Системы и способы обработки подземного пласта с помощью электрических проводников

Иллюстрации

Показать все

Группа изобретений относится к области добычи углеводородов водорода и/или других аналогичных продуктов. В частности, изобретения относятся к системам и способам, при которых для обработки различных подземных пластов, содержащих углеводороды, используют источники тепла. Обеспечивается повышение эффективности добычи. Сущность изобретения: система, предназначенная для обработки подземного пласта, содержит: ствол скважины, по меньшей мере частично расположенный в содержащем углеводороды пласте и содержащий, по существу, вертикальную часть и, по меньшей мере, две, по существу, горизонтальные или наклоненные части, соединенные с вертикальной частью; первый проводник, по меньшей мере, частично расположенный в первой из двух, по существу, горизонтальных или наклоненных частей ствола скважины, при этом, по меньшей мере, первый проводник содержит электропроводящий материал; второй проводник, по меньшей мере, частично расположенный во второй из двух, по существу, горизонтальных или наклоненных частей ствола скважины, при этом, по меньшей мере, второй проводник содержит электропроводящий материал; и источник электроэнергии, соединенный, по меньшей мере, с первым проводником и выполненный с возможностью электрического возбуждения электропроводящих материалов первого проводника для протекания тока между электропроводящими материалами первого проводника через, по меньшей мере, часть пласта до второго проводника и нагрева, по меньшей мере, части пласта между, по существу, горизонтальными или наклоненными частями ствола скважины. 2 н. и 17 з.п. ф-лы, 6 ил.

Реферат

Область техники, к которой относится изобретение

В общем, изобретение относится к системам, способам и источникам тепла, предназначенным для добычи углеводородов, водорода и/или других продуктов. В частности, изобретение относится к системам и способам, при которых для обработки различных подземных пластов, содержащих углеводороды, используют источники тепла.

Уровень техники

Углеводороды, добываемые из подземных пластов, часто используются в качестве энергетических ресурсов, сырья и потребительских товаров. Озабоченность по поводу истощения углеводородных ресурсов и ухудшения общего качества добываемых углеводородов привела к разработке способов более эффективной добычи, обработки и/или использования доступных углеводородных ресурсов. Для извлечения углеводородных материалов из подземных пластов могут быть использованы процессы in situ. Для того чтобы легче извлекать углеводородный материал из подземного пласта, может потребоваться изменить химические и/или физические свойства углеводородного материала. Изменения химических и физических свойств могут включать в себя реакции in situ, в результате которых получаются извлекаемые флюиды, происходят изменения состава, изменения растворяющей способности, изменения плотности, фазовые превращения и/или изменения вязкости углеводородного материала пласта. Флюид может представлять собой, помимо прочего, газ, жидкость, эмульсию, суспензию и/или поток твердых частиц, характеристики которого аналогичны характеристикам потока жидкости.

Подземные пласты (например, пласты битуминозных песков или пласты с тяжелыми углеводородами) содержат диэлектрическую среду. Диэлектрическая среда может иметь проводимость, относительную диэлектрическую проницаемость и тангенсы углов диэлектрических потерь при температурах, меньших 100°С. Потеря проводимости, относительная диэлектрическая проницаемость и тангенс угла потерь в диэлектрике могут иметь место при нагревании пласта до температур, превосходящих 100°С, что объясняется потерей влаги, содержащейся в поровом пространстве в скелете горной породы пласта. Для предотвращения потери влаги, пласты могут быть нагреты до температур и давлений, при которых минимизируется испарение воды. Проводящие растворы могут быть добавлены в пласт для поддержания электрических свойств пласта.

Пласты могут быть нагреты с использованием электродов до температур и давлений, при которых испаряется вода и/или проводящие растворы. Материал, используемый для получения текущего потока, тем не менее, может быть поврежден из-за теплового напряжения, и/или потеря проводящих растворов может ограничить теплообмен в слое. Кроме того, при использовании электродов могут образоваться магнитные поля. Из-за присутствия магнитных полей для обсадных труб в покрывающем слое могут понадобиться неферромагнитные материалы.

