Композиция термоотверждаемого порошкового покрытия

Иллюстрации

Показать все

Изобретение относится к термоотверждаемой композиции порошкового покрытия, пригодной для отверждения при температуре 60-130°С. Композиция включает термическую систему инициирования и систему смолы, в которой реакционная способность термической системы инициирования такова, что термическая система инициирования обеспечивает время гелирования 2,5-1000 минут при 60°С в бутандиол-диметакрилате при определении согласно DIN 16945 с использованием 1 мас.% термической системы инициирования в 99 мас.% бутандиол-диметакрилатая. и в которой количество термической системы инициирования выбрано так, чтобы при нанесении композиции порошкового покрытия на подложку и отверждении при температуре 130°С в течение 20 мин получающееся покрытие выдерживало, по меньшей мере, 50 двойных шагов при истирании в ацетоне. Система смолы включает смолу и совместный сшивающий агент, в которой смола содержит реакционноспособную ненасыщенность и в которой указанная реакционноспособная ненасыщенность является двойными связями углерод углерод, соединенными непосредственно с электроноакцепторной группой. Совместный сшивающий агент выбран из группы акрилатов, метакрилатов, сложных виниловых эфиров, простых виниловых эфиров, виниламидов, простых алкиновых эфиров, сложных алкиновых эфиров, алкинамидов, алкинаминов, простых пропаргиловых эфиров, сложных пропаргиловых эфиров, итаконатов, енаминов и их смесей. Масса на двойную связь в системе смолы составляет 100-1000 г/моль по определению с использованием 1Н ЯМР, масса на ненасыщенность в совместном сшивающем агенте составляет 150-870 г/моль по определению с использованием 1Н ЯМР. Композиция порошкового покрытия является однокомпонентной системой. Описан также способ получения композиции порошкового покрытия, способ покрытия подложки, подложка и применение композиции порошкового покрытия для покрытия термочувствительной подложки. Технический результат - композиции порошкового покрытия изобретения совмещают способность к отверждению при низкой температуре с хорошей перерабатываемостью в экструдере без формирования геля. 5 н. и 38 з.п. ф-лы, 12 табл., 7 пр.

Реферат

Изобретение относится к термоотверждаемому порошковому покрытию, способу его получения, использованию композиции порошкового покрытия для нанесения ее на подложку, подложке, покрытой композицией порошкового покрытия, и способу нанесения покрытия на подложку с использованием композиции порошкового покрытия.

Как показано в статье "Краткий обзор мирового рынка порошковых покрытий (Overview of the powder coatings market worldwide)" G. Maggiore in Pitture e Vemice Europe 1/92, стр.15-22 и лекции D. Richart "Порошковое Покрытие: Развитие сегодня, будущие тенденции" (Waterbome, High-Sonids and Powder Coatings Symposium, February 22-24, 1995), все еще продолжается поиск композиций порошковых покрытий, которые могут быть отверждены с небольшим термическим напряжением в подложке и которые, следовательно, являются подходящими для использования на термочувствительных подложках, таких как, например, древесина и пластмасса.

Помимо потребности в композиции порошкового покрытия, которое может быть отверждено при низкой температуре, также существует потребность в том, чтобы такая композиция порошкового покрытия еще могла быть переработана в экструдере.

Поэтому есть потребность в композиции порошкового покрытия, которая совмещает способность отверждаться при низкой температуре, например, 60-130°С с хорошей перерабатываемостью в экструдере.

Целью настоящего изобретения является создание термоотверждаемой композиции порошкового покрытия, которая легко перерабатывается в экструдере и которая может быть термоотверждена частично или полностью при низких температурах, например 60-130°С, что делает ее подходящей для использования не только для нетермочувствительных подложек, но и, в особенности, также для термочувствительных подложек.

Эта цель достигается композициями порошковых покрытий изобретения. В одном осуществлении изобретение относится к термоотверждаемой композиции порошкового покрытия, подходящей для термоотверждения при температуре 60-130°С, включающей:

- термическую систему инициирования и систему смолы,

- в которой реакционная способность термической системы инициирования такова, что термическая система инициирования обеспечивает время гелирования 2,5-1000 минут при 60°С в бутандиол-диметакрилате при определении согласно DIN 16945 с использованием 1% масс. термической системы инициирования в 99% масс. бутандиол- диметакрилата,

- в которой количество термической системы инициирования выбрано так, чтобы при нанесении на подложку композиции порошкового покрытия и отверждении при температуре 130°С в течение 20 минут получающееся покрытие выдерживало, по меньшей мере, 50 двойных шагов при истирании в ацетоне (ADR),

- в которой система смолы включает смолу и совместный сшивающий агент,

- в которой смола содержит реакционноспособную ненасыщенность и в которой вся указанная реакционноспособная ненасыщенность является двойными связями углерод углерод, соединенными непосредственно с электроноакцепторной группой,

- в которой совместный сшивающий агент выбран из группы акрилатов, метакрилатов, сложных виниловых эфиров, простых виниловых эфиров, виниламидов, алкиновых простых эфиров, алкиновых сложных эфиров, алкинамидов, алкинаминов, пропаргиловых простых эфиров, пропаргиловых сложных фэиров, итаконатов, енаминов и их смесей,

- в которой масса на двойную связь в системе смолы при определении с использованием 1Н ЯМР составляет 100-1000 г/моль и

- в которой композиция порошкового покрытия является однокомпонентной системой.

