Способ отверждения жидких высокоактивных отходов
Изобретение относится к способу отверждения жидких высокоактивных отходов с целью переведения их в компактный материал, пригодный для долговременного и безопасного хранения. Способ заключается в переведении отходов в гелеобразное состояние и характеризуется тем, что в растворы высокоактивных отходов вводят соли циркония, железа и глицерин до концентрации их в растворах соответственно не менее 0,12, 0,6 и 0,23 М/л, выдерживают полученную смесь в течение не менее 2,5 ч с последующим добавлением в смесь раствора однозамещенного фосфата калия в фосфорной кислоте до мольного соотношения компонентов Zr:Fe:K:PO4=1:3:2:5-8, высушиванием, прокаливанием полученного полимерного геля цирконилфосфата соответственно при 70-90°C и 300-400°С и плавлением полученных гранул при 980-1000°С. 2 з.п. ф-лы, 2 табл., 1 пр.
Реферат
Изобретение относится к способам отверждения жидких высокоактивных отходов, образующихся в результате переработки ядерного топлива с целью переведения их в компактный материал, пригодный для долговременного и безопасного хранения.
Образующиеся отходы помимо продуктов деления содержат неактивные элементы, входящие в состав конструкционных материалов тепловыделяющих сборок, основными из которых являются цирконий и железо.
Известен способ переработки высокоактивных отходов ядерных реакторов, включающий кальцинацию ВАО, смешение кальцината ВАО с TiO2, CaO, ZrO2, Аl2О3, нагрев смеси в восстановительной атмосфере до рабочей температуры от 1000°С до 1500°С под давлением не ниже атмосферного, выдержку при рабочей температуре до образования кристаллов керамического материала и охлаждение до получения монолитного материала, пригодного для долгосрочного хранения.
В результате реализации известного способа происходит образование цирконолитсодержащей керамики с включенным в нее кальцинатом ВАО. [Патент США N 4274976, G21F 9/34, опубл. 23.06.81.]
Аналогичным вышеуказанному является способ переработки высокоактивных отходов ядерных реакторов, содержащих радиоактивные элементы актинидной группы (уран, плутоний, нептуний и т.д.), а также цирконий и редкоземельные элементы, согласно которому указанные отходы кальцинируют, кальцинат смешивают с окислами титана, кальция и марганца при следующем соотношении компонентов, вес.%: TiO2 - 50-60, СаО - 10-20, МnО - 5-15, кальцинат высокоактивных отходов - 15-25, полученную смесь нагревают в окислительной атмосфере до рабочей температуры 1100-2000°С при давлении не ниже атмосферного, выдерживают при рабочей температуре до образования кристаллов керамического материала, после чего полученный конечный продукт охлаждают до получения монолитного материала, пригодного для долгосрочного хранения. В результате происходит образование керамики, в которой присутствует кристаллический материал, чей состав характеризуется обобщенной формулой (Са, Mn, REE)4(An, Zr, Ti)2Ti7O22, который по своей физико-химической природе, а также по отношению к элементам актинидной группы, цирконию и редкоземельным элементам сходен с цирконолитом, причем, чем выше давление, тем быстрее происходит процесс кристаллообразования получаемого керамического продукта. [Пат. РФ №2140106, G21F 9/16, опубл. 10.10.1999.]
Недостатком известных способов является пониженное качество получаемого конечного продукта, связанное с его пониженной водоустойчивостью (применительно к ВАО), величина которой, определяемая суммарной скоростью вымываемости актинидов из цирконолита при 90°С, составляет 10-4-10-5 г/м2 сутки.
Взятый за прототип способ переработки отходов, образующихся при переработке тепловыводящих сборок ядерного реактора, характеризуется переведением их в керамическую матрицу. Для этого раствор отходов предварительно денитрируют формальдегидом, затем смешивают в основном с оксидами титана, бария, кальция и дополнительно алюминия, ниобия. Полученную суспензию высушивают, отжигают, при температуре 650-800°С, измельчают с образованием порошка. Далее порошок прессуют при 1000-1400°C и спекают в восстановительной атмосфере в интервале температур 1000-1400°С.
При этом достигается образование керамической среды, содержащей фазы холандита, перовскита и цирконолита, содержащие 30-60 мас.% TiO2, 1-10 мас.% BaO, 1-10 мас.% СаО, в которой предполагается растворение и фиксация продуктов деления. (З. РФ №2002115623, G21F 9/00, опубл. 20.12.2003 г.)
