Добавка к жидкости для обработки подземного пласта и способ обработки подземного пласта
Иллюстрации
Показать всеИзобретение относится к обработке подземных пластов, конкретно к добавкам, улучшающим свойства используемых при этом композиций, и способам обработки с использованием этих добавок. Добавка к обрабатывающей жидкости для повышения проницаемости проппантной упаковки содержит агент для регулирования рН и агент, контролирующий выпадение осадка, при их массовом соотношении от 1:1 до 200:1 и добавка выбрана в гранулированном виде. Способ повышения проницаемости проппантной упаковки включает подготовку обрабатывающей жидкости, содержащей вязкоупругое поверхностно-активное вещество, имеющее, по меньшей мере, одну разлагаемую связь, или загущающий полимер, гидролизуемый материал, указанную выше добавку, и введение подготовленной обрабатывающей жидкости в пласт. Изобретение развито в зависимых пунктах формулы. Технический результат - снижение или устранение остаточных твердых компонентов в разломе. 2 н. и 23 з.п. ф-лы, 5 пр., 2 табл., 5 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к технологии обработки подземных пластов и, более конкретно, к добавкам к жидкой обрабатывающей композиции, содержащей основную смесь и разлагаемое вещество, которые позволяют существенно улучшить свойства упомянутой композиции, и к способам обработки подземного пласта с использованием упомянутой композиции с упомянутыми добавками, в частности к способам доставки жидкой обрабатывающей композиции, способной транспортировать расклинивающие наполнители с разлагаемым веществом в пласт с целью применения при пониженных температурах.
УРОВЕНЬ ТЕХНИКИ
Гидравлический разрыв подземных пластов с давних пор зарекомендовал себя как эффективное средство стимулирования добычи углеводородных жидкостей из скважины. При гидравлическом разрыве пласта жидкость для интенсификации притока в скважину (обычно называемую жидкостью для гидроразрыва) вводят в скважину и через нее подают к поверхности подземного пласта, пересеченного скважиной, под давлением, по меньшей мере достаточным для создания разлома в пласте. Обычно для создания разлома сначала закачивают «заполняющую жидкость», а затем жидкость для гидроразрыва, часто несущую зернистые расклинивающие наполнители, под давлением и при расходе, которые достаточны для увеличения разлома от скважины вглубь пласта. При использовании расклинивающего наполнителя задача, в общем, сводится к созданию зоны, заполненной расклинивающим наполнителем, проходящей от границы разлома к скважине. В любом случае гидравлически созданный разлом является более проницаемым, чем указанный пласт, и представляет собой путепровод или канал, по которому углеводородные жидкости в пласте поступают к скважине и затем на поверхность, где их собирают.
В качестве жидкостей для гидроразрыва используют самые разнообразные жидкости, но многие, если не большинство из них, являются жидкостями на водной основе, которые загущают или вязкость которых увеличивают путем добавления натурального или синтетического полимера (сшитого или несшитого) либо вязкоупругого поверхностно-активного вещества (VES). Жидким носителем обычно является вода или соляной раствор (например, разбавленные водные растворы хлорида натрия и/или хлорида калия).
Загущающий полимер обычно представляет собой сольватируемый (или гидратируемый) полисахарид, такой как галактоманнановая камедь, глюкоманнановая камедь или производное целлюлозы. Примеры таких полимеров включают гуар, гидроксипропилгуар, карбоксиметилгуар, карбоксиметилгидроксиэтилгуар, гидроксиэтилцеллюлозу, карбоксиметилгидроксиэтилцеллюлозу, гидроксипропилцеллюлозу, ксантан, полиакриламиды и другие синтетические полимеры. Из вышеуказанных веществ гуар, гидроксипропилгуар и карбоксиметилгидроксипропилгуар обычно являются предпочтительными благодаря их коммерческой доступности и выгодной стоимости.
Во многих случаях, если не в большинстве, полимерный загуститель представляет собой сшитый подходящим сшивающим агентом полимер. Сшитый полимер имеет еще более высокую вязкость и является более эффективным при переносе расклинивающего наполнителя в разорванный пласт. Боратный ион широко используется в качестве сшивающего агента, обычно в жидкостях с высоким значением рН, для гуара, производных гуара и других галактоманнанов. Другие сшивающие агенты включают, например, титан, хром, железо, алюминий и цирконий.
