Способ получения каталитического покрытия для очистки газов

Иллюстрации

Показать все

Изобретение относится к области катализа. Описан способ получения каталитического покрытия для очистки газов от оксидов углерода и азота, водорода и вредных органических веществ. Технический результат - получено каталитическое покрытие для очистки газов от оксидов углерода и азота, водорода и вредных органических веществ с повышенной прочностью, водостойкостью и термостойкостью. 2 табл., 1 пр.

Реферат

Изобретение относится к получению каталитического покрытия, наносимого на металлические и керамические пластины и блоки сотовой структуры и применяемого для очистки газов от оксидов углерода (CO), азота (NOx), водорода (H2) и вредных органических веществ, продуктов неполного сгорания топлива. Изобретение может быть использовано в металлургии, химической, нефтеперерабатывающей, целлюлозно-бумажной, пищевой, строительной, лакокрасочной и других отраслях промышленности; для очистки топочных и выхлопных газов двигателей автотранспорта, систем водородобезопасности, в том числе для газоочистки на объектах атомной энергетики, в частности в составе устройств удаления водорода из герметичных помещений атомных станций.

К числу проблем в сфере производства и эксплуатации катализаторов относится необходимость обеспечения возможности и разработки экономически и экологически эффективных способов утилизации, рекуперации отработанных катализаторов, содержащих металлы платиновой группы. Целесообразным решением этой проблемы является использование отработанных катализаторов, содержащих дорогостоящие элементы, в качестве сырья для изготовления катализаторов газоочистки с высокими эксплуатационными характеристиками, в том числе, наряду с активностью в целевом процессе, механической прочностью, водостойкостью, устойчивостью к работе в условиях высоких температур и скоростей газовых потоков, присутствия влаги и пыли. Последние требования продиктованы современной тенденцией интенсификации условий каталитической газоочистки, следствием которой являются «жесткие» условия эксплуатации катализатора - непостоянство химического состава очищаемого газа, резкое изменение температуры очищаемого газа и катализатора при работе, например, дизель-поршневых агрегатов и двигателей внутреннего сгорания, в высокотемпературных топливных элементах, при окислении водорода в его рекомбинаторах и др., отказ от предварительной пылеочистки, наличие в очищаемом потоке водяных паров и т.д.

Известен способ получения катализатора для очистки газов от органических веществ путем нанесения на предварительно нагретый до (100-150)°C непористый металлический носитель водной суспензии, приготовленной в соотношении «сухое вещество»:«вода»=1:1 и включающий оксиды алюминия и бериллия, нитрат алюминия и измельченный алюмоплатиновый катализатор риформинга, а также фосфорную кислоту в количестве (5-7)% масс. из расчета на общую массу сухих веществ суспензии, прокаливание при (400-600)°C на воздухе в течение 0,5 ч ([1] - Авторское свидетельство СССР № 426399, кл. B01J 37/02, 1980).

Однако известный способ [1] обладает рядом недостатков: низкой прочностью закрепления каталитически активной массы на непористой металлической поверхности, приводящей к уменьшению срока службы катализатора; сложностью технологии и плохими экологическими условиями приготовления, обусловленными применением нагретого до (100-150)°C металлического носителя и использованием для его пропитки водной суспензии активных компонентов, включающих летучие оксид бериллия и фосфорную кислоту, не являющихся к тому же пептизаторами или пластификаторами.

Наиболее близким известным решением аналогичной задачи по технической сущности и достигаемому эффекту является способ [2] получения гранулированного катализатора для очистки газов от оксидов углерода, азота, серы и вредных органических веществ путем обработки алюминийсодержащего соединения, в качестве которого используют отработанные алюмоплатиновые или алюмопалладиевые катализаторы или их смеси; пептизатором, в качестве которого применяют растворы минеральных кислот, смешения полученной массы с активной составляющей, в качестве которой используют смесь оксидов переходных металлов (хрома, и/или марганца, и/или железа, и/или кобальта, и/или никеля, и/или меди в количестве (12-40)% масс.) с соединениями промотирующих металлов, выбранных из группы хлоридов или фторидов хрома, или марганца, или железа, или кобальта, или никеля, или меди, или их смеси, в количестве в пересчете на оксид (0,3-2,0)% масс., формования, сушки и прокаливания гранул при (400-500)°C в течение (2-4) ч ([2] - Пат. РФ №2037330 по кл. МКИ B01J 37/02, БИ №7, 1995, прототип).