Несмотря на кажущуюся простоту исполнения и химическую стойкость получаемой керамики, данный способ не лишен недостатков. Способ не обеспечивает равномерного распределения продуктов деления в объеме матрицы, что отрицательно влияет на процесс их длительного хранения, многостадийность процесса синтеза матрицы, использование восстановительной среды и температур более 1000°С, значительные расходы оксидов для превращения раствора в суспензированное состояние.
Задачей изобретения является упрощение процесса переработки - отверждения жидких отходов при сохранении термической и гидролитической устойчивости получаемого монолитного материала.
Поставленная задача решается способом отверждения жидких высокоактивных отходов и переведением их в гелеобразное состояние, характеризующимся введением в растворы отходов солей циркония, железа и глицерина до концентрации их в растворах соответственно не менее 0,12, 0,6 и 0,23 М/л, выдерживанием полученной смеси в течение не менее 2,5 ч, добавлением в смесь раствора однозамещенного фосфата калия в фосфорной кислоте до мольного соотношения компонентов Zr:Fe:K:PO4=1:3:2:5-8, и последующим высушиванием, прокаливанием полученного полимерного геля цирконилфосфата соответственно при 70-90°C и 300-400°С и плавлением полученных гранул при 980-1000°С.
Предпочтительно, в качестве солей циркония и железа использовать соответственно цирконилхлорид и азотнокислое железо.
Обычно используют 2-2,1 М/л раствора фосфата калия в 4 М фосфорной кислоте.
Таким образом, для упрощения процесса отверждения жидких отходов предлагается вместо оксидной матрицы использование цирконий-железо-фосфатной матрицы, не уступающей по своей термической и гидролитической устойчивости керамической матрице, указанной в прототипе. Причем синтез матрицы происходит в жидкой фазе при смешивании раствора отходов с добавлением солей металлов с раствором фосфата калия в фосфорной кислоте. Метод основан на склонности водных растворов циркония к образованию полимерных соединений, возможности образования значительного числа простых и сложных фосфатов.
Предварительно в жидкие отходы вносятся необходимые количества солей циркония и железа, а также глицерин. Роль последнего сводится к образованию комплексного соединения с цирконием, а в последующем к денитрации смешанного раствора. В полученную смесь вводят раствор KH2PO4 в фосфорной кислоте. Через некоторое время происходит гелеобразование цирконилфосфата, которое регулируется процессом комплексообразования цирконилиона с глицерином и температурой процесса. Полученный однородный гель цирконилфосфата прозрачен и стекловиден, желтоватого цвета. Гель высушивают, прокаливают при t=300-400°С до окончания выделения окислов азота, при необходимости измельчают и плавят при температуре около 1000°С. Полученный плав стекловиден, имеет цвет от светло-коричневого до темно-коричневого в зависимости от состава и количества отходов и представляет собой твердый раствор простых и сложных фосфатов продуктов деления в железофосфатном стекле и частично в виде самостоятельных фаз, сцементированных стеклом.
Высушивание геля возможно осуществлять двумя путями. Первый вариант: смешанный раствор до начала гелеобразования переливают в пластиковые поддоны и высушивают в потоке горячего воздуха (70-90°С). Второй вариант: смешанный раствор диспергируют на капли в нагретом минеральном масле с получением в конечном итоге сферических частиц геля матрицы, что ускоряет процесс высушивания и устраняет необходимость измельчения продукта.
Пример
Подготавливают раствор отходов для получения цирконий-железо-фосфатной матрицы. Для этого предварительно определяют содержание циркония и железа в отходах и корректируют их в соответствии с мольным соотношением путем добавления солей цирконилхлорида - ZrOCl2 8H2O и азотнокислого железа - Fе(NO3)3 9H2O до концентрации их в растворе соответственно не менее 0,12 и 0,6 М/л, а также глицерина - 0,23 М/л (мольное отношение цирконий:глицерин=1:1,1). Указанные концентрации обеспечивают получение достаточно прочного и устойчивого геля цирконилфосфата. Подготовленный раствор выдерживают до установления равновесия в течение 2,5 ч.
Далее готовят раствор однозамещенного фосфата калия - КН2РО4 растворением в 4-мольной фосфорной кислоте до концентрации его в растворе 2 М/л.
Поведение циркония в растворах трудно прогнозируется по многим причинам, в том числе историей его происхождения и временем хранения его солей. Поэтому предварительно проводят тестирование процесса гелеобразования на малых объемах. Регистрируют время начала гелеобразования в смешанном растворе для определения времени его «жизни». Коррекцию времени «жизни» проводят путем добавления глицерина или охлаждения растворов. Смешивают основную часть отходов с 2 М/л раствором фосфата калия в 4 М/л фосфорной кислоте, разливают в пластиковые поддоны или диспергируют на капли в минеральном масле. Высушивание проводят потоком нагретого воздуха (70-90°С), затем прокаливают при 300-400°С до прекращения выделения окислов азота и плавят полученные гранулы при температуре около 1000°С.
