Холодильный агрегат, встраиваемый в стойку

Иллюстрации

Показать все

ИТ- сервисная стойка содержит холодильный агрегат, который включает по меньшей мере одну охлаждающую батарею, по меньшей мере один вентилятор для циркуляции воздуха через по меньшей мере одну охлаждающую батарею, кожух в форме прямоугольной призмы, содержащий по меньшей мере одну охлаждающую батарею и вентилятор, который размещен в передней зоне кожуха, а батарея - в задней зоне кожуха. Кожух имеет размеры, позволяющие встроить в него ИТ сервисную стойку, и выполнен с возможностью крепления к стойке. Холодильный агрегат выполнен с возможностью установки по полуутопленной схеме, в которой вентилятор выступает за границы стойки. Обе вертикальные боковины холодильного агрегата снабжены решетками в передней зоне кожуха, в которой находится вентилятор. Боковины в задней части кожуха закрыты и заключают между собой холодильный агрегат. Центр обработки данных включает ряд стоек, каждая из которых содержит один или более холодильный агрегат, которые установлены по полуутопленной схеме, с вентиляторами, которые выступают за границы стоек для обеспечения локального охлаждения. Использование данной группы изобретений позволяет создать холодильный агрегат, который мог бы быть легко свтроен в центре обработки данных. 2 н. и 16 з.п. ф-лы, 17 ил., 1 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к холодильному агрегату, пригодному для встраивания в любой стандартный стеллаж информационной техники. Такие стеллажи, или стойки, обычно используются для установки серверов в помещениях (называемых также центрами обработки данных) с целью пространственно экономного, но обеспечивающего доступность размещения ряда серверов. Поэтому, в особенности, настоящее изобретение относится к использованию такого холодильного агрегата в центре обработки данных или компьютерном зале.

Уровень техники

Последние два десятилетия компьютеры играют в социуме все более важную роль как в общественном, так и в частном секторе. Мировая экономика переходит от бумажного к цифровому управлению. Центры обработки данных можно найти сейчас почти в любой отрасли: в медицине, в образовании, в коммуникациях, в предпринимательстве, в финансах и на транспорте. Без той или иной формы компьютеризованного управления связями с потребителями большинство деловых предприятий испытывали бы серьезные затруднения.

В правительственных и деловых кругах высокая степень обеспечения информационной техникой считается критическим элементом деловой организации. Офисные работники в текущей работе ныне все чаще пользуются компьютерами. Кроме того, закон Сарбейнса-Оксли, обозначаемый также «SOX», дал мощный толчок развитию систем хранения и поиска данных. Как следствие, компании в очень значительной степени положились на компьютерное оборудование и программное обеспечение для делопроизводства фирм, а также для обеспечения обработки текстов и иных административных применений. Далее, так как Интернет становится все более важным коммерческим инструментом, компаниям выгодно обеспечивать своим служащим непрерывный доступ в Интернет, а также поддерживать Интернет-вебсайты, которыми могут пользоваться клиенты и заказчики. Таким образом, цена времени безотказной работы ИТ-оборудования во много раз выше стоимости использования сети.

Вследствие коммерческой важности компьютерных ресурсов компаний стандартной практикой в компаниях стало использование информационных систем с клиентскими серверами. В таких системах компьютеры компании работают не независимо, вместо этого вся информация накапливается в главных централизованных серверах, с которыми связаны компьютерные терминалы. Это позволяет служащим получать доступ к одним и тем же данным компании с многочисленных терминалов и в то же время дает возможность размещать серверы в одном месте, что облегчает техобслуживание и увеличивает защищенность. Кроме того, по мере возрастания требований компаний к хранению и обработке данных, добавление к банку серверов дополнительных серверов или прикладных программ может быть произведено с минимальными перерывами в обслуживании потребителей.

Помещение или место, в котором расположены эти серверы, часто называют «центром обработки данных». В зависимости от размеров конкретной компании центр обработки данных может занимать одну комнату или этаж в здании, а в некоторых случаях для размещения серверов компании может быть выделено целое здание.

Серверы и другие электронные компоненты центра обработки данных размещаются в стойках. Стойки обеспечивают максимальное использование пространства внутри центра обработки данных. И в то время как за годы развития в компьютерной технологии произошли гигантские изменения, конструкция стойки осталась неизменной.