В документе US 4084637 описаны способы добычи вязких материалов из подземных пластов, которые включают в себя прохождение электрического тока через подземный пласт. При прохождении электрического тока через подземный пласт вязкий материал нагревается, тем самым уменьшается вязкость такого материала. После нагревания подземного пласта вблизи пути, образованного скважинами с электродами, рабочий флюид нагнетают через нагнетательные скважины с целью его перемещения вдоль пути и проталкивания материала с пониженной вязкостью по направлению к добывающей скважине. Материал добывают через добывающую скважину, и с помощью продолжения нагнетания нагретого флюида через нагнетательные скважины практически весь вязкий материал подземного пласта может быть нагрет с целью уменьшения его вязкости и добычи через добывающую скважину.

В документе US 4926941 описана добыча из мощных месторождений битуминозных песков с помощью предварительного нагревания тонких сравнительно проводящих слоев, которые являются малой долей общего объема месторождения битуминозных песков. Тонкие проводящие слои служат для ограничения нагревания битуминозных песков тонкой зоной, прилегающей к проводящим слоям, даже для больших расстояний между рядами электродов. Предварительное нагревание продолжается до тех пор, пока вязкость нефтепродуктов в тонкой предварительно нагреваемой зоне, прилегающей к проводящим слоям, не уменьшится до такой степени, чтобы была возможность нагнетать пар в месторождение битуминозных песков. Далее добывают из всего месторождения с помощью нагнетания пара.

В документе US 5046559 описано устройство и способ, предназначенные для добычи из мощных месторождений битуминозных песков с помощью предварительного нагревания электричеством путей повышенной приемистости между устройством нагнетания и устройствами добычи. Устройство нагнетания и устройства добычи расположены в соответствии с треугольным шаблоном, при этом устройство нагнетания расположено в верхней вершине треугольника, а устройства добычи расположены в вершинах основания треугольника. Далее в эти пути повышенной приемистости нагнетают пар с целью добычи углеводородов.

Как отмечено выше, прилагались значительные усилия для разработки способов и систем экономной добычи углеводородов, водорода и/или других продуктов из содержащих углеводороды пластов. Тем не менее, в настоящий момент существует еще много содержащих углеводороды пластов, из которых нельзя экономно добыть углеводороды, водород и/или другие продукты. Таким образом, существует необходимость в улучшенных способах и системах, предназначенных для нагревания содержащих углеводороды пластов и добычи флюидов из содержащих углеводороды пластов. Также существует необходимость в улучшенных способах и системах, которые уменьшают затраты энергии на обработку пласта, уменьшают выбросы от процесса обработки, облегчают установку системы нагревания и/или уменьшают потери теплоты в покрывающий слой по сравнению с процессами добычи углеводородов, при которых используется расположенное на поверхности оборудование.

Раскрытие изобретения

Описанные здесь варианты осуществления изобретения, в общем, относятся к системам, способам и источникам тепла для обработки подземного пласта. Также описанные здесь варианты осуществления изобретения, в общем, относятся к электропроводящему материалу, содержащему новые компоненты. Такие источники тепла могут быть получены с использованием описанных здесь систем и способов.

В определенных вариантах осуществления изобретения предложена одна или несколько систем, способов и/или электропроводящих материалов. В некоторых вариантах осуществления изобретения для обработки подземного пласта используют системы, способы и/или электропроводящие материалы.