Сущность известного способа [2], принятого за прототип заявляемого способа, состоит в следующем: к гранулам промышленного отработанного алюмоплатинового, алюмопалладиевого катализатора или их смеси добавляют раствор сильной минеральной кислоты-пептизатора (азотной или соляной) в количестве (5-10)% масс. от Al2O3 и перемешивают в оппозитно-лопастном смесителе в течение (0,5-1,0) ч, выдерживают в течение (1-2) ч при периодическом интенсивном перемешивании. После добавления в полученную массу активной составляющей, включающей расчетное количество соответствующих оксидов переходных металлов или их смеси (хрома, и/или марганца, и/или железа, и/или кобальта, и/или никеля, и/или меди в количестве (12-40)% масс.), и промотирующей добавки (хлорид или фторид переходного металла - хрома, или марганца, или железа, или кобальта, или никеля, или меди, или их смеси в количестве в пересчете на оксид (0,3-2,0)% масс.), массу тщательно перемешивают в течение (0,25-0,33) ч и подвергают формованию на шнековом грануляторе в виде гранул различной формы (цилиндр, шнур, кольцо, труба). Затем гранулы поступают на термообработку: сушка проводится в сушильном шкафу при (60-100)°C в течение (1-2) ч, прокаливание в муфельной печи при (400-500)°C в течение (2-4) ч.

В [2] синтезированные по заявленному способу образцы охарактеризованы величинами каталитической активности по степени конверсии целевых компонентов Xi(%), которую определяли в реакциях окисления CO (2% об.); SO2 (1% об.); акролеина (0,1% об.) и восстановления NOx (200 мг/м3) газообразным аммиаком при соотношении NH3/NOx=1,1. Определение проводили в интервале температур (100-300)°C и объемной скорости 6000 ч-1 при постоянном объеме катализатора (4 см3) фракции (0,55-0,6) мм. Полученные для синтезированных образцов результаты подтверждают достижение поставленной цели - высоких степеней конверсии целевых веществ в указанных условиях определения: окисление CO - 100% при 100°C, окисление SO2 - (49,3-71,4)% при 300°C, окисление акролеина - (92,3-100)% при 100°C, селективное восстановление NOx аммиаком - (75,1-93,6)% при 300°C. Эксплуатационная устойчивость гранулированных катализаторов охарактеризована сопоставлением величин степени конверсии целевых веществ свежеприготовленными образцами катализатора и после их отработки в условиях испытаний в течение 100 часов. Полученные результаты свидетельствуют об устойчивости каталитической активности в указанных условиях в реакциях окисления CO и акролеина, некотором снижении - в реакции восстановления NOx и более значительном снижении величин Xi - в реакции окисления SO2. Устойчивость образцов катализатора при температурах выше 300°C не приводится. Степень конверсии целевых веществ в условиях более высоких объемных скоростей очищаемого газового потока не приводится. Данные о механической прочности и водостойкости катализатора не приводятся.

К недостаткам вышеописанного способа [2], принятого за прототип, следует отнести следующее.

Во-первых, недостаточные для работы в «жестких» условиях интенсивной газоочистки механическая прочность и водостойкость гранул катализатора, связанные с низкой дисперсностью частиц отработанного алюмооксидного катализатора, достигаемой при его пептизации в условиях перемешивания в оппозитно-лопастном смесителе и смешения в нем же с активной составляющей и промотирующей добавкой в указанных условиях. В [2] не приведены как характеристика дисперсности частиц отработанного алюмооксидного катализатора в составе пептизированной массы, так и оценка прочности и водостойкости гранул катализатора. Для образцов катализатора, приготовленных в соответствии с примерами 1 и 3, иллюстрирующими изобретение [2], определены: методом седиментационного анализа по Фигуровскому - преобладающие размеры частиц твердой фазы в пептизированной массе, которые составили 37 и 41 мкм соответственно; на приборе «МП-2» - значения механической прочности по сопротивлению раздавливанию P, которые составили, соответственно, 6,1 и 5,2 МПа; водостойкость (B) образцов, выраженная как массовая доля гранул, уцелевших после воздействия их погружения на 1 ч в воду и последующей дегидратации в течение 1 ч при (200±10)°C, составила лишь 76,1 и 74,3% масс., соответственно; полученные значения P и B позволяют отнести образцы прототипа лишь к удовлетворительно прочным и водостойким.