Вязкоупругие жидкие поверхностно-активные вещества обычно получают путем смешивания в жидком носителе соответствующих количеств подходящих поверхностно-активных веществ, таких как анионогенные, катионогенные, неионогенные и цвиттерионные поверхностно-активные вещества. Вязкость вязкоупругих жидких поверхностно-активных веществ объясняется трехмерной структурой, формируемой компонентами в жидкости. Когда концентрация вязкоупругих поверхностно-активных веществ существенно превышает критическую концентрацию, молекулы поверхностно-активных веществ агрегируются в мицеллы, которые могут быть очень сильно сплетены с образованием сетчатой структуры, проявляющей упругие свойства.
Растворы вязкоупругих поверхностно-активных веществ обычно получают путем добавления некоторых реагентов к концентрированным растворам поверхностно-активных веществ, зачастую состоящих из длинноцепочечных четвертичных аммониевых солей, таких как бромид цетилтриметиламмония (СТАВ). Обычные реагенты, которые инициируют возникновение вязкоупругих свойств у растворов поверхностно-активных веществ, представляют собой соли, такие как хлорид аммония, хлорид калия, салицилат натрия и изоцианат натрия, и неионные органические молекулы, такие как хлороформ. Содержание электролитов в растворах поверхностно-активных веществ также является важным фактором контроля их вязкоупругих свойств.
В процессе гидравлического разрыва пласта важным обстоятельством может быть контроль роста глубины разлома. В тех случаях, когда уровень грунтовых вод близок к зоне разрыва или когда зоны разрыва имеют низкие барьеры механических напряжений, так что рост глубины разлома может приводить к выпадению расклинивающего наполнителя из жидкости для гидроразрыва, контроль глубины разлома может быть критически важным. Обычная технология контроля глубины разлома состоит в применении жидкостей с более низкой вязкостью, таких как вязкоупругие поверхностно-активные средства (VES) или линейные гели. Однако жидкости с пониженной вязкостью неспособны к эффективному переносу в разлом крупноразмерных расклинивающих наполнителей.
Один из известных способов разрешения проблемы состоит во введении в поверхностно-активные жидкости деградируемых (разлагаемых) волокон. Разлагаемые волокна используются во многих технологических процессах, включая перенос проппантов, отклонение потоков жидкости при гидроразрыве и кислотной обработке карбонатов и, в последнее время, при потере бурового раствора при бурении. Использование деградируемых волокон в процессе гидроразрыва пласта (проппант+жидкость гидроразрыва+деградируемые волокна) позволяет в первый период времени обеспечить перенос проппанта и получение уплотненной структуры, что предотвращает смыкание трещины гидроразрыва. В дальнейшем необходимо обеспечить растворение волокон с целью повышения проницаемости проппантовой упаковки. Наиболее предпочтительным волокном для большинства из этих применений является полимолочная кислота (ПМА) из-за ее механических свойств и подходящих свойств с точки зрения разложения, а также ее легкодоступности и наибольшей эффективности с точки зрения стоимости по сравнению с другими разлагаемыми материалами. Такие применения были раскрыты в патентах US 7565929, US 7380600, US 7275596, EP 1556458.
Однако разрушение волокон и содержащего волокна вязкоупругого поверхностно-активного вещества (VES) в жидкости для гидроразрыва связано с известными проблемами. Как было показано, волокна из полимолочной кислоты (ПМК) разлагаются на растворимые вещества под действием температуры и времени. Однако при температурах ниже 82°С ПМК-волокна разлагаются слишком медленно, чтобы их можно было использовать для обработки нефтяных месторождений в низкотемпературных скважинах с температурами ниже 82°С, в частности с температурами от 10°С до 50°С. Поэтому ранее применения разлагаемых волокон были ограничены температурами выше 82°С исходя из скорости их разложения.
Некоторое время назад фирмой Schlumberger в связи с данной проблемой было предложено использовать специальную добавку к жидкости гидроразрыва, которая ускоряет растворение волокон (см. заявку RU 2010138242). Данная добавка содержит агенты контроля рН, или рН-буферные агенты (такие как, например, гидроксиды металлов, оксиды металлов, гидроксиды кальция, карбонаты металлов, бикарбонаты металлов). После завершения закачки обрабатывающей жидкости в пласт и ее нагрева до температуры пласта в жидкости за счет наличия агентов контроля рН начинает создаваться щелочная среда, которая и ускоряет растворение разлагаемых волокон.
