информации о категории WTRU, например, сигнализируемой посредством WTRU в качестве части информации о возможностях WTRU. В качестве альтернативы, WTRU может явным образом сигнализировать количество PA и их характеристики, например, максимальную мощность передачи, на eNodeB.

Необходимо, чтобы задание и расчет PH отражали разность между максимальной мощностью передачи WTRU и рассчитанной мощностью передачи WTRU согласно формуле управления мощностью UL, которая может быть задана для конкретных несущих, для всех несущих, ассоциативно связанных с отдельными PA, либо для всех несущих. Три основных сценария заданы для ограничения максимальной мощности передачи. Для каждого из этих сценариев, предусмотрены способы для расчета и сообщения PH. Расчеты и сообщение PH выполняются посредством WTRU.

Сценарий 1

Сумма мощности передачи WTRU на всех агрегированных несущих обусловлена предварительно заданной и/или сконфигурированной максимальной мощностью передачи, PCMAX. Как в LTE, PCMAX может зависеть от некоторой комбинации класса мощности WTRU, разрешенных допустимых отклонений и настроек, а также максимально допустимой мощности передачи (возможно, на каждую группу несущих), сигнализируемых на WTRU посредством eNodeB. Этот сценарий мог бы соответствовать случаю, где есть PA только одной радиочастоты (РЧ), управляющая усилением/мощностью сигнала передачи WTRU на всех агрегированных несущих, или максимальная мощность передачи конфигурируется для всех несущих сигнализацией верхнего уровня. В этом сценарии, сумма мощности передачи WTRU на всех агрегированных несущих ограничена PCMAX.

Способ 1.A

В этом способе, PH в широкой полосе для WTRU в подкадре i задается как:

Уравнение (6)

где k - номер несущей в диапазоне k=1, ..., K, Ω - набор активных несущих (каждая имеет предоставление UL для подкадра i), и PPUSCH_UG(k,i) - мощность передачи для PUSCH, который должен передаваться на несущей k в подкадре i до принятия во внимание ограничений мощности. PH вычисляется посредством WTRU для конкретной передачи, на основании текущего предоставления(ий) UL в отношении WTRU, где разные предоставления UL могут быть выделены под разные поднесущие.

Когда eNodeB изменяет предоставление UL, увеличивая или уменьшая величину полосы пропускания, доступной WTRU, либо уровень набора модуляции и кодирования (MCS), eNodeB узнает имеющуюся в распоряжении мощность WTRU на основании сообщенного PH. Это сообщение PH в широкой полосе обладает преимуществом минимизации служебных сигналов или данных сигнализации посредством сообщения единственного значения.

Способ 1.B

В этом способе, задается PH для каждой несущей. Для каждой несущей k UL, которая имеет действительное предоставление UL (а потому имеет передачу PUSCH) в подкадре i, ее PH задается как:

Уравнение (7)

где PCMAX_carrier(k) является сконфигурированной максимальной мощностью передачи WTRU k-ой несущей, которая может быть задана как:

Уравнение (7a)

или

Уравнение (7b)

где BWk - полоса пропускания для несущей k. Задание PCMAX_carrier(k) в уравнении 7a используется для всех поддиапазонов или несущих (k=1, ..., K) по всем PA в WTRU. Задание PCMAX_carrier(k) в уравнении 7b используется для подмножества несущих (то есть, несущих в наборе Ω), например, которые совместно используют один и тот же PA. Когда каждая несущая имеет одну и ту же полосу пропускания, PCMAX_carrier(k) идентична для всех интересующих несущих. В качестве альтернативы, PCMAX_carrier(k) может конфигурироваться по-разному или независимо для каждой несущей k, но сумма PCMAX_carrier(k) для всех несущих k или k в Ω обусловлена суммарной максимальной мощностью PCMAX передачи, которая имеет значение для уравнения (7a) и для уравнения (7b). В качестве альтернативы, PCMAX_carrier(k) может быть установлена в постоянное значение для всех k ради простоты.

