Способ итеративного детектирования и декодирования сигнала в системах связи с mimo каналом

Иллюстрации

Показать все

Изобретение относится к способам приема сигнала в системе передачи, использующей технологию на основе MIMO (Multiple-In Multiple-Out).

Технический результат заключается в улучшении эффективности и качества передачи данных. Способ итеративного детектирования и декодирования сигнала в системах связи с MIMO каналом содержит два этапа: на первом этапе формируют MMSE (Minimum Mean Square Error) оценку переданного символа с помощью линейного MMSE фильтра, на втором этапе путем линейного преобразование каждого n-ого (где n=1, 2, (N) компонента x ˜ M M S E , n вектора MMSE оценок X ˜ M M S E и соответствующего ему априорного математического ожидания осуществляют коррекцию и находят новую линейную оценку x ˜ L M S , n переданного QAM символа и дисперсию ошибки для этой оценки σ L M S , n 2 .

4 з.п. ф-лы, 6 ил.

Реферат

Изобретение относится к телекоммуникационным технологиям, а более конкретно - к способам приема сигнала в системе передачи, использующей технологию на основе MIMO (Multiple-In Multiple-Out).

МГМО системы являются новым направлением в области беспроводных систем связи и, благодаря возможности параллельной передачи сигнала по нескольким пространственно разнесенным каналам в одном и том же диапазоне спектра, демонстрируют очень высокую спектральную эффективность.

Одним из наиболее распространенных способов передачи сигналов по MIMO каналам является пространственное мультиплексирование, известное также как V-BLAST архитектура (Vertical Bell Laboratories Layered Space Time architecture) [1], при котором сигнал разбивается на несколько параллельных потоков, передающихся по нескольким пространственным каналам, образующимся между множеством передающих и приемных антенн. MIMO система в частотной области может быть описана матричным уравнением (1)

Y = H X + η         ( 1 )

где Y - M-мерный вектор отсчетов комплексного сигнала на входе MIMO детектора, который можно считать вектором выходных отчетов MIMO канала, X - N-мерный вектор переданных модулированных QAM символов в передатчике, который можно считать вектором входных отсчетов MIMO канала, η - M-мерный вектор отсчетов комплексного шума, H - комплексная канальная матрица MIMO канала размера M×N.

При передаче данных с использованием пространственного мультиплексирования возникает взаимная интерференция между различными потоками данных и поэтому возникает задача разработки эффективных методов детектирования, демодуляции и декодирования сигнала на фоне внешних шумов и взаимной интерференции. Наиболее качественным методом детектирования сигнала считается метод максимального правдоподобия ML (Maximum Likelihood), при котором оценивается вероятность передачи всех возможных комбинаций символов. Главным недостатком данного метода является его высокая сложность, которая растет экспоненциально с ростом количества параллельно передающихся потоков. Существует множество альтернативных методов детектирования сигнала за счет подавления взаимной интерференции, наиболее известными из которых являются метод Zero Forcing (минимизация усредненной мощности интерференции на приеме) и MMSE (Minimum Mean Square Error - минимизация средне-квадратичной ошибки оценивания). При использовании метода MMSE уравнение (1) преобразуется к виду (2):

Y = G M M S E − 1 X ˜ M M S E

где G M M S E = ( H H H + σ η 2 σ s 2 I N ) − 1 , HH - матрица линейного преобразования MMSE фильтра, σ η 2 - дисперсия шума, σ s 2 - среднее значение мощности сигнала, IN - единичная матрица размера N×N, X ˜ M M S E - вектор MMSE оценок переданных QAM символов (MMSE решение).

Методы Zero Forcing и MMSE обладают сравнительно низкой сложностью реализации, но при этом значительно проигрывают методу ML по точности оценки принятых символов и, в конечном итоге, по вероятности приема неверных бит в сообщении (bit error rate).