Однако данное решение также не свободно от недостатков. Как показал опыт его применения, хотя скорость растворения разлагаемых волокон и возрастает при добавлении агентов контроля рН, при работе в области низких температур (порядка 50°С и ниже) происходит снижение скорости реакции. Одной из причин этого может быть переход ПМА из аморфной в кристалличнескую форму. Другой причиной может быть образование в рабочей жидкости нерастворимого осадка, например, сульфата кальция или карбоната кальция. Данный осадок в той или иной степени блокирует как твердые частицы агентов контроля рН, не позволяя им с достаточной скоростью поступать в рабочую жидкость и поддерживать рН на нужном уровне, так и сами деградируемые волокна, затрудняя разложение последних.
Таким образом, имеется потребность в разработке улучшенной рецептуры добавки к жидкой обрабатывающей композиции, позволяющей получить вязкоупругую жидкую поверхностно-активную композицию, которая могла бы эффективно транспортировать крупноразмерные расклинивающие наполнители и при этом с достаточной скоростью разлагаться при низкотемпературных условиях (ниже 82°С, например 40°С или 60°С), оставляя в разломе лишь немного остаточных твердых компонентов либо вообще не оставляя их.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
С целью решения вышеуказанной проблемы авторами настоящего изобретения разработана добавка к жидкости для обработки пласта, содержащая в своем составе, по меньшей мере, следующие компоненты: агент для регулирования величины рН (далее называемый также «агент контроля рН»), регулирующий рН жидкости для обработки пласта и тем самым ускоряющий разложение деградируемых волокон; и агент, контролирующий выпадение осадка.
Входящий в состав добавки по настоящему изобретению агент для регулирования величины рН должен обеспечивать значение рН, равное или большее чем примерно 9. Агент контроля рН может, например, содержать по меньшей мере одно вещество, выбранное из группы, включающей гидроксиды, оксиды, карбонаты и бикарбонаты щелочных и щелочноземельных металлов.
Другой необходимый компонент добавки - агент, контролирующий выпадение осадка, назначение которого состоит в том, чтобы предотвратить или максимально замедлить образование нерастворимых соединений в рабочей жидкости в процессе осуществления гидроразрыва и других видов обработки подземного пласта. В качестве таких агентов, согласно настоящему изобретению, могут применяться этилендиаминтетрауксусная кислота (EDTA) и/или ее соли, а также аминотриметиленфосфоновая кислота (АТМР) и/или ее соли.
Согласно другому варианту реализации настоящего изобретения предлагается способ обработки подземного пласта, пересеченного скважиной, с использованием вышеописанной добавки. Такой способ включает: подготовку обрабатывающей жидкости, содержащей загущающий полимер либо вязкоупругое поверхностно-активное вещество, имеющее, по меньшей мере, одну разлагаемую связь, гидролизуемый материал, и добавку к жидкости для обработки пласта согласно настоящему изобретению; и введение подготовленной таким образом обрабатывающей жидкости в подземный пласт.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1 представлен график разложения волокон ПМК при температуре 50 градусов через 36 часов.
На Фиг.2 представлен график остаточной проводимости проппантной пачки с Ca(OH)2 при 50 градусах Цельсия
На Фиг.3 представлен график остаточной проводимости проппантной пачки с Са(ОН)2 при 75 градусах Цельсия
На Фиг.4 представлен график остаточной проводимости проппантной пачки с Са(ОН)2 и Na4EDTA при 50 градусах Цельсия
На Фиг.5 представлен график остаточной проводимости проппантной пачки с Са(ОН)2, NaOH и АМТР при 50 градусах Цельсия
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Прежде всего, необходимо отметить, что более подробно описываемые ниже предпочтительные варианты реализации изобретения и приводимые примеры представлены исключительно для иллюстрации возможностей реализации общих идей настоящего изобретения и не ограничивают изобретение только указанными вариантами. При практической реализации настоящего изобретения разработка любого конкретного варианта реализации с выбором конкретных условий и параметров потребует принятия многочисленных решений, зависящих от конкретных задач, поставленных разработчиком, таких как соответствие требованиям, связанными с техническими системами и коммерческой деятельностью, которые будут варьировать в зависимости от того или иного варианта осуществления направленных на решение. Такой выбор может осуществляться в широких интервалах условий, а упомянутые разработки могут быть сложными и трудозатратными. Тем не менее они будут являться рутинными для среднего специалиста в данной области техники с учетом настоящего описания, а полученные частные варианты реализации изобретения будут соответствовать сути изобретения и входить в его объем, который определяется только формулой изобретения, представляемой с настоящей заявкой.