В другом осуществлении изобретение относится к термоотверждаемой композиции порошкового покрытия, подходящей для отверждения при температуре 60-130°С, включающей:

- термическую систему инициирования и систему смолы,

- в которой реакционная способность термической системы инициирования такова, что термическая система инициирования обеспечивает время гелирования 2,5-1000 минут при 60°С в бутандиол-диметакрилате при определении согласно DIN 16945 с использованием 1% масс. термической системы инициирования в 99% масс. бутандиол-диметакрилата,

- в которой количество термической системы инициирования в композиции порошкового покрытия выбрано так, чтобы пик энтальпии реакции отверждения композиции порошкового покрытия составлял не более 60 минут при 120°С и по меньшей мере 2,5 минуты при 60°С после начала изотермической DSC,

- в которой система смолы включает смолу и совместный сшивающий агент

- в которой смола содержит реакционноспособную ненасыщенность и в которой вся указанная реакционноспособная ненасыщенность является двойными связями углерод углерод, соединенными непосредственно с электроноакцепторной группой,

- в которой совместный сшивающий агент выбран из группы акрилатов, метакрилатов, сложных виниловых эфиров, простых виниловых эфиров, виниламидов, алкиновых простых эфиров, алкиновых сложных эфиров, алкинамидов, алкинаминов, пропаргиловых простых эфиров, пропаргиловых сложных эфиров, итаконатов, енаминов и их смесей,

- в которой масса на двойную связь в системе смолы составляет 100-900 г/моль и

- в которой композиция порошкового покрытия является однокомпонентной системой.

Легкая перерабатываемость в экструдере означает, что композиция порошкового покрытия может быть экструдирована с формированием экструдата, без образования гелевых частиц, предпочтительно без образования геля.

Дополнительными преимуществами композиции настоящего изобретения могут быть приемлемая текучесть и/или приемлемая стабильность при хранении, например, композиция порошкового покрытия настоящего изобретения может быть физически и химически стабильной при хранении в течение, по меньшей мере, 6 недель при 4°С.

Термоотверждаемость означает в рамках настоящего изобретения, что отверждение композиции порошкового покрытия может быть произведено нагревом. Система термического инициирования присутствует в композиции настоящего изобретения, чтобы сделать это термоотверждение возможным. Преимущество термоотверждения в том, что за одну стадию процесса нагревания композиция порошкового покрытия без использования дополнительного оборудования, например оборудования, генерирующего УФ свет или ускоренные электроны, может быть расплавлено и отверждено на подложке, тогда как при радиационном отверждении композиции порошкового покрытия на подложке необходимы две стадии, чтобы расплавить и отвердить порошковое покрытие на подложке. В таких двух стадиях радиационного отверждения сначала композиция порошкового покрытия расплавляется на подложке с использованием нагрева, после чего ее отверждают с использованием облучения УФ или электронным пучком. Термоотверждение особенно желательно для покрытия трехмерных объектов.

Предпочтительно композицию порошкового покрытия настоящего изобретения отверждают при температуре 60-130°С. Более предпочтительно, температура отверждения составляет, по меньшей мере, 65°С, еще более предпочтительно, по меньшей мере, 70°С, например, по меньшей мере, 75°С, например, по меньшей мере, 80°С.Более предпочтительно температура отверждения составляет не более 125°С, еще более предпочтительно не более 120°С, в частности, не более 115°С, в особенности, не более 110°С, например, не более 105°С или, например, не более 100°С. В особых случаях, например, для подложек, которые более термочувствительны, может быть предпочтительным отверждать композицию порошкового покрытия при еще более низкой температуре, например при температуре менее 100°С, менее 95°С, менее 90°С или даже менее 85°С.

В целях изобретения под стойкостью к ацетону с двойным шагом при испытании на истирание (ADR) понимается одно движение вперед и назад по поверхности покрытия, с толщиной около 60 мкм с использованием хлопковой ткани, пропитанной в ацетоне, причем хлопковая ткань покрывает головку молотка весом 980 граммов и с площадью поверхности контакта с покрытием 2 см2. Каждые 20 шагов ткань пропитывают в ацетоне. Измерение продолжают до удаления покрытия (и регистрируют полученное число ADR) или до достижения 100 ADR.