Помимо пространственного мультиплексирования современные цифровые системы связи широко применяют также другие методы передачи и приема сигналов, улучшающие эффективность и качество передачи данных. В частности, в них широко применяются методы канального кодирования цифровых данных в передающем устройстве и соответственно их декодирования в приемнике. Помимо этого применяют также скремблирование данных и их перемежение, обозначаемое термином «интерливинг» (interleaving). Интерливинг позволяет более эффективно распределить транслируемый сигнал в пространственно-частотно-временном континууме, что улучшает качество передачи данных.

Известны способы итеративного детектирования и декодирования сигнала, в которых детектирование и декодирование производится совместно в рамках итерационного процесса. Такие способы принято называть также турбо (turbo) обработкой. Практически во всех современных системах связи цифровые данные подвергаются процедуре кодирования в канальном кодере, где исходная входная последовательность информационных бит преобразуется в выходную последовательность кодированных бит, содержащую избыточные проверочные биты. Известно множество типов канальных кодов, применяемых в современных системах цифровой связи. Наиболее широко применяемые на практике коды - сверточные, турбо коды, коды с низкой плотностью проверки на четность (LDPC, Low Density Parity Check Codes). После кодирования данные могут также подвергаться процедуре интерливинга, модуляции, пространственного демультиплексирования, преобразованию цифрового сигнала в аналоговый, преобразованию частоты, усилению и излучению в пространство посредством нескольких передающих антенн. Типовая схема генерации MIMO сигнала на передающей стороне (transmit system) представлена на Фиг.1, где входные информационные биты преобразуются в канальном кодере 101, образованные кодированные биты подвергаются интерливингу в модуле 103, модулируются в модуле 105, демультиплексируются в модуле 107 для разделения на несколько пространственных потоков и, после преобразования в аналоговый сигнал, преобразования частоты и усиления в передатчиках 109, излучаются через несколько передающих антенн. Соответственно, на приемной стороне (receiver system), типовая схема которой представлена на Фиг.2, излученные сигналы принимаются посредством нескольких приемных антенн, усиливаются, преобразуются по частоте, фильтруются и преобразуются в цифровой сигнал в соответствующих приемниках 201, после чего поступают на MIMO детектор 203, где осуществляется предварительное MIMO детектирование, после чего сигналы демодулируются в модуле 205, проходят через деинтерливер 207 и декодируются в модуле 209.

Схема приемной системы, использующей метод итеративного детектирования и декодирования, приведена на Фиг.3. Многомерный входной сигнал детектируется в MIMO детекторе 303, затем демодулируется в модуле 305, где производится первая оценка вероятности кодированных бит, которая, как правило, выражается посредством логарифмического отношения правдоподобия (LLR) или логарифмического отношения апостериорных вероятностей. Детектор и демодулятор (его также часто именуют в англоязычной литературе Demapper, соответственно в передатчике модулятор называют Mapper) могут быть объединены в один модуль 304, куда наряду с входными сигналами может поступать априорная информация о кодированных битах (либо QAM символах, содержащих кодированные биты). Оценку апостериорной вероятности кодированных бит (или логарифмического отношения апостериорных вероятностей) принято также называть мягкими решениями. После деинтерливинга в модуле 307, мягкие решения направляют в канальный декодер 309, который в соответствии с параметрами используемого кода производит оценку апостериорной вероятности (логарифмического отношения апостериорных вероятностей) информационных бит, формируемых на первом (основном) выходе декодера, а также уточняет значения вероятностей кодированных бит (формирует уточненные мягкие оценки кодированных бит) на втором выходе декодера. Мягкие оценки информационных бит с первого выхода декодера 309 преобразуются в жесткие оценки модулем 313, выход которого является общим выходом системы связи с MIMO каналом. Уточненные мягкие оценки кодированных бит со второго выхода декодера 309 после удаления из них информации, поступающей на вход декодера в виде мягких оценок кодированных бит, подвергают процедуре интерливинга в модуле 311 и направляют на дополнительный вход детектора/демодулятора 304 в качестве априорной информации для следующей итерации. В представленной схеме детектор и демодулятор объединены в один общий модуль, поскольку в ряде применений они оказываются тесно переплетены. Например, при применении метода сферического детектирования [5] априорная информация поступает на вход MIMO детектора для уменьшения количества символов-кандидатов, участвующих в расчете апостериорной информации. В других случаях (например, при ML MIMO детекторе, см. [3]), априорная информация поступает на вход демодулятора. В следующей итерации детектор и демодулятор 304 производят новую оценку апостериорной вероятности кодированных бит (логарифмического отношения апостериорных вероятностей), которая после удаления из нее априорной информации (логарифмического отношения априорных вероятностей) вновь подвергается деинтерливингу и декодированию. Повторение итеративной процедуры детектирования - декодирования приводит к повышению надежности оценок кодированных бит, так что окончательная последовательность жестких оценок информационных бит совпадает с переданной последовательностью с большей вероятностью.