При изучении данного описания следует иметь в виду, что, хотя композиции согласно настоящему изобретению могут быть описаны здесь таким образом, что они содержат определенные вещества (материалы), следует учитывать, что композиция может содержать два или более химически различных материала одного назначения. Кроме того, композиция может также содержать несколько компонентов, отличных от тех, что указывались в настоящей заявке.
Далее, везде в описании настоящего изобретения каждое численное значение один раз следует рассматривать как значение с использованием термина "примерно" (если этого явно не указано) и затем снова рассматривать как неизмененное значение, если в контексте не указано иное. Также, в кратком описании изобретения и в настоящем подробном описании, следует учитывать, что любые значения из интервала концентраций, приведенного или описанного в качестве применяемого, подходящего или т.п., в том числе конечные значения интервала, следует рассматривать в качестве заявленных. Например, следует считать, что "интервал от 1 до 10" включает каждое и любое возможное число в пределах бесконечного множества между примерно 1 и примерно 10. Таким образом, даже если указаны конкретные значения в пределах интервала или ни одно из значений не указано в пределах интервала или указано только несколько конкретных значений, следует учитывать, что авторы изобретения предполагают, что любые и все значения в пределах указанного интервала были установлены и что авторами заявлен полный интервал и все точки в пределах указанного интервала.
Также, если специально не указано иное, в настоящей заявке все процентные содержания представляют собой процентные содержания по массе.
Согласно одному из вариантов реализации изобретения предлагается добавка к жидкости для обработки пласта, содержащая в своем составе, по меньшей мере, следующие компоненты: агент для регулирования величины рН, регулирующий рН и тем самым ускоряющий разложение деградируемых волокон; и агент, контролирующий выпадение осадка.
Жидкость для обработки пласта, согласно настоящему изобретению, представляет собой жидкость, в состав которой входят загущающий полимер либо вязкоупругое поверхностно-активное вещество, имеющее, по меньшей мере, одну разлагаемую связь, а также разлагаемый материал.
Загущающий полимер включает в себя природный или синтетический полимер. В одном из вариантов реализации изобретения природный или синтетический полимер включает в себя гидратируемый полисахарид, выбранный из галактоманнановой камеди, глюкоманнановой камеди и производных целлюлозы.
В одном из более предпочтительных вариантов реализации изобретения загущающий полимер представляет собой производное целлюлозы, выбранное из гуара, гидроксипропилгуара, карбоксиметилгуара, карбоксиметилгидроксиэтилгуарА, гидроксиэтилцеллюлозы, карбоксиметилгидроксиэтилцеллюлозы, гидроксипропилцеллюлозы, ксантана.
Альтернативно жидкость для обработки пласта может содержать вязкоупругое поверхностно-активное вещество, имеющее, по меньшей мере, одну разлагаемую связь.
При загущении жидкости для обработки пласта путем добавления вязкоупругих поверхностно-активных веществ предполагают, что увеличение вязкости обусловлено образованием мицелл, например червеобразных мицелл, которые сплетаются, придавая жидкости структуру, обеспечивающую увеличение вязкости. Помимо самой вязкости важным аспектом свойств жидкости является степень восстановления вязкости, или возвращение к прежнему состоянию, при воздействии на жидкость сильного сдвигового напряжения, а затем снятия сдвигового напряжения. Для вязкоупругих поверхностно-активных жидкостей сдвиг может разрушить мицеллярную структуру, после чего структура реформируется. Регулирование степени реорганизации (возвращения к прежнему состоянию) необходимо для максимизации эффективности поверхностно-активной системы при различных применениях. Например при гидравлическом разрыве пласта критическим для жидкости является восстановление вязкости, настолько быстрое, насколько возможно, после выхода из зоны высокого сдвигового напряжения в трубопроводах и при входе в среду со слабыми сдвиговыми напряжениями в гидравлической разломе. С другой стороны, при очистке скрученных труб желательно обеспечить некоторую задержку восстановления полной вязкости, чтобы более эффективно смыть сильной струей твердые компоненты со дна скважины в межтрубное пространство. Именно в межтрубном пространстве восстановившаяся вязкость обеспечивает эффективный вынос твердых компонентов на поверхность. Таким образом, необходим контроль за восстановлением вязкости и временем, требуемым для такого восстановления.