Предпочтительно покрытие, полученное из композиции порошкового покрытия настоящего изобретения, выдерживает, по меньшей мере, 60 ADR, например, по меньшей мере, 70 ADR, по меньшей мере, 80 ADR, по меньшей мере, 90 ADR или, по меньшей мере, 100 ADR, когда композиция покрытия нанесена на подложку, например на алюминиевую подложку (панель ALQ), и отверждена при температуре 130°С.

'Композиция порошкового покрытия' означает композицию, которая может быть нанесена на подложку в виде сухого (без растворителя или другого носителя) тонкоизмельченного твердого вещества, которое при расплавлении и растекании образует непрерывную пленку, которая адгезионно присоединяется к подложке.

'Однокомпонентная система' в соответствии с использованием в описании, также называемая системой 1К, означает, что все (реакционноспособные) компоненты композиции порошкового покрытия являются частью одного порошка. Это в противоположность двухкомпонентным системам, также называемым системой 2К, в которых композиция порошкового покрытия составлена, по меньшей мере, из двух различных порошков с различным химическим составом, которые содержат реакционноспособные компоненты физически разделенными. По меньшей мере, два различных порошка могут быть смешаны в виде физической смеси, прежде чем композиция порошкового покрытия будет помещена в контейнер для хранения или могут быть смешаны до нанесения системы 2К на подложку, чтобы позволить пройти реакции отверждения. Композиции, по меньшей мере, с двумя различными порошками в системе 2К обычно выбираются таким образом, что каждый порошок содержит компонент, который необходим для отверждения, но отсутствует в другом порошке(ках). Это разделение позволяет получать отдельные порошковые композиции в горячем состоянии (например, смешением в расплаве) без инициирования реакции отверждения.

ЕР 1477534А2 раскрывает такую 2К систему и раскрывает, в частности, порошковую композицию из двух или более чем из двух отдельных частей, содержащих один или более чем один загустевший порошковый компонент в одной или более чем одной части;

и для каждого загустевшего компонента один или более чем один порошкообразный, жидкий или газообразный отвердитель в отдельной части, в которой для каждого загустевшего компонента отношение среднего размера частиц порошка, жидких капель или газообразных капель, содержащих указанный компонент отвердителя, находится в диапазоне 1,3:1-60:1 и, кроме того, в которой указанные загустевший компонент и компонент отвердителя реагируют при смешении за время 0,01-600 секунд при температуре 20-200°С с образованием отвержденного порошкового покрытия.

Термин 'термическая система инициирования' в соответствии с использованием в описании означает систему, которая вызывает радикальную полимеризацию реакционноспособной ненасыщенности в смоле и совместном сшивающем агенте. Термическая система инициирования включает радикальный инициатор. Системы инициирования, подходящие для использования в настоящем изобретении, являются системами инициирования, у которых в 'тесте BDDMA', как описано в заявке время гелирования составляет 2,5-1000 минут. Предпочтительно используют термическую систему инициирования со временем гелирования, по меньшей мере, 4 минуты, более предпочтительно со временем гелирования, по меньшей мере, 6 минут и/или менее 800 минут, например, менее 600, например, менее 400, например, менее 200 минут.

В зависимости от реакционной способности системы инициирования помимо инициатора один или более ингибиторов, и/или один или более ускорителей, и/или один или более соускорителей могут необязательно присутствовать в системе инициирования так, чтобы время гелирования системы инициирования при определении тестом BDDMA, как описано в заявке, составляло 2,5-1000 минут.

Реакционную способность системы инициирования определяют в описании с использованием 'теста BDDMA'. В этом тесте 1% масс. системы инициирования растворяют в 99% масс. бутандиол-диметакрилата (BDDMA) и время, которое занимает отверждение BDDMA (время гелирования), измеряют при 60°С с использованием DIN 16945 (секция 6.2.2.2), тем самым включенный ссылкой.

Отверждение композиции порошкового покрытия согласно изобретению происходит при нагреве, то есть композиция порошкового покрытия является термоотверждаемой. Термоинициатор в системе термического инициирования после нагрева дает (свободные) радикалы, способные начать полимеризацию реакционноспособной ненасыщенности в смоле в комбинации с ненасыщенными группами совместного сшивающего агента или с полимеризацией реакционноспособной ненасыщенности в смолах. Твердые инициаторы являются более предпочтительными, чем жидкие.

Реологические характеристики (текучесть) композиций порошковых покрытий на подложке могут быть определены сравнением текучести покрытия на PCI панелях для определения текучести порошковых покрытий (ACT Test Panels Inc., APR 22163 (A) Batch:5078816) с толщиной покрытия около 75 мкм. Текучесть оценивается от 1 до 10, при этом 1 представляет самое грубое покрытие и 10 представляет покрытие с наилучшей текучестью.

Термины 'термоинициатор', 'радикальный инициатор' и 'инициатор' используются в описании взаимозаменяемо.