Одним объектом изобретения является система обработки подземного пласта, содержащая: ствол скважины, по меньшей мере, частично расположенный в содержащем углеводороды пласте и содержащий, по существу, вертикальную часть, и, по меньшей мере, две, по существу, горизонтальные или наклоненные части, соединенные с вертикальной частью; первый проводник, по меньшей мере, частично расположенный в первой из двух, по существу, горизонтально расположенных или наклоненных частей ствола скважины, при этом, по меньшей мере, первый проводник содержит электропроводящий материал; и источник электроэнергии, соединенный, по меньшей мере, с первым проводником и выполненный с возможностью электрического возбуждения электропроводящих материалов первого проводника для протекания тока между электропроводящими материалами первого проводника через, по меньшей мере, часть пласта до второго проводника и нагрева, по меньшей мере, части пласта между, по существу, горизонтально расположенными или наклоненными частями ствола скважины.

Другим объектом изобретения является способ обработки подземного пласта, включающий в себя этапы, на которых: подводят электрический ток к первому проводнику в первом, по существу, горизонтально расположенном или наклоненном положении в участке пласта, так что электрический ток течет от первого проводника ко второму проводнику, расположенному в участке пласта во втором горизонтальном или наклоненном положении, при этом первый проводник и второй проводник расположены в участках ствола скважины, которые выходят из общего ствола скважины; и нагревают, по меньшей мере, часть углеводородного слоя между первой и второй трубами, причем тепло генерируется электрическим током.

В других вариантах осуществления изобретения признаки конкретных вариантов осуществления изобретения могут быть объединены с признаками других вариантов осуществления изобретения. Например, признаки одного варианта осуществления изобретения могут быть объединены с признаками любого другого варианта осуществления изобретения. В других вариантах осуществления изобретения обработку подземного пласта осуществляют с использованием любых описанных здесь способов, систем или электропроводящих материалов. В других вариантах осуществления изобретения к описанным конкретным вариантам осуществления изобретения могут быть добавлены дополнительные признаки.

Краткое описание чертежей

Преимущества изобретения будут ясны специалистам в рассматриваемой области после прочтения подробного описания, содержащего ссылки на приложенные чертежи.

На фиг.1 схематично показан вариант выполнения части системы тепловой обработки in situ, предназначенной для обработки пласта, содержащего углеводороды;

на фиг.2 - вариант осуществления изобретения, предназначенный для обработки подземного пласта с использованием источников тепла, содержащих электропроводящий материал;

на фиг.3 - вариант осуществления изобретения, предназначенный для обработки подземного пласта с использованием заземления и источников тепла, содержащих электропроводящий материал;

на фиг.4 - вариант осуществления изобретения, предназначенный для обработки подземного пласта с использованием источников тепла, содержащих электропроводящий материал и электрический изолятор;

на фиг.5 - вариант осуществления изобретения, предназначенный для обработки подземного пласта с использованием электропроводящих источников тепла, выходящих из общего ствола скважины;

на фиг.6 - вариант осуществления изобретения, предназначенный для обработки подземного пласта, содержащего слой сланцев, с использованием источников тепла, содержащих электропроводящий материал.

Хотя изобретение не исключает различные модификации и альтернативные формы, далее для примера на чертежах показаны и подробно описаны конкретные варианты осуществления изобретения. Чертежи могут быть выполнены не в масштабе. Тем не менее, необходимо понимать, что чертежи и подробное описание не ограничивают изобретение конкретной описанной формой, а, наоборот, изобретение подразумевает все модификации, эквиваленты и альтернативы, не выходящие за рамки объема настоящего изобретения, который определен в прилагаемой формуле изобретения.

Осуществление изобретения

Хотя для нагревания пластов описано большое количество способов, существует необходимость в эффективных и экономичных способах нагревания и добычи углеводородов с использованием источников тепла, содержащих электропроводящий материал. Последующее описание, в общем, относится к системам и способам обработки углеводородов в пластах с использованием источников тепла, содержащих электропроводящий материал. Такие пласты обрабатывают с целью добычи углеводородных продуктов, водорода и других продуктов.

Под «плотностью в градусах АНИ» понимается плотность в градусах Американского нефтяного института (АНИ) при 15,5°С (60°F). Плотность в градусах АНИ определяют согласно способу Американского общества по испытанию материалов (ASTM) D6822 или способу ASTM D1298.