Известны различные способы реализации итеративного детектирования и декодирования для систем с MIMO каналом [3-5]. Наиболее близким к заявленному изобретению является способ, предложенный в патентной заявке [3]. Данный способ итеративного детектирования и декодирования выбран в качестве прототипа заявленного изобретения.

Схема приема и обработки сигнала в [3] соответствует схеме на Фиг.3. При этом оценка апостериорной вероятности после MIMO детектора производится согласно алгоритму ML:

L ( b n , k ) = ln ( ∑ x : f ( b n , k = 1 ) ∏ m = 1 M exp ( β m ) ∏ p = 1 N ∏ t = 1 t ≠ k         w h e n     p = n K         Pr ( b p , t ) ∑ x : f ( b n , k = − 1 ) ∏ m = 1 M exp ( β m ) ∏ p = 1 N ∏ t = 1 t ≠ k         w h e n     p = n K         Pr ( b p , t ) ) + ln ( Pr ( b n , k ) = + 1 Pr ( b n , k ) = − 1 )   ( 3 )

где L(bn,k) - значение логарифмического отношения правдоподобия, n=1, 2,… N, k=1, 2,… K, K - число бит в QAM символе, определяемым созвездием x:f(b1,…bK), суммирование проводится по всем возможным комбинациям символов, включающих бит, равный +1 или -1 (+1 и -1 соответствует изначальным значениям бита 0 и 1), βm - значение евклидовых расстояний по каждой приемной антенне, определяемого выражением (4):

β m = 1 2 σ η 2 ‖ Y m − H m X ‖ 2       ( 4 )

Второе слагаемое в (3) характеризует логарифмическое отношение априорных вероятностей.

Число возможных символов, участвующих в подсчете L(bn,k), экспоненциально растет с ростом числа передающих антенн 2NK, что делает такой подход трудно реализуемым. В [3] предложена также упрощенная процедура MIMO детектирования с использованием процедуры подавления интерференции. Для этого вектор Y умножают слева на матрицу Qm размера (M-N+1)×M, которая зануляет все переданные символы (символы от всех передающих антенн) кроме одного. В результате для подсчета LLR необходимо вычислять только (M-N+1)K евклидовых расстояний. Нетрудно видеть, что при M=N (число передающих антенн равно числу приемных), данный подход эквивалентен Zero Forcing, который демонстрирует значительную деградацию по сравнению с ML и который серьезно проигрывает другому относительно простому методу линейной фильтрации входного сигнала MMSE.

Задачей заявленного изобретения является создание способа итеративного детектирования и декодирования сигнала в системах связи с MIMO каналом, обладающего улучшенными характеристиками приема, то есть дающего малые значения вероятности ошибки декодированных информационных бит, при сохранении сложности реализации, близкой к простой сумме сложностей способа MIMO детектирования MMSE и канального декодирования используемых раздельно, то есть без обратной связи, используемой в итеративном процессе.

