Многоканальные эндоректальные катушки и интерфейсные устройства для них
Иллюстрации
Показать всеИспользование: для получения изображений и спектров анатомических структур с помощью магнитно-резонансных (MR) устройств. Сущность изобретения заключается в том, что внутриполостной зонд для применения с магнитно-резонансной установкой содержит: пару контуров катушки, установленных в конфигурации с фазированной решеткой; пару цепей развязки; пару выходных кабелей; и разделительный материал, размещенный рядом с передней поверхностью контуров катушки. Каждый контур катушки содержит основной конденсатор и настроечный конденсатор. Каждая цепь развязки подключается параллельно настроечному конденсатору одного из контуров катушки. Каждый выходной кабель подключается на своем первом конце параллельно основному конденсатору одного из контуров катушки, так что каждый из основных конденсаторов снабжается отдельным заземлением. Разделительный материал обеспечивает предопределенное расстояние между парой контуров катушки и исследуемой областью. Технический результат: уменьшение интенсивности магнитно-резонансных сигналов поблизости от контуров катушки, сохранение отношения сигнал/шум на некоторой глубине в исследуемой области и сокращение артефактов. 3 н. и 29 з.п. ф-лы, 34 ил.
Реферат
ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Эта заявка претендует на приоритет заявки на предварительный патент США №61/360 646 под названием «Многоканальные эндоректальные катушки и интерфейсные устройства для них», поданной 1 июля 2010, содержание которой включается в данный документ посредством ссылки.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Область техники, к которой относится изобретения
[0002] Настоящее изобретение в общем относится к устройствам и способам получения изображений и спектров анатомических структур с помощью магнитно-резонансных (MR) устройств. Более конкретно, настоящее изобретение относится ко многим вариантам осуществления многоканальной решетки поверхностных катушек и связанных интерфейсных устройств, способных предоставлять изображения и спектроскопические результаты по MR сигналам, получаемым от ядер, возбуждаемых во время MR процедур.
Описание уровня техники
[0003] Следующая дополнительная информация предоставляется для того, чтобы помочь читателю понять изобретение, раскрываемое ниже, и среду, в которой оно обычно должно применяться. Предполагается, что термины, используемые в данном документе, не ограничиваются никаким конкретным узким значением, если только иное ясно не указано в этом документе, то ли явным, то ли косвенным образом.
[0004] Создание изображений с помощью магнитного резонанса (MRI) представляет собой неинвазивный способ создания высококачественных изображений полости организма человека. Он позволяет медицинским работникам заглядывать внутрь организма человека, не прибегая к хирургическому вмешательству или использованию ионизирующего излучения, такого как рентгеновские лучи. Изображения имеют такое высокое разрешение, что рак и другие формы патологий часто можно визуально отличить от здоровой ткани. Магнитно-резонансные методы и установки также были разработаны для выполнения спектроскопического анализа, с помощью которого можно выяснить химический состав ткани тела или другого материала.
[0005] MRI использует мощный магнит, радиоволны и компьютерную технологию для того, чтобы создавать подробные изображения мягких тканей, мышц, нервов и костей в теле. Оно реализует это, используя преимущество основного свойства атома водорода, атома, в обилии находящегося во всех клетках живых организмов. В отсутствие магнитного поля ядра атомов водорода крутятся как волчок или начинают прецессировать случайным образом в каждом направлении. Однако при воздействии сильного магнитного поля оси вращения ядер водорода выравниваются в направлении поля. Это происходит из-за того, что ядро атома водорода обладает так называемым большим магнитным моментом, сильной присущей склонностью выстраиваться по направлению поля. Все вместе ядра водорода области, подлежащей отображению, создают средний вектор намагниченности, который направлен параллельно магнитному полю.
[0006] Обычная MRI установка или сканер содержит главный магнит, три градиентных катушки, радиочастотную (RF) антенну (часто называемую катушкой для визуализации всего тела) и компьютерную станцию, с которой оператор может управлять устройством. Однако основным компонентом MRI системы является главный магнит. Он, как правило, является сверхпроводящим по природе и цилиндрическим по форме. В его тоннеле (отверстие, в котором размещают пациентов во время процедуры MRI) главный магнит создает сильное магнитное поле, часто называемое полем В0, которое является как однородным, так и статическим (неизменным). Это магнитное поле В0 ориентировано вдоль продольной оси тоннеля, называемой направлением z, оно заставляет векторы намагниченности ядер водорода в теле выравниваться параллельно этой оси. При таком выравнивании ядра подготавливаются принимать RF энергию соответствующей частоты от катушки для визуализации всего тела. Эта частота известна как ларморовская частота и подчиняется уравнению ω=γ B0, где ω - это ларморовская частота (с которой прецессируют атомы водорода), γ - это гиромагнитная постоянная, а B0 - это напряженность статического магнитного поля.