При применении согласно настоящему изобретению можно использовать различные вязкоупругие поверхностно-активные вещества (ВПАВ). Так, подходящими могут быть катионные ВПАВ, цвитерионные ВПАВ, амфотерные ВПАВ. Также являются подходящими поверхностно-активные вещества с разлагаемой связью в молекуле. Поверхностно-активные вещества с разлагаемой связью в молекуле могут гидролизоваться с отделением гидрофильной головки от гидрофобного хвоста. Не желая быть связанным какой-либо теорией, предполагают, что такое разделение будет разрушать мицеллы, образованные вязкоупругим поверхностно-активным веществом.
Согласно одному из вариантов реализации, вязкоупругое поверхностно-активное вещество имеет гидролизуемую амидную связь в концевой группе согласно схеме
Типичные катионные вязкоупругие поверхностно-активные вещества включают аминные соли и четвертичные аминные соли, описанные в патентах США №5979557 и 6435277, которые имеют общего заявителя с настоящей заявкой и которые включены в настоящее описание посредством ссылки.
Примеры подходящих катионных вязкоупругих поверхностно-активных веществ включают катионные поверхностно-активные вещества, имеющие структуру:
R1N+(R2)(R3)(R4)Х-
в которой R1 содержит примерно от 14 до примерно 26 атомов углерода и может быть разветвленным или неразветвленным, ароматическим, насыщенным или ненасыщенным и может содержать карбонил, амид, ретроамид, имид или амин; R2, R3 и R4 каждый независимо представляет собой водород или алифатическую группу C1, примерно C6, которая может быть одинаковой или различной, разветвленной или неразветвленной, насыщенной или ненасыщенной, и одна или более чем одна из которых может иметь в качестве заместителя группу, которая делает группы R2, R3 и R4 более гидрофильными; группы R2, R3 и R4 могут быть включены в гетероциклическую пяти- или шестичленную кольцевую структуру, которая включает атом азота; группы R2, R3 и R4 могут быть одинаковыми или различными; и X- представляет собой анион. Также для применения в настоящем изобретении пригодны смеси таких соединений. В качестве дополнительного примера, R1 состоит примерно из 18 до примерно 22 атомов углерода и может содержать карбонил, амид или амин, и R2, R3 и R4 являются одинаковыми между собой и содержат от 1 до 3 атомов углерода. Катионные поверхностно-активные вещества, имеющие структуру R1N+(R2)(R3)(R4)X-, могут включать амины, имеющие структуру R1N(R2)(R3). Хорошо известно, что коммерчески доступные катионные поверхностно-активные вещества на основе четвертичных аминов часто содержат соответствующие амины (в которых R1, R2 и R3 в катионном поверхностно-активном веществе и в амине имеют одну и ту же структуру). При покупке, коммерчески доступные концентрированные составы вязкоупругих поверхностно-активных веществ, например катионные вязкоупругие поверхностно-активные составы, могут также содержать один или более ингредиентов из группы, состоящей из растворителей, сорастворителей, органических кислот, солей органических кислот, неорганических солей и олигомеров, полимеров, сополимеров и смесей этих ингредиентов. Они могут также содержать усилители эффективности, такие как вещества, повышающие вязкость, например полисульфонаты, например, полисульфоновые кислоты, как описано в находящейся на рассмотрении опубликованной патентной заявке США №2003-0134751, которая имеет общего заявителя с настоящей заявкой и которая включена в настоящее описание посредством ссылки.
Еще одно подходящее катионное вязкоупругое поверхностно-активное вещество представляет собой хлорид эруцил-бис(2-гидроксиэтил)метиламмония («ЕМНАС»), также известный как хлорид (Z)-13-докозенил-N,N-бис(2-гидроксиэтил)метиламмония. Обычно указанное вещество получают от производителей в виде смеси, содержащей примерно 60 массовых процентов поверхностно-активного вещества в смеси с изопропанолом, этиленгликолем и водой. В этом описании, авторы при упоминании «ЕМНАС» подразумевают указанный раствор. Прочие подходящие аминные соли и соли четвертичных аминов включают (индивидуально или в комбинации) хлорид эруцилтриметиламмония; хлорид 1H-метил-N,N-бис(2-гидроксиэтил)аммония полученный из рапсового масла; хлорид олеилметилбис(гидроксиэтил)аммония; хлорид эруциламидопропилтриметиламина, бромид октадецилметилбис(гидроксиэтил)аммония; бромид октадецилтрис(гидроксиэтил)аммония; бромид октадецилдиметилгидроксиэтиламмония; бромид цетилдиметилгидроксиэтиламмония; салицилат цетилметилбис(гидроксиэтил)аммония; 3,4,-дихлорбензоат цетилметилбис(гидроксиэтил)аммония; иодид цетилтрис(гидроксиэтил)аммония; бромид козилдиметилгидроксиэтиламмония; хлорид козилметилбис(гидроксиэтил)аммония; бромид козилтрис(гидроксиэтил)аммония; бромид дикозилдиметилгидроксиэтиламмония; хлорид дикозилметилбис(гидроксиэтил)аммония; бромид дикозилтрис(гидроксиэтил)аммония; хлорид гексадецилизопропилбис(гидроксиэтил)аммония; и хлоридцетиламино, N-октадецилпиридиния.