Технический результат достигается за счет разработки нового итеративного способа детектирования и декодирования сигнала в системах связи с МIМО каналом, который включает в себя выполнение следующих операций:

- принимают сигналы, модулированные переданными QAM (Quadrature Amplitude Modulation) символами через несколько приемных антенн;

- осуществляют частотное преобразование принятых сигналов на нулевую несущую частоту;

- формируют отсчеты принятых и преобразованных сигналов путем квантования и дискретизации, которые рассматриваются как выходные отсчеты MIMO канала и описываются формулой:

Y=HX+η,

где Y - M-мерный вектор выходных отсчетов MIMO канала, Х - N-мерный вектор входных отсчетов MIMO канала, η - M-мерный вектор отсчетов шума, H - канальная матрица MIMO канала размера М×N, при этом полагают, что частота дискретизации равна частоте следования QAM символов, поэтому вектор входных отсчетов MIMO канала X является также вектором переданных QAM символов,

- по полученным выходным отсчетам MIMO канала оценивают

канальную матрицу MIMO канала H, дисперсию шума σ η 2 и среднюю

мощность сигнала σ s 2 ;

- детектируют QAM символы на основе выходных отсчетов MIMO канала, производя оценку апостериорной вероятности (логарифмического отношения апостериорных вероятностей) кодированных бит;

- декодируют информационные биты на основе оценки апостериорной вероятности (логарифмического отношения апостериорных вероятностей) кодированных бит, полученной в детекторе QAM символов, и, в соответствии с параметрами канального кода, производят оценку апостериорной вероятности информационных бит и уточняют оценки апостериорной вероятности (логарифмического отношения апостериорных вероятностей) кодированных бит;

- на основе информации о вероятности кодированных бит на выходе канального декодера формируют оценки априорной вероятности о принятых QAM символах и направляют их на дополнительный вход MIMO детектора в качестве априорной информации для формирования новых оценок апостериорных вероятностей (логарифмических отношений апостериорных вероятностей) кодированных и информационных бит на следующем цикле итеративного процесса;

- после завершения всех итераций на основе оценки апостериорной вероятности информационных бит на основном выходе канального декодера формируют окончательную последовательность жестких оценок информационных бит, восстанавливая оригинальные данные;

отличающегося тем, что

- детектирование QAM символов осуществляют в два этапа, причем

на первом этапе формируют MMSE оценку переданного символа с помощью линейного MMSE фильтра, описываемого уравнениями:

X ˜ M M S E = X ¯ p r + G M M S E ( Y − H X ¯ p r ) G M M S E = V p r H ' ( H V p r H ' + σ η 2 σ s 2 I ) − 1       ( 5 )

X ¯ p r - N-мерный вектор априорных математических ожиданий переданных QAM символов, Vpr - диагональная матрица, характеризующая априорную дисперсию переданных QAM символов, нормированную средней мощностью сигнала σ s 2 ,

для каждого компонента x ˜ M M S E , n (n=-1, 2,…N) вектора MMSE оценок X ˜ M M S E вычисляют дисперсию ошибки оценивания σ M M S E , n 2 , которая совпадает с соответствующим диагональным элементом корреляционной матрицы Кд/ж, вычисляемой по формуле

V M M S E = V p r − G M M S E H V p r     ( 6 ) ,

на втором этапе путем линейного преобразование каждого n-го (где n=1, 2,…N) компонента x ˜ M M S E , n вектора MMSE оценок X ˜ M M S E и соответствующего ему априорного математического ожидания x ¯ p r , n осуществляют коррекцию и находят новую линейную оценку x ˜ L M S , n переданного QAM символа и дисперсию ошибки для этой оценки σ L M S , n 2

x ˜ L M S , n = − σ M M S E , n 2 σ p r , n 2 − σ M M S E , n 2 x ¯ p r , n + σ p r , n 2 σ p r , n 2 − σ M M S E , n 2 x ˜ M M S E , n         ( 7 ) σ ˜ L M S , n 2 = σ p r , n 2 σ M M S E , n 2 σ p r , n 2 − σ M M S E , n 2