«Давление флюида» - это давление, создаваемое флюидом в пласте. «Литостатическое давление» (иногда называемое «литостатическим напряжением») представляет собой давление в пласте, равное весу на единицу площади вышележащей горной породы. «Гидростатическое давление» представляет собой давление в пласте, причиной которого является столб воды.

«Пласт» включает в себя один или несколько слоев, содержащих углеводороды, один или несколько неуглеводородных слоев, покрывающий слой и/или подстилающий слой. «Углеводородными слоями» называются слои пласта, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородные материалы и углеводородные материалы. «Покрывающий слой» и/или «подстилающий слой» содержит один или несколько различных типов непроницаемых материалов. Например, покрывающий и/или подстилающий слои могут представлять собой скалу, сланцы, алевритоглинистую породу или плотную карбонатную горную породу, не пропускающую влагу. В некоторых вариантах осуществления процессов тепловой обработки in situ покрывающий и/или подстилающий слои могут включать в себя содержащий углеводороды слой или содержащие углеводороды слои, которые сравнительно непроницаемы и не подвергаются воздействию температур в процессе тепловой обработки in situ, в результате которой характеристики содержащих углеводороды слоев покрывающего и/или подстилающего слоев значительно изменяются. Например, подстилающий слой может содержать сланцы или алевритоглинистую породу, но при осуществлении процесса тепловой обработки in situ подстилающий слой не нагревают до температуры пиролиза. В некоторых случаях покрывающий слой и/или подстилающий слой может быть до некоторой степени проницаемыми.

«Пластовыми флюидами» называются флюиды, присутствующие в пласте, при этом они могут содержать флюид, полученный в результате пиролиза, синтез-газ, подвижные углеводороды и воду (пар). Пластовые флюиды могут содержать углеводородные флюиды, а также неуглеводородные флюиды. Под «подвижными флюидами» понимают флюиды пласта, содержащего углеводороды, которые способны течь в результате тепловой обработки пласта. «Добытыми флюидами» называются флюиды, извлеченные из пласта.

«Источник тепла» представляет собой любую систему, подводящую теплоту, по меньшей мере, к части пласта, теплота передается в основном посредством теплопроводности и/или излучения. Например, источник тепла может содержать электропроводящие материалы и/или электрические нагреватели, такие как изолированный проводник, удлиненный элемент и/или проводник, расположенный в трубе. Также источник тепла может содержать системы, вырабатывающие теплоту в результате горения топлива вне пласта или в нем. Эти системы могут быть горелками, расположенными на поверхности, забойными газовыми горелками, беспламенными распределенными камерами сгорания и природными распределенными камерами сгорания. В некоторых вариантах осуществления изобретения теплота, подведенная к одному или нескольким источникам тепла или выработанная в них, может подводиться от других источников энергии. Другие источники энергии могут непосредственно нагревать пласт, или энергия может сообщаться передающей среде, которая непосредственно или опосредованно нагревает пласт. Ясно, что один или несколько источников тепла, которые передают теплоту пласту, могут использовать различные источники энергии. Таким образом, например, для заданного пласта некоторые источники тепла могут подводить теплоту от электропроводящих материалов, резистивных нагревателей, некоторые источники тепла могут обеспечивать нагревание благодаря камере сгорания, а другие источники тепла могут подводить теплоту из одного или нескольких источников энергии (например, энергия от химических реакций, солнечная энергия, энергия ветра, биомасса или другие источники возобновляемой энергии). Химическая реакция может включать в себя экзотермические реакции (например, реакцию окисления). Также источник тепла может включать в себя электропроводящий материал и/или нагреватель, который подводит теплоту в зону, расположенную рядом с нагреваемым местом, таким как нагревательная скважина, или окружающую это место.