Стойки, соответствующие стандарту Е1А 310 D Ассоциации предприятий электронной промышленности США (Electronic Industries Association), - наиболее часто применяемый тип стоек для размещения нескольких служебных вычислительных машин. Такие стойки, как правило, включают четыре вертикальные рейки, или опорные балки, и две пары противолежащих реек, определяющих прямоугольный стеллаж. Известно также использование всего лишь двух расположенных против друг друга вертикальных реек.

По длине каждой вертикальной рейки имеется ряд отверстий, просверленных через регулярные промежутки, причем эти отверстия расположены на рейках согласованно, так, что образуют горизонтальные пары. Нет необходимости сверлить эти отверстия с равным шагом по всей длине рейки, вместо этого нужно обеспечить соответствие одной из нескольких, определенных в стандарте EIA 310 D, схем расположения отверстий.

Наиболее употребительную схему называют разбивкой с «универсальным интервалом». В этой схеме центр первого отверстия должен быть расположен на расстоянии не менее 6,75 мм (0,266 дюйма) от края рейки. Межцентровое расстояние для первых трех отверстий составляет 15,90 мм (0,626 дюйма), тогда как расстояние до каждого четвертого отверстия - всего лишь 12,7 мм (0,5 дюйма). В результате три отверстия приходятся на каждые 44,45 мм (1,75 дюйма). Эта длина называется единичной (U). Схема с «большим интервалом» идентична схеме с универсальным интервалом с тем отличием, что среднее из трех отверстий, разнесенных на 15,9 мм, убрано. В результате возникает переменный шаг ряда отверстий с межцентровыми расстояниями 31,8 мм (1,252 дюйма) и 12,7 мм (0,5 дюйма).

В стандарте EIA 310 D указано также применяемое в согласии с нормами IEC (МЭК - Международной электротехнической комиссии) межцентровое расстояние отверстий 25 мм. В таких схемах шаг отверстий 25 мм, а крайние отверстия расположены на расстоянии не менее 12,5 мм от края рейки.

Использование стандартизованного шага отверстий позволяет крепить к стойке различные элементы, например полки, панели, серверы и т.д., с помощью монтажных планок с эквивалентным шагом отверстий. Это дает возможность крепления оборудования к стойке посредством совмещения отверстий монтажных планок с отверстиями стойки и введения в совмещенные отверстия крепежных средств, например болтов под гайку.

Распространен также монтаж серверов на скользящих рейках таким образом, что серверы легко могут быть извлечены из стойки для техобслуживания. В этих случаях в стойке монтируются скользящие полки или скользящие рейки, и сервер крепится к ним. Обычно сервер все же крепится непосредственно к стойке, чтобы он оставался на одном месте до тех пор, пока его не потребуется вынуть из стойки. Когда это потребуется, монтажные планки можно демонтировать со стойки.

Помимо стандартизации шага отверстий, стандарт EIA 310 D также устанавливает ограничения на расстояние по ширине между противолежащими рейками. Имеется три размерных параметра по ширине: используемая ширина просвета между рейками (W2), ширина раскрытия ячейки (общая ширина просвета, включая рейки) (W1) и межцентровое расстояние монтажных отверстий в противостоящих рейках (W3).

Размеры по ширине, указанные в требованиях замененного стандарта EIA 310 С, включены в требования стандарта EIA 310 D. Определены три схемы размеров по ширине, а именно:

W1=483,4 мм (19,031 дюйм), минимум W1=610,4 мм (24,031 дюйм), минимум

W2=450 мм (17,717 дюйм), минимум W2=577 мм (22,717 дюйм), минимум

W3=465 мм (18,307 дюйм)±1,6 W3=592 мм (23,307 дюйм)±1,6

W1=763 мм (30,039 дюйм), минимум

W2=730 мм (28,74 дюйм), минимум

W3=745 мм (29,331 дюйм)±1,6

Первая из этих схем наиболее часто применяется в промышленности и называется 19-дюймовой стойкой, по ширине раскрытия ячейки (W1).

Стандарт EIA 310 D включает также дополнительную схему размеров по ширине, применяемую в согласии с нормой МЭК 25 мм. Согласно этой схеме

W1=(WX+35)±2

W2≥WX

W3=(WX-15)±2

где WX - базовый размер и все размеры даны в миллиметрах. Предпочтительный базовый размер равен 450 мм, что дает те же размеры по ширине, что и в 19-дюймовой стойке. Однако стандарт допускает увеличение базового размера шагами по 25 мм.