[0007] RF антенна, или катушка для визуализации всего тела, обычно используется и чтобы передавать импульсы RF энергии, и чтобы принимать получающиеся MR сигналы, вызываемые ими в ядрах водорода. Более конкретно, во время своего цикла передачи катушка для визуализации всего тела передает RF энергию в цилиндрический тоннель. Эта RF энергия создает радиочастотное магнитное поле, также известное как поле RF B1, линии магнитного поля которого направлены по линии, перпендикулярной вектору намагниченности ядер водорода. RF импульс заставляет оси вращения ядер водорода отклоняться относительно основного магнитного поля (B0), таким образом заставляя вектор результирующей намагниченности отклоняться от направления z на известный угол. Однако RF импульс будет воздействовать только на те ядра водорода, которые прецессируют относительно своих осей на частоте RF импульса. Другими словами, подвергнутся воздействию только ядра, которые «резонируют» на этой частоте, и такой резонанс достигается вместе с работой трех градиентных катушек.
[0008] Градиентные катушки представляют собой электромагнитные катушки. Каждая градиентная катушка используется, чтобы создавать линейно изменяющееся, но статическое магнитное поле вдоль одного из трех пространственных направлений (x, y, z) внутри цилиндрического тоннеля, известное как градиентное поле B1. Расположенные внутри главного магнита градиентные катушки способны изменять основное магнитное поле на самом локальном уровне, когда они очень быстро включаются и выключаются специальным образом. Таким образом, вместе с главным магнитом градиентные катушки могут работать в соответствии с различными способами создания изображений, так что ядра водорода в любой данной точке или любой данной полосе, срезе или единице объема будут способны достигать резонанса, когда применяется RF импульс соответствующей частоты. В ответ на RF импульс прецессирующие атомы водорода в выбранной области поглощают RF энергию, передаваемую от катушки для визуализации, таким образом заставляя свои векторы намагниченности отклоняться от направления основного магнитного поля (B0). Когда катушка для визуализации тела отключена, ядра водорода начинают освобождать RF энергию в виде MR сигнала, как подробнее объясняется ниже.
[0009] Один хорошо известный способ, который может быть применен для того, чтобы получать изображения, называется спин-эховым способом создания изображений. Работая в соответствии с этим способом, MRI установка сначала активирует одну градиентную катушку, чтобы установить градиент магнитного поля вдоль оси z. Он называется «градиент выбора среза», и он устанавливается, когда применяется RF импульс, и отключается, когда выключается RF импульс. Это позволяет резонансу возникать только в ядрах водорода, расположенных в срезе отображаемой области. В какой-либо ткани, расположенной по бокам рассматриваемой плоскости, резонанс не возникнет. Сразу же после прекращения RF импульса все ядра в активированном срезе находятся «в фазе», т.е. их векторы намагниченности все направлены в одном направлении. Оставленные без контроля, векторы намагниченности всех ядер водорода в срезе релаксировались бы, таким образом снова выровнялись бы в направлении z. Однако вместо этого ненадолго активируется вторая градиентная катушка, чтобы создать градиент магнитного поля вдоль оси y. Он называется «градиентом фазового кодирования». Это заставляет векторы намагниченности ядер в срезе направляться при перемещении между самым слабым и самым сильным концами градиента во все большей степени различающихся направлениях. Затем, после того как RF импульс, градиент выбора среза и градиент фазового кодирования были отключены, ненадолго активируется третья градиентная катушка, чтобы создать градиент вдоль оси x. Он называется «градиентом частотного кодирования» или «считывающим градиентом», поскольку он применяется только когда наконец измеряется MR сигнал. Это заставляет релаксирующие векторы намагничивания повторно возбуждаться по-разному, так что ядра возле слабого конца градиента начинают прецессировать с большей скоростью, а находящиеся на сильном конце набирают даже еще большую скорость. Когда эти ядра снова релаксируют, более быстрые из них (те, которые были на сильном конце градиента) излучают самую высокую частоту радиоволн.