Получаемый полимерный гель цирконилфосфата характеризуется мольным соотношением компонентов Zr:Fe:K:PO4=1:3:2:6. Гель эффективно поглощает СВЧ-излучение, что позволяет проводить прокаливание и плавку в микроволновой печи.
Испытания гидролитической устойчивости матрицы на выщелачивание трансурановых элементов проводили следующим образом.
Готовили 120 мл азотнокислого раствора иммитаторов продуктов деления, соответствующего солевому и радионуклидному составу отходов радиохимических производств. Раствор был поделен надвое, в каждую часть которого ввели аликвоты азотнокислых растворов Np-239 в одну и Pu-239 с Am-241 в другую часть.
Растворили в каждой части раствора навески ZrOCl2 8Н2О и Fе(МО3)3 9Н2О до конечной концентрации 0,2 М/л и 0,6 М/л соответственно. Ввели и перемешали в растворе глицерин до его содержания около 0,23 М/л и выдержали 2,5 ч для установления равновесия. Одновременно готовили при умеренном нагревании 2 М/л раствор КН2РO4 в 4 М фосфорной кислоте.
Смешали полученные растворы с раствором фосфата калия (2 М/л КН2РO4 в 4 М/л МН3РО4). После образования геля цирконилфосфата, которое произошло на 36 минуте от начала смешивания при температуре 22°С (мольное соотношение Zr:Fe:K:PO4=1:3:2:5-8), гели были высушены, прокалены и расплавлены в алундовых тиглях при температуре 980-1000°С.
Данные об образцах представлены в таблице 1.
Таблица 1 | |||||
Нукли-ды | Масса нуклида в объеме приготовленной матрицы, мг | Количество Бк в объеме приготовленной матрицы | Вес образца | Поверхность образца, см2 | Массовая доля актинида в исходном образце, % |
Np-237 | 5,4 | 1.4×105 | 10,4 | 18,2 | 0,052 |
Am-241 | 0,1 | 1,27×107 | 9,9 | 17,5 | 0,001 |
Pu-239 | 4,5 | 1,0×107 | 0,045 |
Гидролитическое выщелачивание проводили при температуре 90°С с радиометрическим определением содержания радионуклидов в выщелатах.
Полученные данные результатов гидролитической устойчивости при температуре 90°С и соотношении STB./VH2O≤10, R - скорость выщелачивания, представлены в таблице 2.
Таблица 2 | |||
Время, сутки | R, г/(см2·сут) | ||
Np-237 | Рu-239 | Аm-241 | |
1 | 1,7·10-5 | 7,0·10-5 | 7,2·10-5 |
3 | 1,8·10-5 | 6,2·10-6 | 6,1·10-6 |
7 | 1,3·10-5 | 3,6·10-7 | 3,0·10-7 |
14 | 5,4·10-6 | 5,7·10-7 | 4,9·10-7 |
21 | 3,9·10-7 | 7,4·10-7 | 6,4·10-7 |
28 | 8,1·10-8 | 4,5·10-7 | 5,1·10-7 |
Таким образом, предлагаемый способ позволяет перерабатывать кислые растворы (до 2,5 М/л по азотной кислоте) и получать компактный продукт с кажущейся плотностью от 2,2 до 2,6 г/см3, что на порядок и более снижает объем отходов. Гидролитическая устойчивость матрицы ограничивает скорость выщелачивания инкорпорированных радионуклидов в пределах от 10-6 до 10-8 г/см2 сутки (при 90°С), которые принимаются как прогнозируемые в процессе длительного хранения.
1. Способ отверждения жидких высокоактивных отходов переведением отходов в гелеобразное состояние, характеризующийся тем, что в растворы высокоактивных отходов вводят соли циркония, железа и глицерин до концентрации их в растворах соответственно не менее 0,12, 0,6 и 0,23 М/л, выдерживают полученную смесь в течение не менее 2,5 ч с последующим добавлением в смесь раствора однозамещенного фосфата калия в фосфорной кислоте до мольного соотношения компонентов Zr:Fe:K:PO4=1:3:2:5-8, высушиванием, прокаливанием полученного полимерного геля цирконилфосфата соответственно при 70-90°С и 300-400°С и плавлением полученных гранул при 980-1000°С.
2. Способ по п.1, отличающийся тем, что в качестве солей циркония и железа используют соответственно цирконилхлорид и азотнокислое железо.
3. Способ по п.1, отличающийся тем, что используют 2-2,1 М/л раствор фосфата калия в 4 М фосфорной кислоте.