Во-вторых, отсутствие возможности формования катализатора в виде, оптимальном для использования в условиях высоких скоростей, пыле- и влагосодержащих потоков, а именно в виде тонкого - (40-50) мкм покрытия пластин и блоков сотовой структуры, обусловленное низкой дисперсностью частиц отработанного алюмооксидного катализатора, достигаемой при его пептизации в условиях перемешивания в оппозитно-лопастном смесителе и смешения в нем же с активной составляющей и промотирующей добавкой в указанных условиях. В [2] приведен способ формования катализатора в виде гранул различной формы методом экструзии. Для проверки возможности формования катализатора в виде покрытия были приготовлены формовочные массы в соответствии с примерами 1 и 3, иллюстрирующими изобретение [2]; массы, представляющие собой концентрированные суспензии (пасты), были разбавлены дистиллированной водой при перемешивании в оппозитно-лопастном смесителе 0,33 ч до оптимальной для формирования оксидных покрытий плотности 1,25 г/см3 и нанесены на металлические пластины окунанием и последующей термообработкой - сушкой при 100°C в течение 2 ч, прокаливанием в муфельной печи при 500°C в течение 4 ч. Полученные покрытия характеризовались отсутствием сплошности и осыпаемостью, т.е. крайне низким качеством. Определение показателя «механическая прочность покрытия» (П, % масс. - по доле сохранившейся массы покрытия блока после воздействия ударных и истирающих нагрузок с помощью механической качалки 100 ударов в минуту 30 минут в присутствии свободно перемещающегося кварцевого песка) для этих образцов покрытий показало их низкие величины - 11,2 и 9,3% масс. соответственно.

В-третьих, низкая термостойкость катализаторов для использования в процессах очистки выхлопных газов двигателей внутреннего сгорания и в высокотемпературных топливных элементах, температура которых достигает (750-800)°C, в каталитических рекомбинаторах водорода - до (500-600)°C вследствие протекания при этих условиях: нежелательных фазовых превращений активных и промотирующих компонентов катализатора, снижающих их активность: MnO2>Mn2O3; NiO>Ni2O3 и т.д.; образования малоактивных шпинелей с оксидом алюминия: CoAl2O4; CuAl2O4; NiAl2O4; FeAl2O4 и др.; нежелательного снижения удельной поверхности алюмооксидного компонента из-за начала фазовых переходов γ-Al2O3 в более высокотемпературные формы. В [2] не приведена характеристика термостойкости катализатора при температурах эксплуатации выше 300°C. Для образцов катализатора, приготовленных в соответствии с примерами 1 и 3, иллюстрирующими изобретение [2], определена термостойкость сопоставлением значений степени конверсии CO при 300°C для исходных гранул - X C O и с х и после воздействия высоких температур (900°C, 10 ч) - X C O T . «Индекс термостойкости» оценивался как отношение И C O T = X C O T / X C O и с х . Результаты, полученные в указанных в [2] условиях испытаний, свидетельствуют о заметном снижении степени конверсии CO образцами катализатора после выдержки их при 900°C по сравнению с исходными: значения И C O T = X C O T / X C O и с х для них составили: образец 1 - 63,5/100=0,64 и образец 3 - 69,8/100=0,70.

Техническим результатом заявляемого способа получения каталитического покрытия для очистки газов от оксидов углерода и азота, водорода и вредных органических веществ является устранение указанных недостатков, а именно повышение прочности, водостойкости и термостойкости катализатора и обеспечение возможности его формования в виде тонкослойного покрытия на пластинчатых и блочных носителях за счет:

1) образования, при измельчении в шаровой мельнице отработанного алюмооксидного катализатора в водном растворе пептизаторов при отношении Т:Ж=1:3, высокоструктурированной суспензии, включающей в качестве дисперсной фазы частицы отработанного алюмооксидного катализатора размером не более 5 мкм, а в качестве дисперсионной среды - коллоидоподобный раствор продуктов взаимодействия тонкодиспергированного оксида алюминия и солей-пептизаторов - полигидроксокомплексов основных солей их катионов, обладающих пластифицирующими и вяжущими свойствами, в совокупности условий всех операций и всего ингредиентного состава обеспечивающих формуемость суспензии в виде тонкослойного покрытия, а после его термообработки - высокую механическую прочность и водостойкость;

2) образования, при термообработке суспензии, между частицами алюмооксидной дисперсной фазы и продуктами терморазложения основных солей олова, или циркония, или лантана, а также титана, или сурьмы, или церия - конденсационно-кристаллизационных контактов, в совокупности условий всех операций и всего ингредиентного состава упрочняющих каталитическое покрытие и обеспечивающих его водостойкость;