[0010] Совместно градиентные катушки позволяют пространственно кодировать MR сигнал, так что каждая часть отображаемой области уникально определяется частотой и фазой своего резонансного сигнала. В частности, когда ядра водорода релаксируют, каждое становится миниатюрным радиопередатчиком, выдающим характерный импульс, который изменяется во времени в зависимости от локальной микросреды, в которой он расположен. Например, микросреда ядер водорода в жирах отличается от микросреды, ядер водорода в воде, и таким образом ядра передают другие импульсы. Вследствие этих отличий, на ряду с различными соотношениями вода/жир различных тканей, разные ткани передают радиосигналы различных частот. Во время своего цикла приема катушка визуализации тела обнаруживает эти миниатюрные радиопередачи, которые часто совместно называют MR сигналом. От катушки визуализации тела эти уникальные резонансные сигналы направляются на приемники MR установки, где они преобразуются в соответствующие им математические данные. Вся процедура должна повторяться много раз для того, чтобы образовать изображение с хорошим отношением сигнал/шум (SNR). С помощью многомерных преобразований Фурье MR установка может преобразовывать математические данные в двух- или даже трехмерное изображение.
[0011] Когда нужны более подробные изображения конкретной части тела, вместо катушки для визуализации всего тела часто используется катушка локальной визуализации. Катушка локальной визуализации может принимать форму объемной катушки или поверхностной катушки. Объемную катушку применяют для того, чтобы окружать или заключать объем, который нужно отобразить (например, голова, верхняя конечность, запястье, нога или колено). Поверхностная катушка, однако, просто размещается на поверхность пациента, так чтобы можно было отобразить скрытую исследуемую область (например, брюшная, грудная и/или тазовая области). Кроме того, катушка локальной визуализации может проектироваться так, чтобы работать или в качестве только принимающей катушки, или передающей/принимающей (T7R) катушки. Первая способна только обнаруживать MR сигналы, создаваемые телом в ответ на процедуру MRI, как указано выше. Однако T/R катушка способна как принимать MR сигналы, так и передавать RF импульсы, которые создают магнитное поле RF B1, которое является необходимым условием для вызова резонанса в ткани тела.
[0012] В области MRI хорошо известно применение одной катушки локальной визуализации, поверхностной или объемной, чтобы обнаруживать MR сигналы. В соответствии с подходом применения одной катушки, применяют относительно большую катушку локальной визуализации, чтобы покрывать или заключать всю исследуемую область. Одни из первых принимающих катушек были просто линейными катушками, что означает, что они могли обнаруживать только одну из двух (т.е. вертикальной MX' и горизонтальной MY') квадратурных составляющих MR сигналов, создаваемых исследуемой областью. Один пример линейной катушки - это катушка с одним контуром, показанная на фиг.1A. Этот контур способен обнаруживать только магнитные поля (т.е., MR сигналы), которые ориентированы перпендикулярно/вертикально к плоскости контура, как показано на фиг.1B. Другой пример линейной катушки представляет собой катушку типа бабочки или седла, представленную на фиг.2А. В отличие от катушки с одним контуром, катушка типа бабочки чувствительна только к магнитным полям, которые ориентированы параллельно к плоскости катушки, как показано на фиг.2B. Это объясняется тем, что катушка типа бабочки создается перекручиванием контура в центре, чтобы образовывать два идентичных подконтура около средней точки. Поскольку токи, текущие по подконтурам, одинаковы, но текут в противоположных направлениях, магнитный поток, создаваемый током, текущим через один подконтур симметричной конструкции, равен, но противоположен потоку, вызванному током в другом подконтуре. Следовательно, около средней точки конструкции вертикальные поля, из-за противоположно направленных токов, противодействуют и, таким образом, гасят друг друга. Однако горизонтальные поля, создаваемые этими токами, совмещаются, создавая магнитное поле, которое ориентировано параллельно плоскости катушки.