Цвиттерионные вязкоупругие поверхностно-активные вещества также пригодны для применения в настоящем изобретении. Типичные цвиттерионные вязкоупругие поверхностно-активные вещества включают вещества, описанные в патенте США №6703352, который имеет общего заявителя с настоящей заявкой и который включен в настоящее описание посредством ссылки. Типичные цвиттерионные поверхностно-активные вещества имеют структуру:
в которой R1 представляет собой гидрокарбил, который может быть разветвленным или неразветвленным, ароматическим, алифатическим или олефиновым и содержит примерно от 14 до примерно 26 атомов углерода, и может включать аминогруппу; R2 представляет собой водород или алкильную группу, содержащую от 1 до примерно 4 атомов углерода; R3 представляет собой нециклическую углеводородную группу, содержащую от 1 до примерно 5 атомов углерода; и Y представляет собой электроноакцепторную группу. Более конкретно, цвиттерионное поверхностно-активное вещество может иметь бетаиновую структуру:
в которой R представляет собой гидрокарбил, который может быть разветвленным или неразветвленным, ароматическим, алифатическим или олефиновым и содержать примерно от 14 до примерно 26 атомов углерода, возможно содержащий аминогруппу; n принимает значения примерно от 2 до примерно 4; и p принимает значения примерно от 1 до примерно 5. Можно также использовать смеси указанных соединений.
Два примера подходящих бетаинов представляют собой, соответственно, ВЕТ-0-30 и ВЕТ-Е-40. Вязкоупругое поверхностно-активное вещество в ВЕТ-0-30 представляет собой олеиламидопропилбетаин. В настоящей заявке это вещество обозначают как ВЕТ-0-30 по наименованию поставщика (фирма Rhodia, Inc., Cranbury, New Jersey, U.S.A.) - Mirataine BET-0-30; указанное вещество содержит амид олеиновой кислоты (включающую С17Н33-алкеновую концевую группу) и поставляется в виде примерно 30% активного поверхностно-активного вещества; оставшуюся часть, по существу, составляют вода, хлорид натрия, глицерин и Пропан-1,2-диол. Аналогичный подходящий материал, ВЕТ-Е-40, использовали в нижеописанных экспериментах; его химическое название - эруциламидопропилбетаин. ВЕТ-Е-40 также производится фирмой Rhodia; указанное вещество содержит группу амида эруковой кислоты (включающую C22H41-алкеновую концевую группу) и поставляется в виде примерно 40% активного ингредиента, при этом оставшуюся часть, по существу, составляют вода, хлорид натрия и изопропанол. ВЕТ-поверхностно-активные вещества и другие соединения, подходящие для применения в настоящем изобретении, описаны в патенте США No. 6703352.
Некоторые дополнительные поверхностно-активные вещества можно применять для повышения устойчивости к соляному раствору, для увеличения прочности геля, для сокращения времени восстановления вязкости после сдвигового напряжения и/или для снижения чувствительности к сдвигу цвиттерионных вязкоупругих жидких поверхностно-активных систем, таких как бетаиновые вязкоупругие жидкие поверхностно-активные вещества. Примером, приведенным в патенте США №6702352, является додецилбензолсульфонат натрия (SDBS). Еще один пример представляет полинафталинсульфонат. Цвиттерионные вязкоупругие поверхностно-активные вещества могут быть использованы с этим типом дополнительного поверхностно-активного вещества или без него, например веществом со структурой типа SDBS, имеющей насыщенную или ненасыщенную, разветвленную или неразветвленную С6-С16-цепь; другие примеры дополнительного поверхностно-активного вещества этого типа представляют собой вещества, включающие насыщенную или ненасыщенную, разветвленную или неразветвленную C8-C16-цепь. Другие подходящие примеры дополнительного поверхностно-активного вещества этого типа, в особенности для ВЕТ-0-30, представляют собой некоторые хелатообразующие вещества, такие как тринатриевая соль триацетата гидроксиэтилэтилендиамина. Известны многие добавки, подходящие для улучшения эффективности желатинизированных вязкоупругих поверхностно-активных систем; в настоящем изобретении можно использовать любые из них; перед применением эти добавки должны быть исследованы на совместимость с композициями и способами согласно вариантам реализации настоящего изобретения; простые лабораторные эксперименты для такого исследования хорошо известны.