Радикальный инициатор может быть любым радикальным инициатором, известным специалистам в данной области техники. Примеры радикальных инициаторов включают, но не ограничены азосоединениями, такими как, например, азоизобутиронитрил (AIBN), 1,1'-азобис(циклогексаннитрил), 1,1'-азобис(2,4,4-триметилпентан), соединения с лабильной С-С связью, такие как, например, бензпинакол, пероксиды и их смеси.

Инициатор в системе инициирования предпочтительно является пероксидом. Пероксид может быть, например, перкарбонатом, перэфиром или перангидридом. Подходящими перангидридами являются, например, бензоилпероксид (ВРО) и лауроилпероксид (коммерчески доступный как LauroxTM). Подходящими перэфирами являются, например, t-бутилпербензоат и 2-этилгексилперлаурат. Подходящими перкарбонатами являются, например, ди-t-бутилперкарбонат и ди-2-этилгексилперкарбонат или моноперкарбонаты.

Выбор пероксида в принципе не критичен, и пероксид может быть любым известным специалистам в данной области техники, подходящим для использования в радикальном отверждении ненасыщенных смол. Такие пероксиды включают органические и неорганические пероксиды или твердые или жидкие (включая пероксиды на носителе); также может быть применен пероксид водорода. Примеры подходящих пероксидов включают, например, пероксикарбонаты (формулы -ОС(О)О-), пероксиэфиры (формулы -С(О)ОО-), диацилпероксиды, также известные как перангидриды (формулы -С(O)ООС(0)-), диалкилпероксиды или перэфиры (формулы -O-), гидропероксиды (формулы -ООН), и т.д. Пероксиды также могут быть олигомерными или полимерными. Обширный ряд примеров подходящих пероксидов может быть найден, например, в US 2002/0091214-А1 США, параграф [0018], тем самым включенный ссылкой.

Пероксид предпочтительно выбран из группы органических пероксидов. Примерами подходящих органических пероксидов являются: третичные алкилгидропероксиды (такие как, например, t-бутилгидропероксид), другие гидропероксиды (такие как, например, кумолгидропероксид), специальный класс гидропероксидов, образованный группой пероксидов кетонов (перкетоны, являющиеся продуктом присоединения пероксида водорода и кетона, такие как, например, пероксид метилэтилкетона, пероксид метилизобутилкетона и пероксид ацетилацетона), пероксиэфиры или перкислоты (такие как, например, t-бутилперэфиры, бензоилпероксид, перацетаты и пербензоаты, лауроилпероксид, включая (ди)пероксиэфиры, перэфиры (такие как, например, пероксидиэтиловый эфир). Конечно, также можно использовать смеси пероксидов в композиции порошкового покрытия настоящего изобретения. Кроме того, пероксиды могут быть смешанными пероксидами, то есть пероксиды, содержащие любые различные два пероксисодержащих фрагмента в одной молекуле.

Особенно подходящими для использования в настоящем изобретении являются любые из следующих инициаторов: перангидриды, например бензоилпероксид или лауроилпероксид; пероксидикарбонаты, например ди(4-t-бутилциклогексил)-пероксидикарбонат, дицетилпероксидикарбонат, димиристилпероксидикарбонат.

В случае слишком высокой реакционной способности системы инициирования, то есть когда тест BDDMA дает время гелирования менее 2,5 минуты, к системе инициирования могут быть добавлены один или более ингибиторов. Альтернативно, ингибитор может быть добавлен во время синтеза смолы.

Примеры ингибиторов предпочтительно выбраны из группы фенольных соединений, стабильных радикалов, катехинов, фенотиазинов, гидрохинонов, бензохинонов или их смесей.

Примеры фенольных соединений включают 2-метоксифенол, 4-метоксифенол, 2,6-ди-1-бутил-4-метилфенол, 2,6-ди-1-бутилфенол, 2,6-ди-6-бутил-4-этилфенол, 2,4,6-триметилфенол, 2,4,6-трис-диметиламинометилфенол, 4,4'-тио-бис(3-метил-6-1-бутилфенол), 4,4'-изопропилидендифенол, 2,4-ди-1-бутилфенол и 6,6'-ди-1-бутил-2,2'-метилен-ди-р-крезол.

Примеры стабильных радикалов включают 1-оксил-2,2,6,6-тетраметилпиперидин, 1-оксил-2,2,6,6-тетраметилпиперидин-4-ол (соединение также называется ТЕМРОЛ), 1-оксил-2,2,6,6-тетраметилпиперидин-4-он (соединение также называется TEMPON), 1-оксил-2,2,6,6-тетраметил-4-карбоксил-пиперидин (соединение также называется 4-carboxy-TEMPO), 1-оксил-2,2,5,5-тетраметилпирролидин, 1 -оксил-2,2,5,5-тетраметил-3-карбоксилпирролидин (также называемый 3-carboxy-PROXYL) и гальвиноксил (2,6-ди-трет-бутил-α-(3,5-ди-трет-бутил-4-оксо-2,5-циклогексадиен-1-илиден)-р-толилокси).