[0013] Соответственно, были разработаны принимающие катушки, использующие квадратурный способ обнаружения, что означает, что они могли перехватывать как вертикальные, так и горизонтальные составляющие. По сравнению с линейными приемными катушками, квадратурные приемные катушки позволили MRI установкам давать изображения, для которых SNR было существенно улучшено, обычно вплоть до 41%. Даже с улучшением, которое было привнесено квадратурным способом обнаружения, подход с применением одной катушки все же давал изображения, качество которых требовало повышения. Недостаток, присущий подходу с применением одной катушки, состоит в том, что для получения MR сигналов по всей области исследования используется всего одна конструкция катушки.
[0014] Катушки с фазированной решеткой также были разработаны, чтобы преодолевать недостатки подхода с применением одной катушки. Вместо одной крупной катушки локальной визуализации подход с фазированной решеткой применяет большое количество меньших катушек локальной визуализации, где каждая такая катушка покрывает или охватывает только часть исследуемой области. В установке, содержащей две таких катушки, например, каждая из катушек будет покрывать или охватывать приблизительно половину исследуемой области, причем две катушки, как правило, частично перекрываются с целью магнитной изоляции. Две катушки будут получать MR сигналы от их соответствующих частей одновременно, и они не будут взаимодействовать отрицательным образом вследствие перекрытия. Поскольку каждая катушка покрывает только половину исследуемой области, каждая такая катушка способна принимать MR сигналы с более высоким SNR отношением для той части исследуемой области в области покрытия. Меньшие катушки локальной визуализации с фазированной решеткой, таким образом, совместно снабжают MRI установку данными сигнала, необходимыми для создания изображения всей исследуемой области, которое имеет более высокое разрешение, чем которое может быть получено от одной крупной катушки локальной визуализации.
[0015] Один пример катушки с фазированной решеткой - это решетка для туловища Gore®, изготовляемая W.L.Gore and Associates, Inc. Решетка для туловища содержит четыре поверхностных катушки, две из которых расположены в передней пластине, а другие две расположены в задней пластине. Две пластины спроектированы размещаться, соответственно, на передней и задней поверхности пациента в районе брюшной, грудной и тазовой областей. Решетка для туловища спроектирована для применения с MR установкой, система получения данных которой содержит большое количество приемников. Четыре вывода решетки для туловища, один каждый из двух передних поверхностных катушек и двух задних поверхностных катушек, могут соединяться с отдельными приемниками, причем каждый приемник усиливает и оцифровывает сигнал, который принимает. MR установка затем объединяет оцифрованные данные от отдельных приемников, чтобы формировать изображение, общее SNR которого лучше, чем то, что могло бы быть получено от одной катушки локальной визуализации или даже двух более крупных передней и задней катушек локальной визуализации, самостоятельно покрывающих всю исследуемую область.
[0016] Также хорошо известно получение изображений внутренних структур организма с помощью внутриполостных зондов. Пример прототипа внутриполостного зонда, спроектированного в основном для использования с 1,0 Тл и 1,5 Тл MR установками, можно найти в патентах США №5476095 ('095) и 5355087 ('087), которые оба выданы правопреемнику настоящего изобретения и включаются в данный документ посредством ссылки. Раскрытый прототип зонда предназначен для вставки в отверстия тела, такие как прямая кишка, влагалище и рот. Эти патенты также раскрывают интерфейсные устройства, которые спроектированы связывать прототипы внутриполостного зонда с устройствами MR формирования изображения и спектроскопии. Способ применения внутриполостного зонда раскрыт в патенте США №5348010, который также выдан правопреемнику настоящего изобретения и включается в данный документ посредством ссылки.
[0017] Зонд прототипа, работающий вместе со связанным интерфейсным элементом, позволяет MR установке создавать изображения различных внутренних структур тела, таких как предстательная железа, толстая кишка или шейка, и спектроскопических результатов для них. Примеры таких прототипов зондов включают предстательную/эндоректальную катушку (Е-катушку) ВРХ-15, колоректальную катушку РСС-15 и катушку BCR-15 для шейки, которые все являются частью линии одноразовых катушек eCoil™, производимых MEDRAD, Inc., Индианола, Пенсильвания. Примеры таких интерфейсных элементов включают элементы ATD-II и ATD-Torso, также производимых MEDRAD, Inc.