3) образования, при окислительной термообработке суспензии, поверхностных наноразмерных соединений олова, или циркония, или лантана, вводимых в качестве стабилизатора, а также титана, или сурьмы, или церия, вводимых в качестве активатора, с оксидом алюминия при отсутствии такого взаимодействия с благородными металлами, что в совокупности условий всех операций и всего ингредиентного состава термостабилизирует фазовый состав и пористую структуру как оксида алюминия и распределенного на нем благородного металла, так и оксида-активатора - продукта терморазложения оксихлорида титана, или сурьмы, или церия, т.е. каталитического покрытия в целом;

4) формирования в совокупности всего ингредиентного состава при сушке-прокаливании покрытия энергетической неоднородности его поверхности, повышающей дисперсность благородных металлов, оксидов-активаторов и препятствующей их миграции и спеканию при высокотемпературном воздействии.

Поставленная задача решается за счет способа приготовления каталитического покрытия для очистки газов от оксидов углерода и азота, водорода и вредных органических веществ, включающего обработку отработанного алюмооксидного катализатора, содержащего благородные металлы или их смеси, пептизатором, формование, сушку и прокаливание катализатора, отличающегося тем, что обработку отработанного алюмооксидного катализатора раствором пептизатора проводят посредством измельчения суспензии с массовым соотношением «отработанный катализатор»:«раствор пептизатора» (1:3) в течение (4,5-5,0) ч в шаровой мельнице до размера частиц катализатора не более 5 мкм, в качестве пептизатора используют раствор двух солей металлов, выбранных из групп: стабилизаторов - хлоридов олова, или цирконила, или лантана и активаторов - хлоридов титана, или сурьмы, или церия с содержанием в пересчете на оксиды в покрытии соответственно: (2,5-3,5) и (5,0-12,0)% масс., при содержании отработанного катализатора в покрытии - остальное до 100% масс.; формование каталитического покрытия толщиной (40-50) мкм осуществляют окунанием керамического или металлического носителя в приготовленную указанным способом суспензию с последующей сушкой 2 ч при (100-120)°C, а прокаливание покрытия осуществляют последовательно при (270-300)°C в течение (3,5-4,0) ч и при (850-900)°C в течение (3,0-4,0) ч.

В качестве отработанных алюмооксидных, содержащих благородные металлы катализаторов могут быть использованы как указанные в прототипе Pd - (АПК-2, РПК-1, ПАЛ-1, ПАЛ-2) и Pt-содержащие (ОСО-1, ШПК-1), смешанные, например, Pd-, Rh - (РПК-1), так и др., например, АК-64 (Pd-Al2O3), 5РНС (Ru-Al2O3) и т.п. катализаторы, содержащие в качестве основной фазы активный оксид алюминия модификации γ-Al2O3, способный в определенных условиях проявлять реакционную способность в растворах пептизаторов, к которым относятся многие минеральные кислоты и их соли. Механохимическое активирование, происходящее при заявляемых условиях измельчения, существенно повышает реакционную способность γ-Al2O3 как за счет достигаемой высокой дисперсности частиц, так и за счет образования дислокаций, поверхностных функциональных групп и т.п., т.е. повышения удельной реакционной способности, что в совокупности положительно сказывается на процессе пептизации и приводит к повышению пластичности и формуемости композиций, а после термообработки - к повышению структурно-прочностных показателей готовых катализаторов. Содержание в отработанном катализаторе Pd- и/или Rt- (и/или др. драгоценного металла) составляющей обеспечивает их внесение в состав каталитического покрытия, а механохимическая активация повышает равномерное диспергирование Pd-, Pt- и др. содержащих контатов в объеме каталитического покрытия, т.е. активность и стабильность работы катализатора при очистке газовых смесей и расширяет область использования таких катализаторов.