Цвиттерионные поверхностно-активные вязкоупругие системы обычно содержат один или более ингредиентов из группы, состоящей из органических кислот, солей органических кислот, неорганических солей и олигомеров, полимеров, сополимеров и смесей этих ингредиентов. Указанные ингредиенты, как правило, содержатся лишь в небольшом количестве и совсем не обязательно присутствуют. Органическая кислота обычно представляет собой сульфоновую кислоту или карбоновую кислоту и анионные противоионы солей органических кислот обычно представляют собой сульфонаты или карбоксилаты. Типичные примеры таких органических молекул включают разнообразные ароматические сульфонаты и карбоксилаты, такие как п-толуолсульфонат, нафталинсульфонат, хлорбензойная кислота, салициловая кислота, фталевая кислота и т.п., при этом указанные противоионы являются водорастворимыми. Наиболее предпочтительными являются салицилат, фталат, п-толуолсульфонат, гидроксинафталинкарбоксилаты, например 5-гидрокси-1-нафтойная кислота, 6-гидрокси-1-нафтойная кислота, 7-гидрокси-1-нафтойная кислота, 1-гидрокси-2-нафтойная кислота, предпочтительно 3-гидрокси-2-нафтойная кислота, 5-гидрокси-2-нафтойная кислота, 7-гидрокси-2-нафтойная кислота и 1,3-дигидрокси-2-нафтойная кислота и 3,4-дихлорбензоат. Органическая кислота или ее соль обычно способствует повышению вязкости, что является отличительной особенностью предпочтительных жидкостей. Органическая кислота или ее соль обычно присутствует в цвиттерионной вязкоупругой жидкости (после концентрирования вязкоупругого поверхностно-активного вещества, достаточного для загущения жидкости) с массовой долей примерно от 0,1% до примерно 10%, более предпочтительно, примерно от 0,1% до примерно 7%, и еще более предпочтительно, примерно от 0,1% до примерно 6%.
Неорганические соли, которые особенно подходят для применения в цвиттерионной вязкоупругой жидкости, включают водорастворимые калиевые, натриевые и аммониевые соли, такие как хлорид калия и хлорид аммония. Кроме того, можно также использовать хлорид кальция, бромид кальция и галогенидные соли цинка. Неорганические соли могут способствовать повышению вязкости, что является отличительной особенностью предпочтительных жидкостей. Кроме того, неорганические соли могут содействовать поддержанию стабильности геологического пласта, на который воздействует жидкость. Стабильность пласта и, в частности, стабильность глин (за счет ингибирования гидратации глин) достигается на уровне концентрации в несколько процентов по массе. Неорганическая соль обычно присутствует в цвиттерионной вязкоупругой жидкости (после концентрирования вязкоупругого поверхностно-активного вещества, достаточного для загущения жидкости) в весовой концентрации примерно от 0,1% до примерно 30%, более предпочтительно, примерно от 0,1% до примерно 10%, и еще более предпочтительно, примерно от 0,1% до примерно 8%. Органические соли, например, гидрохлорид триметиламмония и хлорид тетраметиламмония, также могут быть использованы в дополнение к неорганическим солям или в качестве их замены. Возможно формирование этих систем в концентрированных соляных растворах, в том числе соляных растворах, содержащих многовалентные катионы.
В качестве альтернативы органическим и неорганическим солям, или в качестве частичной замены солей, можно использовать средне- или длинноцепочечный спирт (предпочтительно алканол), преимущественно содержащий от пяти до десяти атомов углерода, или этоксилат спирта (преимущественно этоксилат алканола), предпочтительно содержащий от 12 до 16 атомов углерода, относящихся непосредственно к спирту, и включающий от 1 до 6, предпочтительно, 1-4, оксиэтиленовых групп.