Размеры по высоте также регламентированы требованиями стандарта EIA 310 D. Однако эти размеры указаны более гибко, так как высота может наращиваться шагами единичной длины U относительно схем стандарта EIA 310 С или шагами SU (стандартная единичная длина=25 мм) относительно схем нормы МЭК 25 мм, с добавлением определенной постоянной величины для обеспечения межполочного просвета. Типовая стойка имеет высоту 42U и глубину от 800 до 1200 мм.

Вышеуказанные размеры относятся только к металлическим рейкам (опорным балкам) стойки, к которым будут крепиться электрические компоненты. Эти рейки удерживаются на месте внешним каркасом, который может быть обшит с образованием кожуха или шкафа, однако это несущественно. Внешний каркас и обшивка могут быть отделены от реек промежутком, чтобы дать пространство для размещения в шкафу проводов, рукояток для перемещения и т.п. Требования стандарта EIA 310 D содержат указания по наружным размерам шкафов, но они необязательны. Все подробности содержания стандарта EIA 310 D можно получить в компании IHS (Information Handling Services Inc. - компания услуг по обработке информации).

Применение стоек, отвечающих стандарту EIA 310 D, дает предприятиям возможность размещать несколько серверов в одной-единственной стойке или в нескольких соседних стойках, регулируя их расположение соответственно потребностям.

Группировка в одном месте большого числа служебных вычислительных машин приводит к большому тепловыделению. Чтобы предотвратить перегрев и выход из строя процессоров серверов, абсолютно необходимо поддерживать достаточно низкую температуру воздуха, поступающего в серверы. В 2004 году ASHRAE (American Society of Heating, Refrigerating and Air conditioning Engineers -Американское общество инженеров по отоплению, холодильной технике и кондиционированию воздуха) совместно с производителями компьютеров выпустило соответствующие рекомендации, устанавливающие максимальные и минимальные уровни температуры и влажности. Они были опубликованы в издании Thermal Guidelines for Data Processing Environments (Рекомендации по тепловым средам для обработки данных, ТК 9.9). В них рекомендованы температуры от 20 до 25°С и относительные влажности от 40 до 55%.

Поначалу кондиционирование воздуха в центрах обработки данных осуществлялось с помощью холодильных агрегатов, располагавшихся у стен по периметру компьютерного зала. Эти агрегаты всасывали воздух, имевший смешанную комнатную температуру центра обработки данных, охлаждали этот воздух и нагнетали охлажденный воздух в подпольную вентиляционную камеру, образованную приподнятым настилом пола. Холодный воздух, сжатый в вентиляционной камере, свободно циркулировал под полом и вновь выходил в помещение для охлаждения центра обработки данных сквозь перфорированную плитку или решетки приподнятого настила пола. Большинство центров обработки данных до сих пор используют этот тип системы охлаждения с «приподнятым полом».

Как указано в вышеупомянутых рекомендациях ASHRAE, современные центры обработки данных, содержащие несколько рядов серверных стоек, должны быть организованы так, чтобы образовывать «горячие» и «холодные» проходы. То есть все серверы в одном ряду располагаются так, чтобы горячий воздух, выходящий из серверов, направлялся в один и тот же проход. И серверы с другой стороны этого прохода располагаются так, чтобы направлять тепло в этот же проход. Благодаря этому создается центральный «горячий» проход между рядами и два «холодных» прохода с внешних сторон этих рядов. Это позволяет максимально разделить горячий и холодный воздух внутри рядов стоек, что в свою очередь создает наилучшие условия для регулирования температуры, при котором по возможности избегают смешения потоков горячего и холодного воздуха в центре обработки данных.

Однако системы, использующие холодильные агрегаты, располагающиеся по периметру зала, работают не на максимуме возможностей охлаждения из-за смешения горячего и холодного воздуха, втягиваемого в возвратную вентиляционную струю холодильных агрегатов, и непредсказуемости воздушных потоков внутри подпольной вентиляционной камеры. Прокладываемые под полом силовые кабели и линии передачи данных создают препятствия для воздушного потока и усугубляют проблему надлежащего распределения воздуха. Это становится особенно заметно, когда один из агрегатов кондиционирования воздуха выходит из строя. И хотя такие подпольные системы охлаждения пригодны для центров, в которых тепловыделение ниже приблизительно 4 кВт на стойку, однако из-за все возрастающей плотности нагрузки, вызванной уплотнением и внедрением сверхкомпактных серверов, многие центры обработки данных стремятся в настоящее время обеспечить надлежащее охлаждение.