«Нагреватель» - это любая система или источник тепла, предназначенная для выработки теплоты в скважине или рядом со стволом скважины. К нагревателям относят, помимо прочего, электрические нагреватели, горелки, камеры сгорания, в которых в реакцию вступает материал пласта или материал, добываемый в пласте, и/или их комбинации.

«Тяжелые углеводороды» представляют собой вязкие углеводородные флюиды. К тяжелым углеводородам могут относиться вязкие углеводородные флюиды такие, как тяжелая нефть, битум и/или асфальтовый битум. Тяжелые углеводороды могут содержать углерод и водород, а также в малой концентрации серу, кислород и азот. Также в тяжелых углеводородах может присутствовать незначительное количество дополнительных элементов. Тяжелые углеводороды можно классифицировать по плотности в градусах АНИ. В общем, плотность тяжелых углеводородов в градусах АНИ составляет менее примерно 20°. Например, плотность тяжелой нефти в градусах АНИ составляет примерно 10-20°, а плотность битума в градусах АНИ в целом составляет менее примерно 10°. Вязкость тяжелых углеводородов в целом составляет более примерно 0,1 Па·с при 15°С. Тяжелые углеводороды могут содержать ароматические и другие сложные циклические углеводороды.

Тяжелые углеводороды могут быть найдены в сравнительно проницаемых пластах. Сравнительно проницаемые пласты могут содержать тяжелые углеводороды, расположенные, например, в песке или карбонатных горных породах. По отношению к пласту или его части термин «сравнительно проницаемый» означает, что средняя проницаемость составляет от 10 мД или более (например, 10 или 100 мД). По отношению к пласту или его части термин «сравнительно малопроницаемый» означает, что средняя проницаемость составляет менее примерно 10 мД. 1 Д равен примерно 0,99 мкм2. Проницаемость непроницаемого слоя, в общем, составляет менее примерно 0,1 мД.

Определенные типы пластов, содержащих тяжелые углеводороды, также могут содержать, помимо прочего, природные минеральные воски или природные асфальтиты. Обычно «природные минеральные воски» расположены, по существу, в цилиндрических жилах, ширина которых составляет несколько метров, длина равна нескольким километрам, а глубина составляет сотни метров. К «природным асфальтитам» относятся твердые углеводороды ароматического состава, при этом они обычно расположены в больших жилах. Добыча in situ из пластов углеводородов, таких как природные минеральные воски и природные асфальтиты, может включать в себя расплавление с целью получения жидких углеводородов и/или добычу растворением углеводородов из пластов.

Под «углеводородами» обычно понимают молекулы, образованные в основном атомами углерода и водорода. Углеводороды также могут содержать другие элементы, такие как, например, галогены, металлические элементы, азот, кислород и/или серу. Углеводородами являются, например, кероген, битум, пиробитум, масла, природные минеральные воски и асфальтиты. Углеводороды могут располагаться в природных вмещающих породах в земле или рядом с ними. Вмещающими породами, помимо прочего, являются осадочные горные породы, пески, силицилиты, карбонатные горные породы, диатомиты и другие пористые среды. «Углеводородные флюиды» - это флюиды, содержащие углеводороды. Углеводородные флюиды могут содержать, увлекать с собой или быть увлеченными неуглеводородными флюидами, такими как водород, азот, угарный газ, диоксид углерода, сероводород, вода и аммиак.

Под «процессом переработки in situ» понимается процесс нагревания пласта, содержащего углеводороды, от источников тепла, при этом указанный процесс направлен на повышение температуры, по меньшей мере, части пласта, выше температуры пиролиза с целью получения в пласте флюида, являющегося результатом пиролиза.

Под «процессом тепловой обработки in situ» понимается процесс нагревания пласта, содержащего углеводороды, с помощью источников тепла, направленный на повышение температуры, по меньшей мере, части пласта выше температуры, в результате которой получается подвижный флюид, происходит легкий крекинг и/или пиролиз материала, содержащего углеводороды, так что в пласте вырабатываются подвижные флюиды, флюиды, являющиеся результатом легкого крекинга, и/или флюиды, являющиеся результатом пиролиза.