[0018] Элемент ATD-II применяется для связи прототипа зонда с одним приемником MR установки, чтобы предоставлять изображения или спектры исследуемой области, а именно предстательной железы, прямой кишки или шейки. Устройство ATD-Torso используется для связи не только прототипа зонда, но также решетки для туловища Gore® с большим количеством приемников MR установки. После соединения с таким зондом и торсовой решеткой элемент ATD-Torso позволяет MR установке предоставлять изображения или спектры не только предстательной железы, прямой кишки или шейки, но также окружающих анатомических элементов, т.е. брюшной, грудной и тазовой областей.
[0019] Патенты США №7747310 и 7885704, которые оба выданы правопреемнику настоящего изобретения и включаются в данный документ посредством ссылки, раскрывают несколько внутриполостных зондов и связанных интерфейсных устройств для применения с MR установками, спроектированными работать при более высоких напряженностях поля, чем прототипы зондов, раскрытые в патентах '087 и '095. Например, последняя ссылка раскрывает зонд, содержащий контур катушки, который содержит два основных конденсатора и настроечный конденсатор, которые все подключаются последовательно. Параллельно каждому основному конденсатору присоединяется выходной кабель, имеющий электрическую длину SL+n(λ/4). Когда каждый выходной кабель соединяется на своем другом конце с интерфейсным устройством, контур катушки тем самым соединяется через интерфейсное устройство с MR установкой.
[0020] Со ссылкой на фиг.3, были разработаны квадратурные внутриполостные зонды. Например, публикация международной заявки на патент №WO 2010/056911, который выдан правопреемнику настоящего изобретения, и включена в данный документ посредством ссылки, раскрывает конструкцию с одной катушкой, которая чувствительна как к вертикальным, так и к горизонтальным составляющим MR сигнала, посредством элемента катушки простого контурного типа и элемента катушки типа бабочки, которые обладают общим центральным проводником. Более конкретно, квадратурная катушка, в общем обозначенная 10, содержит внешний контур 12, центральный проводник 14, разделяющий пополам внешний контур 12, и выходную линию, в общем обозначенную 16. Внешний контур 12 содержит большое количество конденсаторов, включая первый и второй основные конденсаторы 18 и 20 и первый и второй настроечные конденсаторы 22 и 24. Примерно с одинаковыми параметрами основные конденсаторы 18, 20 располагаются последовательно во внешнем контуре 12 и в своем соединительном узле 26 образуют виртуальное заземление для электрического балансирования и согласования полных сопротивлений контура. Настроечные конденсаторы 22, 24 также располагаются последовательно во внешнем контуре 12, а их общий узел 28 располагается диаметрально противоположно соединительному узлу 26. Примерно с одинаковыми параметрами настроечные конденсаторы 22, 24 выбираются так, чтобы обеспечить резонанс во внешнем контуре 12 на рабочей частоте MR установки. В этом отношении внешний контур 12 показан на фиг.3 как содержащий четыре катушки индуктивности. Параметры этих катушек индуктивности просто представляют индуктивности, присущие проводящим (например, медным) сегментам контура. Выходная линия 16 содержит два коаксиальных кабеля 30 и 32, где экранирующий проводник каждого соединен с соединительным узлом 26 катушки 10. Центральный проводник 14 проходит между и делит пополам соединительный и общий узлы 26 и 28 внешнего контура 12, и таким образом сохраняет физическую и электрическую симметрию квадратурной катушки 10. На фиг.3 центральный проводник 14 показан как содержащий две катушки индуктивности и настроечный конденсатор 34, симметрично расположенные по его длине. Как и на внешнем контуре 12, параметры этих катушек индуктивности просто представляют индуктивности, присущие проводнику. Параметр настроечного конденсатора 34 был выбран так, что его реактивное сопротивление на рабочей частоте равнялся индуктивному реактивному сопротивлению центрального проводника 14. Такая конфигурация позволяет элементам катушки с простым контуром и контуром типа бабочки обнаруживать MR сигналы, соответственно, ортогональные и параллельные плоскости катушки.