Как описано выше, PH может рассчитываться посредством WTRU на основании текущего предоставления UL, выданного в WTRU для каждой составляющей несущей UL, где предоставление UL выдается в WTRU посредством eNodeB. Уравнение 7 предназначено для этого случая. В качестве альтернативы, если никакого текущего предоставления не задано, последнее или самое последнее предоставление UL может использоваться взамен в том же самом уравнении. В качестве альтернативы, PH может рассчитываться скорее посредством использования опорного предоставления планирования UL, чем на основании действующего предоставления. Например: PHRG(k,i)=PCMAX_carrier(k)-PPUSCH_RG(k,i), где PPUSCH_RG(k,i) - мощность передачи, которая может быть определена на основании выделения опорного предоставления на несущей k, на которой производится передача UL. Опорное предоставление является допущением, о котором WTRU и eNodeB условливаются заранее (например, предварительно заданным, сигнализированным) в качестве опорного значения для использования при сообщении PH. Для каждой несущей k UL, которая не имеет предоставления UL, WTRU, по выбору, может сообщать свой PH, который определяется на основании параметров опорного предоставления (назначения PUSCH, формата транспортировки и т.д.), как изложено ниже:

Уравнение (8)

где PPUSCH_REF(k,i) задается как

Уравнение (9)

где n ≠ k, и несущая n принадлежит к набору несущих с действительным предоставлением восходящей линии связи, α - параметр для конкретной соты. PL(k) - оценка потерь в тракте DL, рассчитанная WTRU на несущей k. Если изменение потерь в тракте между разными несущими не является значимо различным (например, меньшим чем 1 дБ), одиночное значение PL для несущих может использоваться ради простоты. Несущая n принадлежит набору несущих с действительным предоставлением UL, f1_REF(*) - функция опорной мощности передачи WTRU для конкретной несущей, а f2_REF(*) - функция опорных потерь в тракте для конкретной несущей. Опорные функции могут быть, но не в качестве ограничения, любой одной из следующих: постоянным опорным значением, параметрами одной из несущих UL, которые имеют действительное предоставление UL или средним значением параметров всех несущих UL, которые имеют действительное предоставление UL.

Способ 1.C

В этом способе, задается PH для каждой группы несущих. В частности, смежные несущие или несущие, совместно использующие один и тот же PA, могут группироваться вместе. Предположим, что группа m несущих имеет набор несущих, обозначенный в качестве Ωm. Для каждой группы m несущих UL, которая имеет предоставление UL для по меньшей мере одной из несущих в группе, ее PH задается как:

Уравнение (10)

где PCMAX_carrier(k) задана, как в уравнениях 7a или 7b. Для конкретной несущей без действительного предоставления UL, ее мощность передачи может быть нулевой (то есть, PPUSCH_UG(k,i) = 0 для несущей k, которая не имеет предоставления UL в подкадре i). Что касается каждой группы m несущих UL, которая не имеет предоставления UL ни для одной несущей в группе, PH для группы несущих может определяться и сообщаться на основании параметров опорного предоставления в качестве:

Уравнение (11)

Типично, сообщение PH для конкретной группы несущих может использоваться для случая, где несущие в пределах группы являются смежными (и, возможно, имеют подобные предоставления UL), так что их уровни мощности передачи близки друг к другу (приводя к значениям PH, являющимся подобными друг другу). При PH сообщении для конкретной группы несущих, служебные сигналы или данные сообщения PH являются меньшими, чем при сообщении для конкретной несущей PH.

Способ 1.D

Может использоваться комбинирование способов в широкой полосе и для конкретной несущей (или группы несущих). Например: сообщение значений PH в широкой полосе и PH для конкретной несущей или сообщение значений PH в широкой полосе и PH для конкретной группы несущих.

Могут быть преимущества в отношении комбинированного сообщения, которое зависит от характера связи в пределах eNodeB. Если каждая несущая передается отдельно, возможно, с ее собственным предоставлением UL, может быть польза предоставления измерения суммарной мощности передачи (через сообщение PH в широкой полосе) наряду с измерением мощности передачи для конкретной несущей (через сообщение PH для конкретной CC). Посредством использования комбинированного сообщения, eNodeB может получать эту информацию без требования дополнительной внутренней обработки сообщения PH в пределах eNodeB. eNodeB может конфигурировать каждый WTRU в отношении того, как WTRU сообщает PH (например, сообщая PH в широкой полосе, PH для каждой несущей, PH для каждой группы несущих, или их комбинацию).