В настоящее время осознано, что традиционные конструкции энергетических и охлаждающих систем уже не обеспечивают приемлемых решений для информационных нагрузок высокой плотности, имеющих место в современных центрах обработки данных. Прогресс в компьютерной технологии привел к тому, что в машинных залах, рассчитанных на среднее тепловыделение 2 кВт на стойку, сегодня мы видим серверные стойки с тепловыделением 20-30 кВт. Проблема излишков теплоты усугубляется повышением выходных температур, которые с появлением сверхкомпактных серверов почти удвоились. И поскольку в эффективность и надежность производятся все возрастающие вложения, приносящие все меньшие и меньшие проценты улучшений, решение проблем энергоснабжения и охлаждения предотвратит затраты на ИТ-инфраструктуру.

Кроме того, нагрузки серверов сейчас становятся динамическими, так как во время простоя включаются «спящие режимы». Это приводит к мгновенному скачку тепловыделения, который только для одной стойки может дать переход с 3 к 24 кВт. Холодильные агрегаты, располагающиеся по периметру зала, и системы охлаждения с «приподнятым полом» не способны откликаться на такие динамические изменения.

Далее распространение ИТ-применений в огромной степени обостряет проблему глобального потепления, создавая больше углеродных загрязнений, чем индустрия авиаперевозок. Поэтому должны быть разработаны более эффективные способы отвода тепла.

В связи с этим в последние годы имело место движение в сторону «систем замкнутого локального охлаждения». Система замкнутого локального охлаждения опирается не на распределение воздуха под полом в попытке доставить в нужное место нужное количество холодного воздуха за требуемое время отклика; система замкнутого локального охлаждения отличается тем, что это конструктивная методика эффективного отвода тепла от источника его выделения.

Это достигается размещением холодильных агрегатов среди серверных стоек таким образом, чтобы охлаждающие батареи холодильных агрегатов располагались очень близко к источнику тепла.

Система замкнутого локального охлаждения представляет собой отказ от традиционного подхода, при котором пытались поддерживать во всем центре обработки данных равномерно прохладную температуру, и движение в сторону нейтрализации тепла внутри горячего прохода, предотвращая тем самым попадание тепла, выделенного ИТ-серверами, в зал и перенос его циркуляцией воздуха к передней стороне стоек, где оно могло бы чрезмерно поднять температуру воздуха, входящего в ИТ-серверы. Размещение холодильных агрегатов среди серверных рядов позволяет закрыть горячий проход для предотвращения рассеяния тепла по всему центру обработки данных. Благодаря размещению холодильных агрегатов среди серверных стоек эти агрегаты могут забирать тепло из горячего прохода и отдавать воздух с температурой чуть ниже комнатной в холодный проход. Таким образом тепло, генерируемое в центре обработки данных, нейтрализуется без циркуляции по всему залу.

Система замкнутого локального охлаждения имеет много присущих ей преимуществ. Увеличением температуры воздуха, возвращающегося в холодильные агрегаты, от комнатной температуры смешанного воздуха 24°С до температуры горячего прохода 34°С можно достичь более 40% повышения производительности батареи охлаждения без увеличения первоначальных капитальных затрат или количества агрегатов и устранить непредсказуемость распределения холодного воздуха, присущую системе с поднятым полом.

В настоящее время несколько компаний поставляют холодильные агрегаты для размещения среди традиционных серверных стоек. Так, например, American Power Conversion Corp. в настоящее время выпускает холодильный агрегат с охлажденной водой "In Row RC and RP". Это система кондиционирования воздуха в компьютерном зале, созданная для установки среди рядов серверных стоек. Изделие представляет собой интегрированный отдельно стоящий агрегат, который может быть расположен по усмотрению менеджера центра обработки данных. Аналогичные отдельно стоящие агрегаты уже поставляются и рядом других изготовителей, такими, например, как Rittal и Knuerr.

Однако эти отдельно стоящие охлаждающие агрегаты должны размещаться в уже существующих рядах, что вызывает дезорганизацию работы центра обработки данных на время реконструкции, включающей электропроводку и прокладку труб для охлажденной воды. Кроме того, стоимость этих элементов высока, и их расположение должно быть определено при размещении стойки, что снижает гибкость компоновки зала.

Поэтому предприятия, стремящиеся модифицировать свои центры обработки данных, используя последние достижения технологии охлаждения, сталкиваются с проблемой высокой цены как в денежном выражении, так и в плане нарушения работы агрегатов, имеющихся в центре обработки данных.

Таким образом, в промышленности существует потребность в более экономичном холодильном агрегате, который позволял бы использовать имеющиеся фонды и мог бы быть легко встроен в центре обработки данных.