Примеры катехинов включают катехин, 4-1-бутилкатехин и 3,5-ди-1-бутилкатехин.

Примеры гидрохинонов включают гидрохинон, 2-метилгидрохинон, 2-t-бутилгидрохинон, 2,5-ди-t-бутилгидрохинон, 2,6-ди-t-бутилгидрохинон, 2,6-диметилгидрохинон и 2,3,5-триметилгидрохинон.

Примеры бензохинонов включают бензохинон, 2,3,5,6-тетрахлор-1,4-бензохинон, метилбензохинон, 2,6-диметилбензохинон и нафтохинон.

Другие подходящие ингибиторы могут быть выбраны, например, из группы алюминий-N-нитрозофенилгидроксиламина, диэтилгидроксиламина и фенотиазина.

Также можно использовать смесь (вышеуказанных) ингибиторов. Предпочтительно в качестве ингибитора используют гидрохиноны или катехины в зависимости от выбора (тип и количество) соединения переходного металла. В случае слишком низкой реакционной способности системы инициирования, то есть когда тест BDDMA дает время гелирования более 1000 минут, к системе инициирования могут быть добавлены один или более ускорителей.

Ускоритель может быть выбран из группы аминов, предпочтительно третичных аминов или ароматических аминов: диаминов, полиаминов, ацетоацетамидов, солей аммония, соединений переходного металла или их смесей. Существуют некоторые предпочтительные комбинации инициатора и ускорителя, как объяснено далее.

Если используют пероксидное соединение, содержащее структуры формулы -С(O)OO- (перэфир, перкарбонат, включая пероксиполикарбонат; перангидрид, пероксикислоты и т.п.), в качестве ускорителя предпочтительно могут быть использованы третичный ароматический амин или соединение переходного металла, последнее необязательно в комбинации с соускорителем.

Если пероксидное соединение, содержащее структуру формулы -ООН (гидропероксиды, включая перкетоны и т.п.), используют в качестве ускорителя, предпочтительно применяют переходный металл необязательно в комбинации с соускорителем.

Если пероксидное соединение, содержащее структуру формулы - C(O)OO- (перэфиры и т.п.), используется в качестве ускорителя, предпочтительно применяют переходный металл необязательно в комбинации с соускорителем.

Подходящие третичные ароматические аминные ускорители включают N,N-диметиланилин, N,N-диэтиланилин; толуидины и ксилидины, такие как N,N-диизопропанол-пара-толуидин, N,N-диметил-р-толуидин, N,N-бис(2-гидроксиэтил) ксилидин, N,N-диметилнафтиламин, N,N-диметилтолуидин и этил-N,N-диметиламинобензоат.

Кроме того, ускоритель может быть выбран из группы соединений переходных металлов с атомными номерами 21 - 79. В химии и физике, атомный номер (также известный как протонное число) является числом протонов, находящихся в атомном ядре. Его традиционно представляют символом Z. Атомное число однозначно определяет химический элемент. В атоме с нейтральным зарядом атомное число равно числу электронов. Примерами подходящих соединений переходных металлов являются соединения следующих переходных металлов: Sс, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, и т.д., предпочтительно Mn, Fe, Со или Сu.

Соединения переходных металлов могут быть выбраны из группы солей или комплексов переходных металлов или их смесей, предпочтительно из группы органических солей или комплексов металлов, наиболее предпочтительно солей металлов органических кислот или их производных, например карбоксилатов переходных металлов или ацетоацетатов переходных металлов, например этилгексаноат переходного металла. Если используют соединение меди, оно может быть, например, в виде соли Сu+или соли Сu2+. Если используется соединение марганца, оно может быть, например, в виде соли Мn2+или соли Мn3+. Если используют соединение кобальта, оно может быть, например, в форме соли Со2+.

В зависимости от реакционной способности соединения переходного металла реакционная способность системы инициирования может быть увеличена с использованием соускорителя.

Примеры подходящих соускорителей включают 1,3-диоксосоединения, основания и тиолсодержащие соединения.

1,3-Диоксосоединения предпочтительно являются 1,3-диоксосоединениями следующей формулы:

где X, Y=Н, C1-C20 алкил, С620 арил, алкиларил, арилалкил, части цепи смолы, ОR3, NR3R4; R1, R2, R3 и R4, каждый индивидуально может представлять водород (Н), или C1-C20 алкильную, арильную, алкиларильную или арилалкильную группу, причем каждый необязательно может содержать один или более гетероатомов (например, кислород, фосфор, азот или серу) и/или заместители; кольцо может присутствовать между R1 и R2, R1 и R3, и/или между R2 и R4; R3 и/или R4 могут быть частью цепи полимера, могут быть присоединены к цепи полимера или могут содержать полимеризуемую группу. Предпочтительно Х и/или Y является(ются) C1-C20 алкилом и/или С620 арилом. Более предпочтительно Х и/или Y является(ются) метильной группой. 1,3-диоксосоединение предпочтительно является ацетилацетоном. 1,3-Диоксосоединение может быть смолой или может быть полимеризуемым.