Существенным отличием предлагаемого изобретения является: проведение обработки отработанного алюмооксидного катализатора, содержащего благородные металлы или их смеси, раствором пептизатора посредством измельчения суспензии с массовым соотношением «отработанный катализатор»:«раствор пептизатора» Т:Ж=(1:3) в шаровой мельнице в течение (4,5-5,0) ч до размера частиц катализатора не более 5 мкм, при использовании в качестве пептизатора раствора двух солей металлов, выбранных из групп: стабилизаторов - хлоридов олова, или цирконила, или лантана в количестве в пересчете на оксиды в покрытии (2,5-3,5)% масс. и активаторов - хлоридов титана, или сурьмы, или церия в количестве в пересчете на оксиды в покрытии (5,0-12,0)% масс. при содержании отработанного катализатора в покрытии - остальное до 100% масс.; в отличие от прототипа для обработки отработанного катализатора пептизатором не используют оппозитно-лопастной смеситель; в отличие от прототипа для пептизации отработанного катализатора не используют минеральную кислоту (соляную или азотную); в отличие от прототипа в суспензию не вводят в качестве активной составляющей оксиды переходных металлов (хрома, и/или марганца, и/или железа, и/или кобальта, и/или никеля, и/или меди) в смеси с их хлоридами или фторидами в качестве промоторов; в отличие от прототипа формование катализатора осуществляют в виде покрытия толщиной (40-50) мкм однократным окунанием пластинчатого или блочного носителя в приготовленную суспензию с последующей сушкой 2 ч при (100-120)°C; в отличие от прототипа прокаливание покрытия осуществляют последовательно при (270-300)°C в течение (3,5-4,0) ч и при (850-900)°C в течение (3,5-4,0) ч. В известном уровне техники аналогичной совокупности операций и ингредиентного состава с указанным массовым соотношением (%) не обнаружено, и получение из отработанного алюмооксидного катализатора, содержащего благородные металлы, каталитического покрытия на пластинчатых или блочных носителях с повышенными показателями механической прочности, водостойкости и термостойкости обусловлено следующим.

Проведение обработки отработанного алюмооксидного катализатора, содержащего благородные металлы или их смеси, раствором пептизатора посредством измельчения суспензии с массовым соотношением «отработанный катализатор»:«раствор пептизатора» Т:Ж=(1:3) в шаровой мельнице в течение (4,5-5,0) ч является приемом механохимических активации и синтеза, в результате которых обеспечивается образование высокоструктурированной суспензии, включающей в качестве дисперсной фазы высокодисперсные, размером не более 5 мкм, и реакционноспособные частицы отработанного алюмооксидного катализатора, а в качестве дисперсионной среды - коллоидоподобный раствор продуктов взаимодействия тонкодиспергированного оксида алюминия и солей-пептизаторов - полигидроксокомплексов основных солей их катионов, обладающих пластифицирующими и вяжущими свойствами, в совокупности условий всех операций и всего ингредиентного состава обеспечивающих формуемость суспензии в виде тонкослойного покрытия, а после его термообработки - высокую механическую прочность и водостойкость.

Использование в качестве пептизатора раствора двух солей металлов, выбранных из групп: стабилизаторов - хлоридов олова, или цирконила, или лантана в количестве в пересчете на оксиды в покрытии (2,5-3,5)% масс., и активаторов - хлоридов титана, или сурьмы, или церия в количестве в пересчете на оксиды в покрытии (5,0-12,0)% масс. при содержании отработанного катализатора в покрытии - остальное до 100% масс., обеспечивает образование, при окислительной термообработке суспензии, поверхностных наноразмерных соединений олова, или циркония, или лантана, а также титана, или сурьмы, или церия с оксидом алюминия при отсутствии такого взаимодействия с благородными металлами, что в совокупности условий всех операций и всего ингредиентного состава термостабилизирует фазовый состав и пористую структуру как оксида алюминия и распределенного на нем драгоценного металла, так и оксида-активатора - продукта терморазложения оксихлорида титана, или сурьмы, или церия, т.е. каталитического покрытия в целом.

Использование суспензии, приготовленной при указанной совокупности операций и ингредиентного состава и характеризующейся высокой структурированностью и пластичностью, обеспечивает формование каталитического покрытия толщиной (40-50) мкм при однократном окунании в нее носителя и последующей сушке и прокаливании, приводящих вследствие снижения усадки покрытия к формированию ненапряженной структуры, не склонной к растрескиванию при термоударах, попаданию влаги и повышенных нагрузках.