Подходящими также являются амфотерные вязкоупругие поверхностно-активные вещества. Типичные амфотерные вязкоупругие поверхностно-активные вещества включают вещества, описанные в патенте США №6703352, например аминоксиды. Подходящее аминоксидное поверхностно-активное вещество имеет формулу:
где R1, R2 и R3 независимо выбраны из алкила, алкенила, арилалкила или гидроксиалкила, при этом каждая из указанных алкильных групп содержит примерно от 8 до примерно 24 атомов углерода и может быть разветвленной или неразветвленной и насыщенной или ненасыщенной.
Подходящими также являются смеси цвиттерионных поверхностно-активных веществ и амфотерных поверхностно-активных веществ. Пример, называемый в настоящей заявке ВЕТ-Е-40/АО, представляет собой смесь из примерно 13% изопропанола, примерно 5% 1-бутанола, примерно 15% монобутилового эфира этиленгликоля, примерно 4% хлорида натрия, примерно 30% воды, примерно 30% кокамидопропилбетаина и примерно 2% кокамидопропиламиноксида.
В дополнение к ВПАВ, жидкость по изобретению может содержать добавки, улучшающие реологические характеристики используемой вязкоупругой поверхностно-активной жидкой системы.
Оптимальная концентрация ВПАВ и конкретной добавки, улучшающей реологические характеристики, если последняя применяется, в конкретной вязкоупругой поверхностно-активной жидкой системе при определенных концентрации и температуре, в присутствии других компонентов (материалов), может быть определена с помощью простых экспериментов. Общая концентрация вязкоупругого поверхностно-активного вещества должна быть достаточной для формирования вязкоупругого геля в условиях, при которых поверхностно-активные вещества имеют достаточную тенденцию к агрегированию. Подходящие количества поверхностно-активного вещества и усилителя реологических характеристик представляют собой такие количества, которые необходимы для достижения требуемой вязкости и времени восстановления вязкости после сдвигового напряжения, что определяется экспериментально. В общем, количество поверхностно-активного вещества (как активного ингредиента) составляет примерно от 1 до примерно 10%. Коммерчески доступные концентраты поверхностно-активных веществ могут содержать некоторые материалы, которые, как было обнаружено авторами изобретения, можно использовать в качестве усилителей реологических характеристик, например, для понижения температуры замерзания концентрата, но обычно количество такого материала недостаточно из-за разбавления концентрата в конечной жидкости. Количество применяемого усилителя реологических характеристик, в дополнение к любому усилителю, который уже может присутствовать в поставляемом концентрате поверхностно-активного вещества, составляет примерно от 0,1 до примерно 6%, например, примерно от 0,25 до примерно 3,5%, наиболее предпочтительно, примерно от 0,25 до примерно 1,75%. Можно применять смеси поверхностно-активных веществ и/или смеси усилителей реологических характеристик.
Другой необходимый компонент обрабатывающей жидкости по настоящему изобретению представляет собой разлагаемое вещество, представленное в виде разлагаемого волокна или разлагаемой частицы. Так, в частности, могут быть применены разлагаемые волокна или частицы, выполненные из разлагаемых полимеров. Способность к разложению полимера зависит по меньшей мере частично от структуры его основной цепи. Одной из наиболее общих структурных характеристик является присутствие гидролизуемых и/или окисляемых связей в основной цепи. Соответственно, в одном из вариантов реализации изобретения разлагаемое вещество представляет собой гидролизуемый материал. Альтернативно или в дополнение, разлагаемое вещество может представлять собой окисляемый материал.
Различные молекулярные структуры разлагаемых веществ, которые подходят для применения в вариантах реализации настоящего изобретения, обеспечивают широкий ряд возможностей, касающийся регулирования скорости разложения разлагаемого вещества. Скорости разложения, например, сложных полиэфиров зависят от типа структурного звена, композиции, последовательности, длины, геометрии молекул, молекулярной массы, морфологии (например, кристалличности, размера сферолитов и ориентации), гидрофильности, площади поверхности и добавок. Также на процесс разложения полимера могут влиять окружающие условия, воздействию которых он подвергается, например температура, присутствие влаги, кислорода, микроорганизмов, ферментов, рН и т.п. Средний специалист в данной области техники, с учетом настоящего описания, будет способен определить, каким должен быть оптимальный полимер для данного варианта применения, с учетом характеристик применяемого полимера и окружающих условий, воздействию которых он будет подвергаться.
Подходящие