Другие примеры 1,3-диоксосоединений включают 1,3-дикетоны, 1,3-диальдегиды, 1,3-кетоальдегиды, 1,3-кетоэфиры и 1,3-кетоамиды.

Примерами подходящих основных соускорителей являются органические основания или неорганические основания. Неорганическими основаниями являются, например, соединения щелочных металлов или щелочноземельных металлов. Органическое основание предпочтительно является азотсодержащим соединением, предпочтительно амином.

Примеры подходящих тиолсодержащих соединений, которые могут быть использованы в качестве соускорителя, включают алифатические тиолы, более предпочтительно первичные алифатические тиолы. Алифатические тиолы предпочтительно являются α-меркаптоацетатом, β-меркаптопропионатом, додецилмеркаптаном или их смесью. Число тиольных функциональных групп тиолсодержащих соединений в композиции порошкового покрытия предпочтительно ≥2, более предпочтительно ≥3.

Комбинация инициатора(ов) и необязательно ингибитора(ов) и/или ускорителя(ей) необязательно в комбинации с соускорителем(ями) в системе инициирования, подходящей для использования в композиции порошкового покрытия настоящего изобретения, легко может быть определена специалистами в данной области техники. Это может быть сделано, например, с использованием теста BDDMA, как описано в заявке, изменением (количества) инициатора(ов), (количества) ингибитора(ов), (количества) ускорителя(ей) и (количества) соускорителя(ей) для нахождения комбинации, в которой время гелирования при определении с использованием теста BDDMA равно 2,5-1000 минут, например, по меньшей мере, 4 минуты и/или не более 200 минут.

Система смолы, присутствующая в композиции порошкового покрытия настоящего изобретения, включает смолу и совместный сшивающий агент.

Смола содержит реакционноспособную ненасыщенность, в которой вся указанная реакционноспособная ненасыщенность является двойными связями углерод углерод, соединенными непосредственно с электроноакцепторной группой. Реакционноспособная ненасыщенность означает, что двойные связи углерод углерод, соединенные непосредственно с электроноакцепторной группой, являются реакционноспособными по отношению к радикалам, образованными термоинициатором. Для избежания неправильного толкования реакционноспособная ненасыщенность не включает ароматические кольца.

Масса на двойную связь (WPU) в системе смолы составляет 100 - 1000 г смолы/моль по определению 1Н ЯМР, например 100 - 900 г смолы/моль двойных связей. WPU может быть определена, например, с использованием 1Н ЯМР, например, как описано в Journal of Applied Ролутег Science, Уол. 23, 1979, рр 25-38, полное раскрытие которого тем самым включено ссылкой, или способом, описанным в экспериментальной части заявки. В способе экспериментальной части массу на двойную связь (WPU) определяют по 1Н ЯМР на 300 MHz Varian ЯМР-спектрометре с использованием пиразина в качестве внутреннего стандарта или WPU определяют теоретически делением Мп на количество двойных связей, добавленных во время синтеза смолы и/или совместного сшивающего агента.

Примеры подходящих смол включают сложные полиэфиры, полиакрилаты (=акриловые смолы), полиуретаны, эпоксидные смолы, полиамиды, полиэфирамиды, поликарбонаты, полимочевины и т.д., так же, как их смеси. Предпочтительно смола является сложным полиэфиром.

Реакционноспособная ненасыщенность (двойные связи углерод углерод, соединенные непосредственно с электроноакцепторной группой) может находиться в основной цепи смолы, боковой цепи (основной цепи) смолы, в качестве концевой группы смолы или в комбинации этих положений. Предпочтительно реакционноспособная ненасыщенность смолы основана на фумаровой кислоте, малеиновой кислоте и/или итаконовой кислоте, более предпочтительно в композиции порошкового покрытия настоящего изобретения используются смолы с реакционноспособной ненасыщенностью на основе фумаровой кислоты и/или малеиновой кислоты.

Примеры способа введения реакционноспособной ненасыщенности в смолу описаны далее.

Сложные полиэфиры обычно являются продуктами поликонденсации полиспиртов и поликарбоновых кислот.