где σ p r , n 2 - априорная дисперсия n-го переданного QAM символа,

- осуществляют демодуляцию оценок QAM символов, полученных в детекторе, и вычисляют логарифмическое отношение апостериорных вероятностей кодированных бит в соответствии с выражением:

λ n , k = ln ( ∑ x : f ( b n , k = 1 ) exp ( − 1 σ ˜ L M S , n 2 | x ˜ L M S , n − x ( b n ,1 ,   b n ,2 … , b n , K ) | 2 ) ∏ t = 1 K Pr ( b n , t ) ∑ x : f ( b n , k = − 1 ) exp ( − 1 σ ˜ L M S , n 2 | x ˜ L M S , n − x ( b n ,1 ,   b n ,2 … b n , K ) | 2 ) ∏ t = 1 K Pr ( b n , t ) )   ( 9 )

где x(b1,… bK) - табличная функция с числом состояний 2, описывающая сигнальное созвездие переданного QAM символа в зависимости от комбинации кодированных бит bn,k∈{-1;1}, k=1, 2,…K, n=1, 2,…N, Pr(bn,k) - априорная вероятность k-го кодированного бита в n-м QAM символе, полученная на предыдущей итерации, λ(bn,k) - логарифмическое отношение апостериорных вероятностей для k-го бита в n-м QAM символе, K - число бит в одном QAM символе;

- удаляют из вычисленного в демодуляторе логарифмического отношения апостериорных вероятностей кодированных бит априорную информацию для каждого кодированного бита Ppr(bn,k) путем вычитания логарифмического отношения априорных вероятностей

λ ⌢ n , k = λ n , k − λ n , k , p r     ( 10 )

где λ n , k , p r = ln ( Pr ( b n , k ) = + 1 Pr ( b n , k ) = − 1 ) и на основании этой информации осуществляют декодирование информационных бит в соответствии с параметрами канального кода;

- выделяют из уточненной апостериорной вероятности кодированных бит, полученную после декодирования в виде уточненного логарифмического отношения вероятностей λ ˜ n , k , внешнюю информацию (вероятность), удаляя из нее информацию, поступающую на вход декодера в виде мягких оценок кодированных бит (логарифмического отношения апостериорных вероятностей) λ ⌢ n , k , и на основании этой информации формируют оценку априорной вероятности, поступающую в QAM демодулятор на следующей итерации

P ( b n , k ) = e b n , k λ n , k , p r 2 e λ n , k , p r 2 + e λ n , k , p r 2       ( 11 )

λ n , k , p r = λ ˜ n , k − λ ⌢ n , k

- на основе уточненных оценок апостериорной вероятности кодированных бит на выходе канального декодера после их интерливинга формируют оценки переданных QAM символов путем весового сложения значений сигнального QAM созвездия, где веса определяются уточненными апостериорными вероятностями кодированных бит после интерливинга в соответствии с выражением:

где

и вычисляют дисперсии этих оценок

- сравнивают полученные дисперсии σ n 2 с оценками дисперсий после детектирования QAM символов σ ˜ L M S , n 2 , полученными на предыдущей итерации, и если новая оценка дисперсии оказывается меньше дисперсии детектирования, т.е. σ n 2 < σ ˜ L M S , n 2 , то осуществляют коррекцию априорного математического ожидания и априорной дисперсии

x ˜ p r , n = − σ n 2 σ ˜ L M S , n 2 − σ n 2 x ˜ L M S , n + σ ˜ L M S , n 2 σ ˜ L M S , n 2 − σ n 2 x ^ n         ( 14 ) σ ˜ p r , n 2 = σ n 2 σ ˜ L M S , n 2 σ ˜ L M S , n 2 − σ n 2

если дисперсия σ n 2 больше либо равна дисперсии σ ˜ L M S , n 2 , т.е. σ n 2 ≥ σ ˜ L M S , n 2 , то априорные математических ожидания и дисперсию оставляют без изменений

x ˜ p r , n = x ¯ p r , n σ ˜ p r , n 2 = σ p r , n 2

- априорные математические ожидания x ˜ p r , n и дисперсии σ ˜ p r , n 2 , для всех n=1, 2,…N, объединенные в вектор новых априорных математических ожиданий X ˜ p r и в новую априорную диагональную корреляционную матрицу V ˜ p r , являются входными параметрами MIMO детектора, используемыми на следующей итерации.