Прокаливание каталитического покрытия на носителе последовательно при (270-300)°C в течение (3,5-4,0) ч и при (850-900)°C в течение (3,5-4,0) ч обеспечивает по сравнению с одностадийным прокаливанием при (400-500)°C, как это описано в прототипе, повышение прочности, водостойкости и термостойкости катализатора, поскольку в совокупности всех стадий и ингредиентного состава реализуется следующее: при прокаливании высушенного покрытия при (270-300)°C разлагаются продукты механохимического взаимодействия солей-пептизаторов и отработанного алюмооксидного катализатора с образованием между его тонкодиспергированными частицами фазы неполностью дегидратированных оксидов Al и Sn, или Zr, или La и Ti, или Sb, или Ce - с формированием за счет их взаимной упаковки как межчастичных контактов и прочностного каркаса, так и вторичной пористости покрытия при минимизации его усадки. При прокаливании покрытия при (850-900)°C, с одной стороны, к 850°C окончательно формируются высокопрочные конденсационно-кристаллизационные межчастичные контакты, а также завершается формирование объемной фазы активатора - высокотемпературных оксидов Ti, или Sb, или Ce; с другой стороны, к 900°C в основном завершается формирование поверхностных наноразмерных соединений Sn, или Zr, или La, а также Ti, или Sb, или Ce с оксидом алюминия, термостабилизирующих фазовый состав и пористую структуру как оксида алюминия и распределенного на нем драгоценного металла, так и оксида-активатора. Временной интервал прокаливания каталитического покрытия обусловлен, с одной стороны (3,5 ч), достаточностью для формирования межчастичных контактов и наноразмерных поверхностных соединений, а с другой стороны (4,0 ч), достаточностью для формирования объемной фазы оксида-активатора.

В результате заявляемой совокупности операций и ингредиентного состава - получение каталитического покрытия с повышенными показателями прочности, водостойкости и термостойкости на основе отработанного алюмооксидного катализатора, содержащего драгоценные материалы, обусловлено взаимодействием ингредиентов состава в условиях механохимического активирования с образованием при сушке ненапряженной структуры, а при последующей термообработке - прочных конденсационно-кристаллизационных контактов между высокодисперсными частицами оксидов, а также энергетической неоднородности их поверхности, препятствующей спеканию активных компонентов.

Таким образом, заявляемая совокупность признаков является существенной и соответствует изобретательскому уровню.

Сущность предлагаемого способа состоит в следующем: к гранулам промышленного отработанного катализатора, содержащего благородные металлы - один или смесь нескольких, добавляют расчетное количество раствора пептизатора, представляющего собой раствор двух солей металлов, выбранных из групп: стабилизаторов - хлорида циркония, или лантана, или олова, оксиды которых, образующиеся в составе катализатора при прокаливании покрытия в количестве (2,5-3.5)% масс., выполняют роль стабилизатора структуры оксида алюминия и содержащегося в нем благородного металла, и активаторов - хлорида церия, или сурьмы, или титана, оксиды которых, образующиеся в оставе катализатора в количестве (5,0-12,0)% масс. при прокаливании покрытия, выполняют активирующую роль. Суспензию с массовым соотношением «отработанный катализатор»:«раствор пептизатора» Т:Ж=1:3 измельчают в фарфоровом барабане с фарфоровыми шарами на шаровой мельнице в течение (4,5-5,0) ч, что обеспечивает диспергирование частиц отработанного катализатора до размера не более 5 мкм, а также полноту взаимодействия компонентов суспензии и их гомогенизацию. Суспензию формуют в виде тонкослойного покрытия толщиной (40-50) мкм на пластинчатом или блочном металлическом или керамическом носителе посредством его окунания в суспензию с последующей сушкой в сушильном шкафу при (100-120)°C с выдержкой 2 ч; прокаливание покрытия осуществляют в муфельной печи последовательно при (270-300)°C с выдержкой (3,5-4,0) ч и при (850-900)°C с выдержкой (3,5-4,0) ч.

Выход за указанные параметры приводит к снижению механической прочности, водостойкости и термостабильности каталитического покрытия. Это связано с тем, что, во-первых, качественный и количественный состав суспензии, полученной механохимической активацией отработанного алюмооксидного катализатора при его измельчении в растворе двух солей-пептизаторов, напрямую связан с количеством и качеством формованного из нее каталитического покрытия, а следовательно, и с дисперсностью и термостойкостью каталитических контактов, а также количеством, прочностью, водо- и термостойкостью межчастичных контактов; во-вторых, указанные температурные и временные параметры операций обеспечивают формирование прочных, водо- и термостойких межчастичных контактов, а также оптимальные фазовые и структурно-прочностные характеристики каталитического покрытия.

Изобретение иллюстрируется следующим примером (таблица 1, образец 2.12).

Для приготовления каталитического покрытия в качестве носителя использовали блок сотовой структуры диаметром и высотой 20 мм, полученный скруткой гладкой и гофрированной фольги Х15Ю5 толщиной 50 мкм, предварительно оксидированный прокаливанием 12 ч при 900°C в токе воздуха.