Примеры поликарбоновых кислот, которые могут быть использованы при получении сложного полиэфира, включают изофталевую кислоту, терефталевую кислоту, гексагидротерефталевую кислоту, 2,6-нафталиндикарбоновую кислоту и 4,4'-оксибисбензойную кислоту, 3,6-дихлорфталевую кислоту, тетрахлорфталевую кислоту, тетаргидрофталевую кислоту, гексагидротерефталевую кислоту, гексахлорэндометилентетрагидрофталевую кислоту, эндометилентетрагидрофталевую кислоту, фталевую кислоту, азелаиновую кислоту, себациновую кислоту, декандикарбоновую кислота, адипиновую кислот, янтарную кислоту и тримеллитовую кислоту. Эти показательные кислоты могут быть использованы в форме кислоты или при возможности в форме их ангидридов, ацилхлоридов или эфиров низших алкилов. Также могут быть использованы смеси кислот. Кроме того, могут быть использованы гидроксикарбоновые кислоты и лактоны. Примеры включают гидроксипивалевую кислоту и ε-капролактон.

Полиспирты, в частности диолы, могут реагировать с карбоновыми кислотами или их аналогами, как описано выше, чтобы получить полиэфир. Примеры полиспиртов включают алифатические диолы, например этиленгликоль, пропан-1,2-диол, пропан-1,3-диол, бутан-1,2-диол, бутан-1,4-диол, бутан-1,3-диол, 2,2-диметилпропан-1,3-диол (неопентилгликоль), гексан-2,5-диол, гексан-1,6-диол, 2,2-бис-(4-гидроксициклогексил)-пропан (гидрированный бисфенол-А), 1,4- диметилолциклогексан, диэтиленгликоль, дипропиленгликоль и 2,2-бис[4-(2-гидроксиэтокси)-фенил]пропан, гидроксипивалат неопентилгилколя и 4,8-бис-(гидроксиметил)трицикло[5,2,1,0]декан (=трициклодекандиметилол) и 2,3-бутендиол.

Трифункциональные или более функциональные спирты (в общем, полиолы) или кислоты могут быть использованы для получения разветвленных полиэфиров. Примерами подходящих полиолов и поликислот являются глицерин, гексантриол, триметилолэтан, триметилолпропан, пентаэритритол и тримеллитовая кислота.

Монофункциональные кислоты, например пара-трет-бутилбензойная кислота, бензойная кислота, мета-толуиловая кислота, коричная кислота, кретоновая кислота могут использоваться для блокировки цепи полимера.

Смола в композиции порошкового покрытия настоящего изобретения предпочтительно является сложным полиэфиром, полученным, по меньшей мере, из следующих мономеров: терефталевой кислоты, неопентилгликоля и/или пропиленгликоля. Для разветвления в сложном полиэфире может присутствовать триметилолпропан.

Полиэфиры могут быть получены традиционными общеизвестными способами полимеризации этерификацией и/или переэтерификацией, или этерификацией и/или переэтерификацией с использованием катализатора. Например, при необходимости могут быть использованы традиционные катализаторы этерификации, такие как, например, бутилхлордигидроксид олова, дибутилоловооксид, тетрабутилтитанат или бутилоловянная кислота. Примером количества этих используемых катализаторов этерификации обычно является около 0,1% масс. по отношению к общей массе сложного полиэфира.

Условия приготовления сложного полиэфира и отношение СООН/ОН могут быть выбраны таким образом, чтобы кислотное число или гидроксильное число конечных получаемых продуктов находились в пределах заданного диапазона величин.

Вязкость полиэфирной смолы предпочтительно находится в диапазоне 2-30 Па·с, измеренная при 160°С с использованием способа, описанного в заявке.

Смола также быть может полиакрилатом, также известным как акриловая смола. Обычно акриловая смола основана на алкильных эфирах (мет)акриловой кислоты необязательно в комбинации со стиролом. Эти алкильные эфиры (мет)акриловой кислоты могут быть заменены (мет)акриловой кислотой с гидроксильными или глицидильными функциональными группами. Примеры алкильных эфиров (мет)акриловой кислоты включают, например, этил(мет)акрилат, изопропил(мет)акрилат, n-бутил(мет)акрилат, n-пропил(мет)акрилат, изобутил(мет)акрилат, этилгексилакрилат, циклогексил(мет)акрилат и их смеси.

Для получения акриловой смолы с гидроксильными функциональными группами акриловая смола содержит (мет)акриловую кислоту с гидроксильными функциональными группами, предпочтительно в комбинации с алкильными эфирами (мет)акриловой кислоты. Примеры эфиров (мет)акриловой кислоты с гидроксильными функциональными группами включают гидроксиэтил(мет)акрилат и гидроксипропил(мет)акрилат и т.д.

Для получения акриловой смолы с глицидильными функциональными группами акриловая смола содержит эфиры (мет)акриловой кислоты с глицидильными функциональными группами, предпочтительно в комбинации с алкильными эфирами (мет)акриловой кислоты. Примеры эфиров (мет)акриловой кислоты с глицидильными функциональными группами включают глицидилметакрилат и т.д.

Очевидно, что также возможно синтезировать акриловые смолы и с гидроксильными, и с глицидильными функциональными группами.