Раскрытие изобретения

Согласно настоящему изобретению предлагается холодильный агрегат, включающий, по меньшей мере, одну охлаждающую батарею, по меньшей мере, один вентилятор для обеспечения циркуляции воздуха сквозь упомянутую, по меньшей мере, одну охлаждающую батарею и кожух, содержащий упомянутую, по меньшей мере, одну охлаждающую батарею и вентилятор, причем агрегат отличается тем, что упомянутый кожух имеет размеры, позволяющие встроить его в ИТ-серверную стойку, и выполнен с возможностью крепления к упомянутой стойке.

Таким образом, изобретение включает автономный холодильный агрегат, который легко может быть вставлен в существующую ИТ-серверную стойку и закреплен внутри нее. Как отмечалось выше, конструкция стоек годами оставалась почти неизменной, так что старые и новые серверы могут быть размещены в одной и той же стойке. Это постоянство позволяет конструкторам серверов создавать серверы с такими размерами, которые позволят использовать новые серверы наряду с существующими и в существующих стойках.

Вместо того чтобы предлагать отдельно стоящий холодильный агрегат, авторы настоящего изобретения использовали преимущество стандартных размеров стоек, чтобы предложить холодильный агрегат, который может быть просто и быстро вставлен в любую серверную стойку.

Кожух агрегата предпочтительно включает монтажные планки для крепления к упомянутой стойке.

Как отмечалось выше, почти все стойки в центрах обработки данных соответствуют стандарту Е1А 310 D, и, в частности, схеме с размером 19 дюймов или 450 мм. Поэтому кожух предпочтительно имеет размеры, позволяющие встроить его в ИТ-серверную стойку, соответствующую требованиям стандарта EIA 310 D.

Поэтому, с точки зрения другой особенности настоящего изобретения, предлагается холодильный агрегат, включающий, по меньшей мере, одну охлаждающую батарею, по меньшей мере, один вентилятор для обеспечения циркуляции воздуха сквозь упомянутую, по меньшей мере, одну охлаждающую батарею и кожух, содержащий упомянутую, по меньшей мере, одну охлаждающую батарею и вентилятор, причем агрегат отличается тем, что упомянутый кожух имеет размеры, позволяющие встроить его в ИТ-стойку, соответствующую стандарту EIA 310 D, и включает монтажные планки для крепления к упомянутой стойке.

Монтажные планки кожуха холодильного агрегата сконструированы в соответствии со стандартом EIA 310 D, а следовательно, так, что обеспечивают надежное крепление агрегата к стойке. Эти планки могут быть выполнены как часть кожуха или изготовлены отдельно и прочно прикреплены к кожуху.

Предпочтительно, чтобы в каждой монтажной планке имелся ряд отверстий, идущих либо с универсальным интервалом, либо в соответствии с требованиями нормы МЭК 25 мм. Таким образом, холодильный агрегат может быть выполнен для крепления к стойкам, имеющим любое расположение отверстий, предписанное стандартом EIA 310 D. Поскольку возможно снабжать кожух монтажными планками обоих типов, то для крепления агрегата к стойке может быть использован тот тип, который нужен.

В другом предпочтительном варианте осуществления настоящего изобретения монтажные планки включают первую часть, снабженную отверстиями, разнесенными в соответствии с универсальным интервалом, и вторую часть, снабженную отверстиями, разнесенными в соответствии с нормой 25 мм. Благодаря этому одна и та же монтажная планка может быть использована для крепления холодильного агрегата как к универсальным рейкам или рейкам с широким шагом (путем совмещения отверстий первой части с отверстиями реек), так и к рейкам с шагом 25 мм (путем совмещения отверстий второй части с отверстиями реек).

Вместо универсального интервала расположения отверстий на планке или первой части планки, может быть реализована схема с широким шагом.

Монтажная планка может включать L-образную рейку, устанавливаемую горизонтально внутри стойки. Прорези на обоих концах формируют отверстия под болты, которые пропускаются сквозь них для крепления холодильного агрегата к вертикальным U-рейкам стойки, и обеспечивают известную гибкость позиционирования. Предпочтительны четыре вертикальные прорези, по две, расположенные одна над другой, на каждом конце.

Кожух может также включать фланцы, сквозь которые могут проходить в вертикальную U-рейку стойки болты или иные крепежные элементы для крепления агрегата на его месте. В наиболее предпочтительном варианте осуществления фланец предусматривается на заднем краю предпочтительно съемной решетчатой панели. При установленной решетчатой панели фланец может выступать наружу и выходить в вертикальном направлении выше боковины кожуха. Таким образом, холодильный агрегат может быть выдвинут в стойке вперед до упора фланца в вертикальную U-рейку стойки и так, чтобы, по меньшей мере, один охлаждающий вентилятор выступал за границу стойки.