Пример: 500 г отработанного катализатора марки АПК-2 (содержащего 490 г γ-Al2O3 и 10 г Pd) и 1500 г раствора пептизатора, приготовленного из 1320,84 г дистиллированной воды, 26,28 г SnCl2×2H2O (соответствует 17,65 г SnO2) и 152,88 г CeCl3×7H2O (соответствует 70,59 г CeO2), поместили в фарфоровый барабан емкостью 9 дм с мелющими фарфоровыми телами массой 5 кг и измельчали на шаровой мельнице (65 об/мин) и в течение 5 ч. Полученную высокодисперсную структурированную суспензию использовали для формования покрытия, для чего носитель - блок сотовой структуры - погрузили в суспензию, после выдержки блок вынули из суспензии и ее излишки выдули воздухом из каналов блока. Далее блок с нанесенным покрытием высушивали при (120)°C в течение 2 ч и прокаливали в токе воздуха последовательно при 270°C с выдержкой 3,5 ч и при 870°C с выдержкой 3,5 ч. При отключенном нагреве блок охладили в печи до комнатной температуры, после чего по привесу блока определялась масса покрытия и с учетом геометрической поверхности каналов блока и кажущейся плотности прокаленного покрытия рассчитывалась толщина каталитического покрытия. Состав каталитического покрытия в % масс.: Pd - 1,7; SnO2 - 3,0; CeO2 - 12,0; Al2O3 - остальное. Толщина покрытия - 50 мкм.

В таблицах 1 и 2 приведены условия получения и характеристики образцов каталитического покрытия, приготовленных аналогично вышеописанному способу, используя заявленные операционный ряд и состав суспензии: массовое отношение отработанного алюмооксидного катализатора к раствору пептизатора - 1:3; раствор пептизатора содержит две соли: в качестве стабилизатора - хлориды олова, или лантана, или цирконила в количестве (2,5-3,5% масс.) при пересчете на оксиды, в качестве активатора - хлориды титана, или сурьмы, или церия в количестве (5,0-12,0)% масс. при пересчете на оксиды. В качестве отработанного алюмооксидного катализатора использовали аналогично вышеприведенному примеру:

ОСО-1 (содержит Pt - 0,3% и γ-Al2O3 - остальное) - примеры 1.1-1.16;

АПК-2 (содержит Pd - 2% масс. и γ-Al2O3 - остальное) - примеры 2.1-2.20;

ПАЛ-1 (содержит Pd - 1% масс. и γ- Al2O3 - остальное) - примеры 3.1-3.6.

Полученные образцы разработанного каталитического покрытия испытывали по показателям:

«Механическая прочность покрытия» (П, % масс.) - по доле сохранившейся массы покрытия блока после воздействия ударных и истирающих нагрузок с помощью механической качалки 100 ударов в минуту 30 минут в присутствии свободно перемещающегося кварцевого песка.

«Водостойкость» (В, % масс.) - по массовой доле покрытия, уцелевшего на носителе после погружения на 1 ч в воду и последующей дегидратации в течение 1 ч при (200±10)°C.

«Степень конверсии» целевого компонента газоочистки Xi(%) определяли в реакциях окисления CO (2% об.); водорода (2% об.), акролеина (0,1% об.), восстановления NO2 (200 мг/м3) газообразным аммиаком при соотношении NH3/NO2=1,1); определение проводили в интервале температур (100-300)°C и объемной скорости 6000 ч-1 при постоянном объеме катализатора (4 см3): каталитического покрытия в случае блочных образцов и фракции дробленых гранул (0,55-0,6) мм в случае гранулированных образцов прототипа. Значение Xi=(Ciисх-Ciпроск)·100/Ciисх, где Ciисх и Ciпрос концентрации целевого компонента соответственно до и после каталитической конверсии при данных условиях.

«Индекс термостойкости» оценивался как отношение И C O T = X C O T / X C O и с х , где X C O и с х - значение степени конверсии CO при 300°C для исходных образцов; X C O T - значение степени конверсии CO при 300°C для образцов после воздействия высоких температур (900°C, 10 ч).