Полиуретаны могут быть получены, например, с использованием традиционной, общеизвестной реакции полиприсоединения (поли)изоцианата с (поли)спиртом в присутствии при необходимости катализатора и других добавок.

Например, при необходимости могут быть использованы традиционные катализаторы, такие как, например, третичные амины или металлоорганические соединения, такие как, например, трис(2-этилгексаноат) монобутилолова, тетрабутилтитанат или дилаурат дибутилолова. Примером количества этих используемых катализаторов этерификации обычно является около 0,01% масс. по отношению к общей массе смолы.

Примерами (поли)спиртов, которые могут быть использованы при получении полиуретанов, являются те же, что могут быть использованы при получении сложного полиэфира.

Примеры изоцианатов, которые могут быть использованы при получении полиуретанов, включают, но не ограничены диизоцианатами, например толуол-2,4-диизоцианат, толуол-2,6-диизоцианат, 4,4'-дифенилметандиизоцианат, 2,4'-дифенилметандиизоцианат, 2,2'-дифенилметандиизоцианат, гексаметилендиизоцианат, 5-изоцианато-1 -(изоцианатометил)-1,3,3-триметилциклогексан (изофорондиизоцианат), т-тетраметилксилолдиизоцианат, дициклогексилметан-4,4'-диизоцианат, нафталин-1,5-диизоцианат или 1,4-диизоцианатобензол; и триизоцианаты, например трифенилметан-4,4',4"-триизоцианат.

Смола также может быть полиэпоксидом, также известным как эпоксидная смола. Эпоксидные смолы могут быть получены, например, из фенольных соединений в комбинации с эпихлоргидринами, приводящими к эпоксидным смолам, подобным, например, диглицидиловому эфиру бисфенола А, который коммерчески доступен как EpicoteTM1001 или Novonac epoxide.

Полиамиды могут быть получены, например, реакцией поликонденсации диамина и дикарбоновой кислоты.

Дикарбоновые кислоты могут быть разветвленными, нелинейными или линейными. Примерами подходящих дикарбоновых кислот являются, например, фталевая кислота, изофталевая кислота, терефталевая кислота, 1,4-циклогександикарбоновая кислота, нафталин-2,6-дикарбоновая кислота, циклогександиуксусная кислота, дифенил-4,4'-дикарбоновая кислота, фениленди(оксиуксусная кислота), себациновая кислота, янтарная кислота, адипиновая кислота, глутаровая кислота и/или азелаиновая кислота.

Примеры подходящих алифатических диаминов включают, например, изофорондиамин, 1,2-этилендиамин, 1,3-пропилендиамин, 1,6-гексаметилендиамин, 1,12-додецилендиамин, 1,4-циклогексанбисметиламин, пиперазин, р-ксилилендиамин и/или m-ксилилендиамин. Полиамид также может быть разветвленным с использованием разветвленных компонентов. Подходящие примеры разветвленных компонентов включают амины, например, ди-алкилен-триамины, такие как, например ди-этилен-триамин или ди-гексаметилен-триамин; ди-алкилен-тетрамины или ди-алкилен-пентамины; кислоты, например 1,3,5-бензолтрикарбоновая кислота, тримеллитовый ангидрид или пиромеллитовый ангидрид; и многофункциональные аминокислоты, такие как, например, аспарагиновая кислота или глутаминовая кислота.

Амиды полиэфира являются смолами, содержащими и эфирную связь (как в сложном полиэфире) и амидную связь (как в полиамиде), и могут быть получены, например, из моно- ди-, три- или полифункциональных мономеров, таких как мономеры с функциональными группами карбоновых кислот, мономеры с гидроксильными функциональными группами, мономеры с функциональными аминогруппами и/или мономеры с комбинацией любых из этих функциональных групп.

В принципе может быть использован любой твердый поликарбонат с гидроксильными функциональными группами. Гидроксифункциональные поликарбонаты коммерчески доступны из различных источников.

Полимочевины могут быть получены, например, с использованием традиционных, общеизвестных реакций полиприсоединения (поли)изоцианата с (поли)амином в присутствии при необходимости катализатора и других добавок, подобных тем, что описаны выше для полиуретанов. Подходящие (поли)амины для получения полимочевин включают те, что проиллюстрированы выше для полиамидов. Подходящие (поли)изоцианаты для получения полимочевин включают те, что проиллюстрированы выше для полиуретанов.

Реакционноспособная ненасыщенность может быть встроена в основную цепь смолы, например, взаимодействием мономера с гидроксильной функциональной группой (например, полиспирты, упомянутые выше) с ненасыщенной карбоновой кислотой или ангидридом, такими как, например, фумаровая кислота, малеиновая кислота, цитраконовая кислота, итаконовая кислота или мезаконовая кислота. Смолы, где можно встроить реакционноспособную ненасыщенност