Сценарий 2

Суммарная мощность передачи WTRU на группе m несущих обусловлена предварительно заданной и/или сконфигурированной максимальной мощностью PCMAX(m) передачи, где PCMAX(m) - сконфигурированная максимально допустимая мощность передачи WTRU (в дБм) для группы m несущих. PCMAX(m) может зависеть от некоторой комбинации класса мощности WTRU, разрешенных допустимых отклонений или настроек и максимально допустимой мощности передачи (возможно, для каждой группы несущих), сигнализируемых в WTRU посредством eNodeB. Группа несущих может состоять из одной или более несущих. Одной из причин конфигурирования нескольких несущих в качестве группы несущих является случай многочисленных несущих, ассоциативно связанных с одним PA RF. В качестве альтернативы, группировка несущих, например, может конфигурироваться посредством eNodeB через сигнализацию верхнего уровня, не принимая во внимание ассоциативную связь несущая - PA.

Пусть Ωm обозначает набор несущих в группе m несущих. Для конкретной несущей без действительного предоставления UL ее мощность передачи может быть нулевой (то есть, PPUSCH_UG(k,i) = 0 для несущей k, которая не имеет предоставления UL в подкадре i).

Способ 2.A

В этом способе, PH в широкой полосе для WTRU в подкадре i задается как:

Уравнение (12a)

или

Уравнение (12b)

В качестве альтернативы,

Уравнение (13a)

или

Уравнение (13b)

где M - количество групп несущих.

WTRU, по выбору, может сообщать PH в широкой полосе для несущих без предоставления UL, который обозначен как PHWB_NG(i).

Уравнение (14)

где PPUSCH_REF(k,i) является такой, как задано ранее. Вспоминая, что k - номер несущей, где k=1, ..., K, а Ω - набор активных несущих (каждая имеет предоставление UL для подкадра i), вычисленная мощность UL в уравнении 14 является суммированием на подмножестве несущих в наборе k=1, ...,K, которые не находятся в наборе активных несущих, Ω.

Способ 2.B

В этом способе, задается PH на каждую группу несущих. Для каждой группы m несущих UL, которая имеет действительное предоставление UL для одной или более несущих в группе (а потому имеет передачу в PUSCH) в подкадре i, ее PH задается как:

Уравнение (15)

где PCMAX(m) является такой, как задано ранее.

Для каждой группы m несущих UL, которая не имеет предоставления UL для любой несущей в группе, WTRU, по выбору, может сообщать свой PH, который определяется на основании параметров опорного предоставления (назначения PUSCH, формата транспортировки, и т.д.) в качестве:

Уравнение (16)

где PPUSCH_REF(k,i) определена, как в уравнении 9.

Как упомянуто ранее, сообщение PH для конкретной группы несущих типично может использоваться для случая, где несущие в пределах группы являются смежными (и, возможно, имеют подобные предоставления UL), так что их уровни мощности передачи близки друг к другу (приводя к значениям PH, являющимся подобными друг другу).

Способ 2.C

В этом способе, задается PH на каждую несущую. Для несущей k UL в Ωm, которая имеет действительное предоставление UL (а потому имеет передачу PUSCH) в подкадре i, ее PH задается как:

Уравнение (17)

где PCMAX_carrier(k) является сконфигурированной максимальной мощностью передачи WTRU k-ой несущей в Ωm, которая может быть задается как:

Уравнение (17a)

или

Уравнение (17b)

где суммирование в уравнении 17b применяется только для несущих в группе несущих, каждая несущая имеет предоставление UL.

Когда каждая несущая имеет одну и ту же полосу пропускания, PCMAX_carrier(k) является одинаковой для всех несущих в Ωm. В качестве альтернативы, PCMAX_carrier(k) может конфигурироваться по-разному или независимо для каждой несущей k, но сумма PCMAX_carrier(k) для всех несущих k в Ωm обусловлена максимальной мощностью PCMAX(m) передачи группы несущих, которая имеет значение для уравнения (17a) или для уравнения (17b). В качестве альтернативы, PCMAX_carrier(k) может быть установлена в постоянное значение для всех k в Ωm ради простоты.

Для каждой несущей k UL, которая не имеет предоставления UL, WTRU, по выбору, может сообщать свой PH, который задается на основании параметров опорного предоставления (назначения PUSCH, формата транспортировки, и т.д.), в качестве:

Уравнение (18)

где , и

PPUSCH_REF(k,i) задается, как в уравнении 9.

Спосо