Примеры 1.1 и 1.2, 1.3 и 1.4, а также 2.15, 2.16 и 2.17 иллюстрируют влияние продолжительности от 4,5 до 5,0 ч измельчения отработанного алюмооксидного катализатора в растворе двухкомпонентного пептизатора при их массовом отношении Т:Ж=1:3 до размера частиц катализатора не более 5 мкм. Увеличение продолжительности измельчения с 4,5 до 5,0 ч при прочих равных условиях получения приводит к обеспечению толщины покрытия в заявленных пределах и стабильно высоких значений механической прочности, водостойкости, каталитической активности и термостойкости покрытия:

примеры 1.1 и 1.2 (4.5 и 5.0 ч измельчения отработанного катализатора ОСО-1 в количестве 92,5 и 92,5% масс., обеспечивающем содержание в покрытии Pt - 0,28 и 0,28% масс., в растворе пептизатора, содержащего стабилизатор SnCl2 - 2,5% масс. в пересчете на SnO2 и активатор TiCl4 - 5,0% масс. в пересчете на TiO2, при последующей термообработке нанесенного покрытия: сушка 100°C - 2 ч, прокаливание 270°C - 3,5 ч и 870°C - 3,5 ч): толщина покрытия, мкм - 40 и 41, П, % масс. - 85,7 и 85,2, B, % масс. - 99.1 и 99,0, X C O T - 0,86 и 0,87 при значениях степени окисления при 300°C, % масс. - XCO=100 и 100, XNO2=76,6 и 76,8, XC3H4O=100 и 100, XH2=79,1 и 78,8 соответственно;

примеры 1.3 и 1.4 (4.5 и 5.0 ч измельчения отработанного катализатора ОСО-1 в количестве 92,0 и 92,0% масс., обеспечивающем содержание в покрытии Pt - 0,28 и 0,28% масс. в растворе пептизатора, содержащего стабилизатор SnCl2 - 3,0% масс. в пересчете на SnO2 и активатор TiCl4 - 5,0% масс. в пересчете на TiO2, при последующей термообработке нанесенного покрытия: сушка 100°C - 2 ч, прокаливание 270°C - 3,5 ч и 870°C - 3,5 ч): толщина покрытия, мкм - 40 и 41, П, % масс. - 85,4 и 85,6, B, % масс. - 99.2 и 99,0, И C O T - 0,87 и 0,86 при значениях степени окисления при 300°С, % масс. - XCO=100 и 100, XNO2=76,5 и 77,6, XC3H4O=100 и 100, ХН2=79,3 и 79,0 соответственно;

примеры 2.15, 2.16 и 2.17 (5,0, 4,7 и 4,5 ч соответственно измельчения отработанного катализатора АПК-2 в количестве 87,0, 87,0 и 87,0% масс., обеспечивающем содержание в покрытии Pd - 1,74, 1,74 и 1,74% масс. в растворе пептизатора, содержащего стабилизатор ZrOCl2 - 3,0% масс. в пересчете на оксид и активатор CeO3 - 10,0% масс. в пересчете на оксид, при последующей термообработке нанесенного покрытия: сушка 110°C - 2 ч, прокаливание 285°C - 3,8 ч и 870°C - 3,8 ч): толщина покрытия, мкм - 49, 48 и 47, П, % масс. - 91,3, 91,1 и 91,1, B, % масс. - 99,5, и 99,4, И C O T - 0,93, 0,91 и 0,92 при значениях степени окисления при 300°C, % масс.-XCO=100, 100 и 100, XNO2=89,3, 89,9 и 89,1, XC3H4O=100 и 100, ХН2=88,0 88,2 и 87,9 соответственно;

Примеры 1.6, 1.11 и 1.14 иллюстрируют влияние вида соли-стабилизатора (при равном их содержании в пересчете на оксиды в составе каталитического покрытия) при измельчении отработанного катализатора в шаровой мельнице при Т:Ж=1:3 до размера частиц катализатора не более 5 мкм. Введение при измельчении отработанного катализатора в раствор пептизатора в качестве стабилизатора солей SnCl2, LaCl3 и ZrOCl2 при прочих равных условиях получения приводит к обеспечению толщины покрытия в заявленных пределах и стабильно высоких значений механической прочности, водостойкости, каталитической активности и термостойкости покрытия.

Примеры 1.6, 1.11 и 1.14 (введение в раствор пептизатора в качестве стабилизатора солей SnCl2; LaCl3 и ZrOCl2 в количестве 3,0 масс.% в пересчете на оксиды при продолжительности шарового измельчения 4,7 ч отработанного катализатора ОСО-1 в количестве 87,0% масс. и обеспечении содержания в покрытии Pt - 0,26% масс., введении в качестве пептизатора-активатора TiCl4 в количестве 10,0% масс., в пересчете на TiO2, сушке 2 ч при 100°C, прокаливании последовательно 3,5 ч при 270°C и 3,5 ч при 870°C): толщина покрытия, мкм - 48, 48 и 49, П, % масс. - 89,2, 89,5 и 91,4; B, % масс. - 99,7, 99,8 и 99,7; И C O T - 0,90, 0,92 и 0,91 при значениях степе