Предлагая автономный холодильный агрегат, который имеет размеры, позволяющие вставить его в стойку, соответствующую требованиям стандарта Е1А 310 D, авторы настоящего изобретения создали простое средство включения холодильного агрегата в ряд серверов. Так как никакого отдельно стоящего холодильного агрегата покупать при этом не нужно, достигается значительное снижение затрат. К тому же холодильный агрегат легко может быть установлен в существующую стойку, соответствующую стандарту EIA 310 D, в любом требуемом положении в центре обработки данных.

Это позволяет малым предприятиям воспользоваться преимуществами последних достижений технологии охлаждения компьютерных залов.

Если какой-нибудь холодильный агрегат выйдет из строя, то благодаря тому, что в системе замкнутого локального охлаждения остальные холодильные агрегаты расположены в серверных стойках вместе с оборудованием, подлежащим охлаждению, такой запас мощности обеспечит меньшее разрастание зон горячего воздуха, чем при традиционном расположении, когда холодильные агрегаты располагаются по периметру компьютерного зала. Таким образом, установка холодильных агрегатов в серверных стойках оптимизирует выгоды замкнутого локального охлаждения, значительно облегчая введение в систему надежного запаса мощности на уровне рядов. Кроме того, замкнутое локальное охлаждение минимизирует локальные колебания температуры, что особенно важно при высокой плотности размещения.

В системы охлаждения предпочтительно вводить запас мощности, так, например, в серверной стойке или стойках, требующих для охлаждения без резерва мощности N холодильных агрегатов, может быть предусмотрено N+1 или N+2 холодильных агрегата. В системе охлаждения со «встроенным» запасом мощности эксплуатация всех холодильных агрегатов на пониженных скоростях для получения того же потока воздуха обеспечивает в плане эксплуатационных затрат преимущество перед сопоставимыми системами охлаждения без запаса мощности, в которых вентиляторы работают на более высоких скоростях. Так, например, эксплуатация шести вентиляторов на меньшей скорости для получения номинального объемного расхода в 16 000 м3/ч с запасом мощности+2 (т.е. по схеме N+2, где N=4) может дать 33% снижения годовых эксплуатационных затрат в сравнении с эксплуатацией четырех вентиляторов на более высоких скоростях для получения того же расхода без запаса мощности. Такой встроенный запас мощности может привести к снижению потребления энергии и дать значительную экономию эксплуатационных затрат, в то же время обеспечивая повышенную гибкость в эксплуатации. Наряду с выгодами, имеется и небольшой убыток в связи с более высокими начальными затратами на установку и затратами на техобслуживание дополнительных агрегатов.

Установка холодильных агрегатов в серверную стойку дает возможность сформировать закрытый горячий проход, что обеспечивает повышенную эффективность и позволяет избежать изменения температуры в зале.

Хотя, как отмечалось выше, стандарт EIA 310 D устанавливает ряд альтернативных размеров по ширине, в наиболее распространенной схеме используется ширина внутреннего просвета (W2), равная 450 мм. Такую стойку обычно называют 19-дюймовой. Чтобы вписаться в этот наиболее распространенный тип стойки, кожух холодильного агрегата должен иметь ширину менее 450 мм. Кроме того, хотя высота и глубина 19-дюймовой стойки не регламентированы, предпочтительно, чтобы холодильный агрегат, сконструированный для использования с такой стойкой, имел глубину не более 1000 мм и высоту менее 1866 мм (42U). Однако, поскольку не все серверные стойки выполнены в виде закрытых шкафов, то в отношении глубины размер кожуха холодильного агрегата не существенен. Если холодильный агрегат можно вдвинуть в стандартную ИТ-стойку и прикрепить к ней, он отвечает требованиям настоящего изобретения.