[0021] Со ссылкой на фиг.4 и как раскрывается в патенте США №7885704, была разработана катушка, содержащая конфигурацию с фазовой решеткой для применения в эндоректальном зонде. Катушка содержит четыре контура 40, 41, 42 и 43 катушки, расположенных в конфигурации с фазовой решеткой, в которой каждый контур 40, 41, 42 и 43 катушки критично перекрывается соседним контуром. Каждый контур 40, 41, 42 и 43 катушки содержит основной конденсатор 44, 45, 46 и 47 и настроечный конденсатор 48, 49, 50 и 51, установленный диаметрально противоположно основному конденсатору 44, 45, 46 и 47. Кроме того, каждый контур 40, 41, 42 и 43 катушки содержит выходную линию 52, 53, 54 и 55, подключенную параллельно соответствующему основному конденсатору 44, 45, 46 и 47. Соответственно, предоставляется четырехэлементная, четырехканальная конфигурация. Эта компоновка обеспечивает явно более высокое отношение сигнал/шум (SNR), чем квадратурная катушка 10, описанная выше со ссылкой на фиг.3; однако покрытие является менее однородным из-за областей слабого сигнала в критично соединенных (т.е. перекрытых проводниках) областях. Эта неоднородность является нежелательной для использования в эндоректальном зонде по причине больших количеств неоднородности рядом с проводниками катушки.
[0022] Несмотря на их широкое признание и хорошую репутацию на рынке, эти прототипы внутриполостных зондов и интерфейсных устройств все же имеют несколько недостатков. Например, они предлагают ограниченное покрытие, демонстрируют низкую характеристику сигнал/шум и в целом обеспечивают меньшую общую гибкость по сравнению с технологией эндоректальных катушек, обсуждаемой далее в данном документе. Следовательно, желательно предоставить решетку эндоректальных катушек и связанное интерфейсное устройство, способные обеспечивать более высокую общую гибкость и более высокое качество изображений и спектроскопических результатов от MR сигналов, полученных от ядер во время MR процедур.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0023] Следовательно, цель настоящего изобретения - предоставить способ и установку, которые преодолевают некоторые или все недостатки и дефекты, очевидные для существующего уровня техники. Более конкретно, решетка эндоректальных катушек и связанные интерфейсные устройства настоящего изобретения способны обеспечить большую общую гибкость и более высококачественные изображения и спектроскопические результаты от MR сигналов, полученных от ядер во время MR процедур.
[0024] Соответственно, предоставляется катушка для применения с магнитно-резонансной установкой для получения изображений исследуемой области. Катушка содержит: (a) пару контуров катушки, установленных в конфигурации с фазированной решеткой, каждый из которых предназначен для приема магнитно-резонансных сигналов из исследуемой области, соответствующей ему; и (b) разделительный материал, расположенный рядом с передней поверхностью пары контуров катушки. Каждый из контуров катушки содержит основной конденсатор и настроечный конденсатор, причем настроечный конденсатор имеет параметр, выбранный, чтобы обеспечить резонанс в контуре катушки соответствующим ему, на рабочей частоте магнитно-резонансной установки. Разделительный материал позволяет создавать предопределенное расстояние от около 0,03 до около 0,06 дюймов между парой контуров катушки и исследуемой областью, и тем самым: (i) уменьшать интенсивность магнитно-резонансных сигналов поблизости от контуров катушки; (ii) поддерживать отношение сигнал/шум на некоторой глубине в исследуемой области, подходящее для воссоздания изображения исследуемой области; и (iii) сокращать артефакты на изображениях, включая артефакты Гиббса.
[0025] Катушка может дополнительно содержать пару цепей развязки, каждая из которых подключена параллельно настроечному конденсатору одного из контуров катушки. Каждая из цепей развязки может быть активной цепью развязки, пассивной цепью развязки или как активной, так и пассивной цепью развязки. Катушка может дополнительно содержать пару выходных кабелей, каждый из которых подключен на своем первом конце параллельно основному конденсатору одного из контуров катушки, так что каждый из основных конденсаторов обеспечен отдельным заземлением. Может предоставляться промежуточный кабелепровод, который содержит: (a) входной коннектор; (b) выходной коннектор; (c) пару внутренних кабелей для соединения на одном своем конце, соответственно, с выходными кабелями внутриполостного зонда через входной коннектор и похожий другой их конец к интерфейсному устройству для внутриполостного зонда посредством выходного коннектора; (d) пару симметрирующих устройств, каждое из которых присоединено между концом одного из внутренних кабелей и по меньшей мере одним из входного коннектора и выходного коннектора; и (e) по меньшей мере одну кабельную ловушку, присоединенную поблизости.
[0026] Конфигурация фазированной решетки может требовать, чтобы пара контуров катушки критично перекрывались, разделяли общий проводник или были установлены в гибридной перекрывающейся конфигурации, где, по меньшей мере, часть каждого из контуров катушки перекрывается, и контуры катушки обладают общим проводником.