Сопоставительный анализ заявляемого способа с другими техническими решениями в данной области техники не позволил выявить признаков, заявленных в отличительной части формулы изобретения. Это позволяет утверждать, что заявляемый способ детектирования сигнала в системах связи с MIMO каналом отвечает критериям новизны и неочевидности.

Для лучшего понимания настоящего изобретения далее приводится его подробное описание с соответствующими графическими материалами.

Фиг.1. Типовая схема генерации сигнала в системе с MIMO каналом (уровень техники).

Фиг.2. Типовая схема приема сигнала в системе с MIMO каналом (уровень техники).

Фиг.3. Типовая схема итеративного детектирования и декодирования сигнала в системе с MIMO каналом (уровень техники).

Фиг.4. Заявляемая схема итеративного детектирования и декодирования сигнала в системе с MIMO каналом.

Фиг.5. Зависимость битовой вероятности ошибки от отношения сигнал/шум для MIMO системы стандарта LTE, модуляция 16 QAM, скорость кодирования ½, канал ЕРА-5. Три типа детекторов/демодуляторов: стандартный последовательный с MMSE детектором (обозначение MMSE), стандартный последовательный с ME детектором (обозначение ME), итеративный детектор/демодулятор, согласно заявляемому способу (обозначение ТР FB).

Фиг.6. Зависимость битовой вероятности ошибки от отношения сигнал/шум для MIMO системы стандарта ЕТЕ, модуляция 16 QAM, скорость кодирования 3/4, канал ЕРА-5. Три типа детекторов/демодуляторов: стандартный последовательный с MMSE детектором (обозначение MMSE), стандартный последовательный с ML детектором (обозначение ML), итеративный детектор/демодулятор, согласно заявляемому способу (обозначение ТР FB).

Способ итеративного детектирования и декодирования сигнала по заявляемому изобретению используется в системах связи с MIMO каналом. Типовые схемы генерации и приема сигнала в системе с MIMO каналом представлены на Фиг.1 и Фиг.2. Их описание приведено выше. На Фиг.4 представлена блок-диаграмма, иллюстрирующая предлагаемый в настоящем изобретении способ итеративного детектирования и декодирования сигнала в системе с MIMO каналом.

На входы MIMO детектора 401 поступают усиленные и преобразованные сигналы, принятые несколькими приемными антеннами, на другие входы MIMO детектора 401 подается также априорная информация о принятом символьном векторе, а именно, математическое ожидание и дисперсия его компонентов, полученная на предыдущей итерации. Детектированный символ и оценка дисперсии ошибки оценивания подаются на вход демодулятора 403, куда также подаются оценки априорной вероятности кодированных бит, полученные на предыдущей итерации. Демодулятор 403 производит оценку апостериорной вероятности (логарифмического отношения апостериорных вероятностей) кодированных бит, из которой в модуле 405 удаляют априорную вероятность и тем самым выделяют внешнюю информацию, полученную в детекторе. Мягкие оценки кодированных бит (логарифмическое отношение вероятностей) подвергают деинтерливингу в модуле 407 и направляют на вход канального декодера 409. Канальный декодер на основании входной вероятности кодированных бит и в соответствии с параметрами канального кода осуществляет оценку апостериорной вероятности информационных бит, направляемую на первый выход канального декодера, а также формирует уточненные мягкие оценки кодированных бит, направляемые на второй выход канального декодера, используемый в линии обратной связи. Мягкие оценки кодированных бит с выхода канального декодера 409 в линии обратной связи подвергаются интерливингу в модуле 411 и подаются на вход модуля 413, который удаляет из них информацию, поступающую на вход декодера в виде мягких оценок к