С точки зрения еще одной особенности настоящего изобретения предлагается холодильный агрегат, включающий, по меньшей мере, одну охлаждающую батарею, по меньшей мере, один вентилятор для обеспечения циркуляции воздуха сквозь упомянутую, по меньшей мере, одну охлаждающую батарею и кожух, содержащий упомянутую, по меньшей мере, одну охлаждающую батарею и вентилятор, причем агрегат отличается тем, что упомянутый кожух имеет ширину менее 450 мм, глубину не более 1000 мм и высоту менее 1866 мм. В одном из предпочтительных вариантов осуществления настоящего изобретения четыре вентилятора для обеспечения циркуляции воздуха сквозь, по меньшей мере, одну охлаждающую батарею расположены пакетно, чтобы вписаться в эту высоту. Эти четыре вентилятора для облегчения манипуляций могут быть размещены двумя блоками по два вентилятора, при этом каждый блок сдвоенных вентиляторов снабжен собственной охлаждающей батареей.

На практике высота кожуха холодильного агрегата намного меньше этого верхнего предела. Это позволяет вставлять холодильный агрегат в ту же стойку, что и прочие компоненты, например серверы.

Ширина кожуха холодильного агрегата предпочтительно составляет около 448 мм. Предпочтительный размер в глубину составляет 895 мм, а предпочтительный размер в высоту - 890 мм.

В альтернативном варианте размеры холодильного агрегата могут быть сделаны такими, чтобы агрегат входил в 24-дюймовую стойку по стандарту EIA 310 D. В таких стойках внутренняя ширина (W2) составляет 577 мм, и поэтому кожух должен иметь ширину меньше этой.

Монтажные планки могут быть предусмотрены таким образом, чтобы они обеспечивали непосредственное или опосредованное крепление к стойке. Непосредственный монтаж означает, что монтажные планки непосредственно соединяются с вертикальными рейками стандартной ИТ-стойки. Опосредованный монтаж означает, что вместо этого холодильный агрегат монтируется, например, на скользящих рейках или на полке, размещенной в стойке. Это удобно, так как позволяет легко выдвинуть холодильный агрегат из стойки для проведения техобслуживания.

Поэтому предпочтительно, чтобы монтажные планки обеспечивали опосредованное крепление к упомянутой стойке. Кожух может снабжаться монтажными планками спереди и сзади, предпочтительно и там и тут, чтобы холодильный агрегат можно было прикрепить как к передней, так и к задней рейке стойки.

Холодильный агрегат может представлять собой холодильный агрегат с охлажденной водой. То есть при использовании холодильный агрегат подсоединяется к источнику охлажденной воды. Однако возможна также эксплуатация холодильного агрегата с использованием другого типа охлаждающего средства, или хладагента.

Предпочтительно, далее, чтобы холодильный агрегат включал фильтр. Это предотвращает засорение внутренних компонентов холодильного агрегата пылью и иными мелкодисперсными материалами.

Холодильный агрегат может представлять собой отдельный узел, предназначенный для вставки в любую существующую стандартную стойку, например, в стойку по стандарту Е1А 310 D. Однако возможна также поставка холодильного агрегата, уже смонтированного в такой стойке.

Поэтому, с точки зрения следующей особенности настоящего изобретения, предлагается ИТ-серверная стойка, содержащая холодильный агрегат согласно настоящему изобретению.

Эта серверная стойка предпочтительно соответствует требованиям стандарта EIA 310 D.

Поэтому, в отличие от интегрированных отдельно стоящих холодильных агрегатов, стойка согласно настоящему изобретению содержит полностью съемный холодильный агрегат. Стойка и холодильный агрегат являются отдельными компонентами, каждый из которых может использоваться независимо от другого. Это обеспечивает гибкость для совершенствования возможностей охлаждения машинного зала при добавлении нового высокопроизводительного ИТ-оборудования, т.е. холодильные агрегаты можно добавлять на стойки, снимать со стоек или перемещать.

В одном из предпочтительных вариантов осуществления настоящего изобретения холодильный агрегат включает кожух, который имеет размеры, позволяющие встроить его в стойку, соответствующую требованиям стандарта EIA 310 D, и снабжен средствами крепления к упомянутой стойке.

В одном из предпочтительных вариантов осуществления настоящего изобретения стойка включает первую пару расположенных против друг друга вертикальных реек и вторую пару расположенных против друг друга вертикальных реек, причем расстояние между первой и второй парами реек определяет внутреннее пространство, имеющее ширину около 450 мм, при этом расположенные против друг друга вертикальные рейки упомянутых первой и второй пар вертикальных реек попарно согласованы по ширине внутреннего пространства, по длине каждой рейки имеется ряд отверстий, и указанный ряд отверстий одной рейки сцентрован по горизонтали с указанным рядом отверстий расположенной напротив рейки так, что межцентровое расстояние противолежащих отверстий составляет примерно 465 мм, а холодильный агрегат имеет размеры, меньшие этого внутреннего пространства, так что холодильный агрегат может быть вставлен в это пространство, и включает монтажные планки для крепления к указанным расположенным против друг друга вертикальным рейкам с помощью упомянутых рядов отверстий.