[0027] Пассивная цепь развязки может предоставляться на втором конце каждого из выходных кабелей. Каждая из пассивных цепей развязки может содержать последовательно соединенные встречно-включенные диоды и компонент реактивного сопротивления. Компонент реактивного сопротивления может быть по меньшей мере одним из катушки индуктивности и конденсатора.
[0028] Катушка может предоставляться как часть внутриполостного зонда или может быть поверхностной катушкой. Поверхностная катушка может быть катушкой для головы, катушкой для туловища, катушкой для шеи, катушкой для конечности или любым их сочетанием.
[0029] Также предоставляется внутриполостной зонд для применения с магнитно-резонансной установкой для получения изображений исследуемой области в полости пациента. Внутриполостной зонд содержит: (a) пару контуров катушки, расположенных в конфигурации фазированной решетки, каждый из которых принимает магнитно-резонансные сигналы из исследуемой области, соответствующей ему; (b) пару цепей развязки, каждая из которых подключена параллельно настроечному конденсатору одного из контуров катушки; (c) пару выходных кабелей, каждый из которых подключен на своем первом конце параллельно основному конденсатору одного из контуров катушки, так что каждый из основных конденсаторов обеспечен отдельным заземлением; и (d) разделительный материал, расположенный рядом с передней поверхностью пары контуров катушки. Каждый из контуров катушки содержит основной конденсатор и настроечный конденсатор, причем настроечный конденсатор имеет параметр, выбранный для обеспечения резонанса контура катушки, соответствующего ему, на рабочей частоте магнитно-резонансной установки. Разделительный материал позволяет задавать предопределенное расстояние от около 0,03 до около 0,06 дюймов между парой контуров катушки и исследуемой областью и тем самым: (i) уменьшать интенсивность магнитно-резонансных сигналов поблизости от контуров катушки; (ii) поддерживать отношение сигнал/шум на глубине в исследуемой области, подходящее для воссоздания изображений исследуемой области; и (iii) сокращать артефакты на изображениях или спектрах, включая артефакт Гиббса, когда внутриполостной зонд введен в полость пациента во время получения изображений.
[0030] Каждая из цепей развязки может быть активной цепью развязки, пассивной цепью развязки или как активной, так и пассивной цепью развязки. Может предоставляться промежуточный кабелепровод, который содержит: (a) входной коннектор; (b) выходной коннектор; (c) пару внутренних кабелей для соединения на одном своем конце, соответственно, с выходными кабелями внутриполостного зонда через входной коннектор и похожий другой их конец к интерфейсному устройству для внутриполостного зонда посредством выходного коннектора; (d) пару симметрирующих устройств, каждое из которых присоединено между концом одного из внутренних кабелей и по меньшей мере одним из входного коннектора и выходного коннектора; и (e) по меньшей мере одну кабельную ловушку, присоединенную поблизости.
[0031] Конфигурация фазированной решетки может требовать, чтобы пара контуров катушки были критично перекрыты, обладали общим проводником или были установлены в гибридной перекрывающейся конфигурации, где по меньшей мере часть каждого из контуров катушки перекрывается, и контуры катушки обладают общим проводником.
[0032] Пассивная цепь развязки может предоставляться на втором конце каждого из выходных кабелей. Каждая из пассивных цепей развязки может содержать последовательно соединенные встречно-включенные диоды и компонент реактивного сопротивления. Компонент реактивного сопротивления может быть по меньшей мере одним из катушки индуктивности и конденсатора.
