Способ контроля герметичности
Иллюстрации
Показать всеИзобретение относится к области исследований устройств на герметичность и может быть использовано для контроля герметичности емкостей, изготовленных из двухслойных оболочек, например, топливных емкостей летательных аппаратов. Сущность: объем емкости заполняют рабочей или контрольной средой (жидкостью или газом). Давление заполняющей среды повышают до испытательного значения и производят выдержку для накопления в межслойном пространстве проникающей через микронеплотности внутренней оболочки среды. Затем через контрольные отверстия, равномерно расположенные на поверхности наружной оболочки, измеряют концентрации накопленной среды. Рассчитывают оценку степени общей негерметичности внутренней оболочки. Зону расположения сквозного микродефекта предварительно устанавливают как область, ограниченную контрольными точками, в которых измеренные концентрации контрольной или рабочей среды имеют максимальные значения. Технический результат: обеспечение высокой эффективности и надежности контроля. 1 з.п. ф-лы, 1 ил.
Реферат
Изобретение относится к области машиностроения, а именно к испытательной технике. В последние годы в конструкциях топливных емкостей летательных аппаратов (ракет, самолетов, космических аппаратов) используются двухслойные оболочки, скрепленные сотовыми проставками. Дополнительно к весовому совершенству таких конструкций достигаются такие положительные качества, как повышенная прочность, жесткость, устойчивость к осевым сжимающим нагрузкам, повышенная несущая способность и др.
Для емкостей, изготовленных из двухслойных оболочек, внутренняя оболочка всегда имеет определяющее значение в достижении требуемой степени герметичности. Поэтому так важна эффективная технология проверки ее герметичности в общем процессе изготовления.
Известен ряд способов проверки герметичности изделий, например, ГОСТ 24054-80, ГОСТ P 51780-2001.
Также известен способ контроля герметичности межстенного пространства двухстенных резервуаров путем непрерывного контроля падения давления инертного газа в межстенном пространстве с помощью соответственных датчиков по ТУ 4575-001-81017117-2007. Такие способы контроля герметичности не обладают высокой чувствительностью.
Известны способы контроля герметичности топливных емкостей, заключающиеся в том, что изделие помещается в испытательную камеру, объем его заполняется контрольной средой (газом, жидкостью или ее паром), давление повышается до значения давления рабочей среды, производят выдержку для накопления молекул проникающей через неплотности оболочки емкости среды, и по концентрации контрольной среды, накопленной за время выдержки в объеме испытательной камеры, производят оценку степени негерметичности (см. ОСТ 92-1527-89 «Изделия отрасли. Методы испытания на герметичность с применением масс-спектрометрических течеискателей»).
Такие способы не могут быть реализованы при испытании на герметичность емкостей, изготовленных из двухслойных оболочек, поскольку проникающая контрольная среда будет накапливаться прежде всего в межслойном пространстве. Более того, в связи с тем, что распространение молекул контрольной среды между слоями будет осуществляться по механизму диффузии, при длительном накоплении концентрация молекул контрольной среды в межслойном пространстве будет крайне неравномерной: максимальной в области истечения, минимальной или нулевой на достаточном расстоянии от места истечения.
Изобретение должно позволить выполнять оценку потока проникающей через сквозные микронеплотности контрольной среды на основе дискретной информации о поле ее концентраций в межслойном пространстве.
Задачей предлагаемого изобретения является разработка способа контроля герметичности, позволяющего по результатам испытания производить оценку степени общей негерметичности двухслойной оболочки топливных емкостей, а также локализовать место дефекта.
Задача решается за счет того, что в предлагаемом способе испытаний на герметичность топливных емкостей, изготовленных из двухслойных оболочек, скрепленных сотовыми проставками, заключающемся в том, что объем емкости заполняется рабочей или контрольной средой (жидкостью или газом), давление заполняющей среды повышается до испытательного значения, производится выдержка для накопления в межслойном пространстве проникающей через микронеплотности внутренней оболочки среды, и затем через контрольные отверстия, равномерно расположенные на поверхности наружной оболочки, выполняются измерения концентрации накопленной среды Ci, г/дм3, при этом длительность накопления проникающей среды в межслойном пространстве τн определяют по соотношению
τ н ≥ V м ⋅ C min Q доп , с,
где Qдоп - допустимое значение общей негерметичности внутренней оболочки, г/с;
Vм - объем межслойного пространства оболочки, дм3;
Cmin - чувствительность регистрирующей аппаратуры к концентрации проникающей среды в газе, заполняющем межоболочковую полость, г/дм3;
а оценку степени общей негерметичности внутренней оболочки Q0 вычисляют по соотношению:
Q 0 = V м τ н ⋅ 1 n ∑ i = 1 n C i , г/с,
где n - общее количество точек контроля концентрации проникающей среды в межслойном пространстве, ед.;
выбирается исходя из размеров емкости, условия обеспечения необходимой точности измерения Q0, необходимой точности предварительного установления зоны расположения микродефекта негерметичности;
кроме того, предварительно зону расположения сквозного микродефекта устанавливают как область, ограниченную контрольными точками, в которых измеренные концентрации контрольной или рабочей среды имеют максимальные значения.
Для точного установления местонахождения микродефекта в объем межслойного пространства оболочки подается давление контрольного газа, и известными методами производится поиск течи по внутренней поверхности оболочки.