В другом предпочтительном варианте осуществления настоящего изобретения внутреннее пространство имеет ширину около 577 мм, и межцентровое расстояние противолежащих отверстий составляет примерно 592 мм.

Стойка согласно настоящему изобретению, ниже называемая охлаждающей стойкой, может быть расположена рядом со стойками, содержащими ряд серверов, чтобы обеспечить замкнутое локальное охлаждение, обсуждавшееся выше. Кроме того, возможна также установка серверов в саму охлаждающую стойку.

Для обеспечения наиболее эффективного отбора тепла холодильным агрегатом от окружающих серверов стойка предпочтительно включает камеру возвратного воздуха, прикрепленную к холодильному агрегату, причем указанная камера является раздвижной, чтобы закрыть заднюю часть, по меньшей мере, одной стойки, соответствующей требованиям стандарта Е1А 310 D.

Поэтому эта камера может закрывать одну или несколько стоек по стандарту EIA 310 D и может направлять горячий воздух, исходящий из этих стоек, в холодильный агрегат. Это предотвращает распространение горячего воздуха по центру обработки данных. Эта камера может включать неиспользуемое пространство в задней части охлаждающей стойки в тех вариантах осуществления, в которых глубина стойки больше, чем у холодильного агрегата. В одном из предпочтительных вариантов осуществления эта камера, далее, включает облицовку или обшивку, размещенную сзади охлаждающей стойки, и дополнительные облицовки или обшивки, аналогично размещенные на одной или нескольких соседних серверных стойках. Это создает уплотненную камеру, направляющую выходящий горячий воздух в холодильный агрегат.

Применение холодильных агрегатов и охлаждающих стоек согласно настоящему изобретению дает пользователю возможность воспользоваться всеми преимуществами, связанными с замкнутым локальным охлаждением, без необходимости встраивать специализированные холодильные агрегаты в компоновку центра обработки данных.

Кроме того, было обнаружено, что если вентилятор холодильного агрегата расположен за границей стойки, потребление электроэнергии моторами вентилятора значительно снижается. Это сопровождается снижением углеродных загрязнений среды холодильным агрегатом. Объясняется это тем, что нет потери внутреннего статического давления, которое должен преодолевать вентилятор в случае, когда вентиляторы полностью находятся внутри шкафа. Такая схема применения позволяет также направлять поток охлажденного воздуха прямо по фронту соседних стоек, содержащих ИТ-серверы.

Поэтому холодильный агрегат согласно настоящему изобретению предпочтительно устанавливать в стойку так, чтобы, по меньшей мере, один вентилятор располагался за границей стойки. «За границей стойки» означает за габаритным размером стойки, включающим любую обшивку, прикрепленную к каркасу стойки. Вентилятор может быть установлен в таком положении после удаления передней дверцы, если она есть, или обшивки стойки, в которую должен быть установлен холодильный агрегат, с последующей установкой агрегата таким образом, чтобы вентилятор выступал за границу стойки. В альтернативном варианте в обшивке или планке может быть предусмотрено отверстие, сквозь которое может выступать вентилятор.

Холодильный агрегат может быть расположен так, чтобы вентилятор выступал за границу стойки при изменении положения монтажных планок кожуха или при регулировке положения крепления холодильного агрегата к полке внутри стойки. В альтернативном варианте холодильный агрегат может быть вставлен в стойку, имеющую меньшую глубину, чем у кожуха холодильного агрегата, так что вентилятор будет выступать за границу стойки.

Предпочтительно, чтобы холодильный агрегат, содержащий, по меньшей мере, один вентилятор, включал планку с двумя или несколькими штатными положениями установки, что позволит устанавливать холодильный агрегат как для использования в утопленном положении, т.е. так, чтобы, по меньшей мере, один вентилятор располагался в пределах границ стойки, так и - опционно - для использования в полуутопленном положении, т.е. так, чтобы, по меньшей мере, один вентилятор располагался за пределами границ стойки. Это обеспечивает все отмеченные ранее преимущества замкнутого локального охлаждения для утопленной схемы с высокой плотностью ИТ-нагрузки, но это одновременно позволяет конструктору использовать преимущество экономической эффективности и иные выгоды, которые дает возможность выдвинуть холодильный агрегат вперед так, чтобы, по меньшей мере, один вентилятор располагался за пред