[0033] Кроме того, предоставляется интерфейсное устройство для сопряжения катушки, содержащей пару контуров катушки, установленных в конфигурации с фазированной решеткой, каждый из которых принимает магнитно-резонансные сигналы от исследуемой области, соответствующей ему, с магнитно-резонансной установкой. Интерфейсное устройство содержит: (a) первый предварительный усилитель для приема сигнала от первого контура катушки из пары контуров катушки, чтобы создавать первый усиленный сигнал; (b) второй предварительный усилитель для приема сигнала от второго контура катушки из пары контуров катушки, чтобы создавать второй усиленный сигнал; (c) первый разветвитель, функционально соединенный с первым предварительным усилителем для разделения первого усиленного сигнала на сигнал правого контура, который подается на первый канальный выход, и первый составной сигнал; (d) второй разветвитель, функционально соединенный со вторым предварительным усилителем для разделения первого усиленного сигнала на сигнал левого контура, который подается на второй канальный выход, и второй составной сигнал; (e) третий разветвитель, функционально соединенный с первым разветвителем для разделения первого составного сигнала; (f) четвертый разветвитель, функционально соединенный со вторым разветвителем для разделения второго составного сигнала; (g) нуль-градусный объединитель, функционально соединенный с третьим разветвителем и четвертым разветвителем для объединения сигналов, получаемых от них, чтобы создавать сигнал катушки типа седла или типа бабочки, который подается на третий канальный выход; и (h) 180-градусный объединитель, функционально соединенный с третьим разветвителем и четвертым разветвителем для объединения сигналов, получаемых от них, чтобы создавать сигнал полного контура, который подается на четвертый канальный выход. Интерфейсное устройство настроено выборочно распознавать каждый из первого, второго, третьего и четвертого канальных выходов, таким образом позволяя магнитно-резонансной установке, подключенной к интерфейсному устройству, создавать изображения во множестве различных режимов.
[0034] Первый предварительный усилитель и второй предварительный усилитель могут снабжаться предопределенным уменьшенным напряжением питания, по сравнению с номинальным напряжением питания первого предварительного усилителя и второго предварительного усилителя. По меньшей мере один аттенюатор может обеспечивать ослабление номинально в диапазоне от 3 дБ до 6 дБ. По меньшей мере один аттенюатор может располагаться по меньшей мере в одном из мест: (a) между первым предварительным усилителем и первым разветвителем; (b) между вторым предварительным усилителем и вторым разветвителем; (c) после первого разветвителя; и (d) после второго разветвителя. Большое количество режимов предусматривает режим левого контура, режим правого контура, режим полного контура, режим полного седла, режим правого контура и левого контура (LL), режим полного контура и полного седла, и режим правого контура, левого контура, полного контура, полного седла (LLLS), но не ограничивается ими.
[0035] Также предоставляется установка для получения изображений исследуемой области. Установка содержит: (a) внутриполостной зонд; и (b) интерфейсное устройство для сопряжения внутриполостного зонда с магнитно-резонансной установкой. Внутриполостной зонд содержит: (i) пару контуров катушки, установленных в конфигурации с фазированной решеткой, каждый из которых принимает магнитно-резонансные сигналы из исследуемой области, соответствующей ему; (ii) пару выходных кабелей, каждый из которых подключен на своем первом конце параллельно основному конденсатору одного из контуров катушки, так что каждый из основных конденсаторов снабжен отдельным заземлением; и (iii) разделительный материал, расположенный рядом с передней поверхностью пары контуров катушки. Каждый из контуров катушки содержит основной конденсатор и настроечный конденсатор, причем настроечный конденсатор имеет параметр, выбранный обеспечить резонанс в контуре катушки соответствующим ему, на рабочей частоте магнитно-резонансной установки. Разделительный материал позволяет создавать предопределенное расстояние от около 0,03 до около 0,06 дюймов между парой контуров катушки и исследуемой областью, и тем самым уменьшать интенсивность магнитно-резонансных сигналов поблизости от контуров катушки, поддерживать отношение сигнал/шум на некоторой глубине в исследуемой области, подходящее для воссоздания изображений исследуемой области, и сокращать артефакты на изображениях или спектрах, включая артефакт Гиббса, когда внутриполостной зонд введен в полость пациента во время получения изображений. Интерфейсное устройство содержит: (i) первый предварительный усилитель для приема сигнала от первого контура катушки из пары контуров катушки, чтобы создавать первый усиленный сигнал; (ii) второй предварительный усилитель для приема сигнала от второго контура катушки из пары контуров катушки, чтобы создавать второй усиленный сигнал; (iii) первый разветвитель, функционально соединенный с первым предварительным усилителем для разделения первого усиленного сигнала на сигнал правого контура и первый составной сигнал; (iv) второй разветвитель, функционально соединенный со вторым предварительным усилителем для разделения первого усиленного сигнала на сигнал левого контура и второй составной сигнал; (v) третий разветвитель, функционально соединенный с первым разветвителем для разделения первого составного сигнала; (vi) четвертый разветвитель, функционально соединенный со вторым разветвителем для разделения второго составного