Отличительными признаками предлагаемого способа контроля герметичности являются следующие:
- регламентирована конкретным соотношением длительность накопления проникающей среды в межслойном пространстве τн;
- определена методика расчета степени общей негерметичности внутренней оболочки Q0;
- установлена возможность определения зоны расположения микродефекта.
Анализ известных технических решений в данной области техники показывает, что предлагаемый способ имеет признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности дает возможность получить новый технический эффект: обоснование вполне контролируемой по режиму проведения, надежной и высокочувствительной технологии испытания изделий на герметичность, минимизированной по затратам необходимых средств и труда.
Схема практической реализации предлагаемого способа контроля герметичности приведена на чертеже.
Емкость 1 изготовлена методом сварки из двухслойных оболочек, содержащих внутреннюю герметичную 2 и внешнюю силовую 3 оболочки, которые скреплены между собой проставками 4. На внешней оболочке имеются контрольные отверстия 5, обеспечивающие возможность локального отбора проб газа, заполняющего межоболочковую полость 6. Причем, при необходимости имеется возможность герметизации контрольных отверстий технологическими или штатными заглушками.
Контроль герметичности внутренней оболочки, имеющей определяющее значение в достижении требуемой степени герметичности емкости в целом, выполняется следующим образом. Контрольные отверстия на внешней оболочке предварительно герметизируются технологическими заглушками. Внутренний объем емкости заполняется контрольной или рабочей средой, давление среды повышается до рабочего значения, и производится выдержка для накопления проникающей в межоболочковую полость через сквозные неплотности внутренней оболочки контрольной или рабочей среды. Выдержка производится в течение времени:
τ н ≥ V м ⋅ C min Q доп , с,
где Qдоп - допустимое значение общей негерметичности внутренней оболочки, г/с;
Vм - объем межслойного пространства оболочки, дм3;
Cmin - чувствительность регистрирующей аппаратуры к концентрации проникающей среды в газе, заполняющем межоболочковую полость, г/дм3.
Затем последовательно снимая технологические заглушки, производят отбор проб газа из каждого контрольного отверстия, и оценивают содержание контрольной или рабочей среды в каждой из проб.
Производят оценку степени общей негерметичности внутренней оболочки Q0, которую вычисляют по соотношению:
Q 0 = V м τ н ⋅ 1 n ∑ i = 1 n C i , с,
где n - общее количество точек контроля концентрации проникающей среды в межслойном пространстве, ед.
Количество контрольных точек устанавливается, исходя из размеров емкости, а также условий обеспечения необходимой точности измерения Q0, необходимой точности предварительного установления зоны расположения микродефекта негерметичности.
Если измеренное значение Q0 превышает допустимую степень общей негерметичности внутренней оболочки, устанавливают предварительно зону расположения сквозного микродефекта как область, ограниченную контрольными точками, в которых измеренные концентрации контрольной или рабочей среды имеют максимальные значения.
Давление контрольной или рабочей среды в объеме бака понижается до атмосферного значения, производится удаление среды и вентиляция объема для удаления остатков ее жидкой и паровой фаз. Для точного установления местонахождения дефекта, контрольные отверстия вновь герметизируются технологическими заглушками, межоболочковая полость заполняется контрольным газом, давление его повышается, после чего в предварительно установленной зоне расположения дефекта производится течеискание обследованием внутренней поверхности оболочки, при этом определяется точное местонахождение дефекта.
Практическое применение предлагаемого способа обеспечит высокую эффективность испытания герметичности изделий, изготовленных из двухслойных оболочек, например, топливных баков ракетно-космической техники, авиационной техники. Применение заявляемого устройства обеспечивает высокий уровень герметичности и надежности таких изделий.
1. Способ контроля герметичности емкостей, изготовленных из двухслойных оболочек, скрепленных сотовыми проставками, заключающийся в том, что объем емкости заполняется рабочей или контрольной средой (жидкостью или газом), давление заполняющей среды повышается до испытательного значения, производится выдержка для накопления в межслойном пространстве проникающей через микронеплотности внутренней оболочки среды, и затем через контрольные отверстия, равномерно расположенные на поверхности наружной оболочки, выполняются измерения концентрации накопленной среды Ci, г/дм3, причем длительность накопления проникающей среды в межслойном пространстве составляет τн , c, где Qдоп - допустимое значение общей негерметичности внутренней оболочки, г/с;Vм - объем межслойного пространства оболочки, дм3;Cmin - чувствительность регистрирующей аппаратуры к концентрации проникающей среды в воздухе, г/дм3;а оценку степени общей негерметичности внутренней оболочки Q0 вычисляют по соотношению , г/с, где n - общее количество точек контроля концентрации проникающей среды в межслойном пространстве, ед., выбирается, исходя из размеров емкости, условия обеспечения необходимой точности измерения Q0, необходимой точности предварительного установления зоны расположения микродефекта негерметичности;кроме того, предварительно зону расположения сквозного микродефекта устанавливают как область, ограниченную контрольными точками, в которых измеренные концентрации контрольной или рабочей среды имеют максимальные значения.
2. Способ по п.1, отличающийся тем, что для точного установления местонахождения микродефекта в объем межслойного пространства оболочки подается давление контрольного газа и поиск течи производится по внутренней поверхности оболочки.