«Изолированным проводником» называется любой длинный материал, который способен проводить электричество и который полностью или частично покрыт электроизоляционным материалом.

«Пиролизом» называется разрушение химических связей, происходящее под воздействием тепла. Например, пиролиз может включать в себя превращение соединения в одно или несколько других веществ только с помощью тепла. Чтобы вызвать пиролиз в участок пласта могут передавать теплоту.

«Флюидами, являющимися результатом пиролиза» или «продуктами пиролиза» называются флюиды, полученные, по существу, во время процесса пиролиза углеводородов. Флюид, полученный в результате реакций пиролиза, может смешиваться в пласте с другими флюидами. Эта смесь будет считаться флюидом, являющимся результатом пиролиза или продуктом пиролиза. Здесь под «зоной пиролиза» понимается объем пласта (например, сравнительно проницаемого пласта, такого как пласт битуминозных песков), в котором происходит или происходила реакция, направленная на образование флюида, являющегося результатом пиролиза.

«Наложением теплоты» называется подвод теплоты из двух или нескольких источников тепла в выбранный участок пласта, так что источники тепла влияют на температуру пласта, по меньшей мере, в одном месте между источниками тепла.

«Пласт битуминозных песков» - это пласт, в котором углеводороды преимущественно являются тяжелыми углеводородами и/или битумом, захваченными в минеральной зернистой структуре или другой вмещающей породе (например, песке или карбонатной горной породе). Примерами пластов битуминозных песков являются пласт Athabasca, пласт Grosmont и пласт PeaceRiver, все три указанных пласта находятся в Канаде, провинция Альберта, и пласт Faja, который находится в поясе Ориноко в Венесуэле.

«Толщиной» слоя называется толщина поперечного сечения слоя, при этом плоскость сечения перпендикулярна поверхности слоя.

Под «u-образным стволом скважины» понимают ствол скважины, который начинается от первого отверстия в пласте, проходит, по меньшей мере, часть пласта и заканчивается вторым отверстием в пласте. В этом случае форма ствола скважины, который считается «u-образным», может только примерно напоминать буквы «v» или «u», при этом ясно, что «ножки» буквы «u» не обязательно параллельны друг другу или перпендикулярны «нижней части» буквы «u».

Под «легким крекингом» понимают распутывание молекул флюида при тепловой обработке и/или разрушение больших молекул на более мелкие молекулы при тепловой обработке, что приводит к уменьшению вязкости флюида.

Под термином «ствол скважины» понимается отверстие в пласте, полученное бурением или введением трубы в пласт. Поперечное сечение ствола скважины может быть, по существу, круглым или каким-либо другим. Здесь термины «скважина» и «отверстие», когда говорится об отверстии в пласте, могут быть заменены термином «ствол скважины».

С целью добычи множества различных продуктов пласт может быть обработан разными способами. Для обработки пласта в ходе процесса тепловой обработки in situ могут быть использованы различные этапы или процессы. В некоторых вариантах осуществления изобретения для одного или нескольких участков пласта используется добыча растворением с целью извлечения из участков растворимых минеральных веществ. Добыча минеральных веществ с помощью растворения может быть осуществлена до, во время и/или после процесса тепловой обработки in situ. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков, из которых осуществляют добычу с помощью растворения, может поддерживаться на уровне ниже примерно 120°С.

В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают с целью извлечения из них воды и/или метана и других летучих углеводородов. В некоторых вариантах осуществления изобретения при извлечении воды и летучих углеводородов среднюю температуру пласта поднимают от температуры окружающей среды до температур, меньших примерно 220°С.

В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, при которых углеводороды в пласте могут перемещаться и/или может происходить легкий крекинг углеводородов в пласте. В некоторых вариантах осуществления изобретения среднюю температуру одного или нескольких участков пласта поднимают до температур придания подвижности углеводородам в участках (например, до температур, находящихся в диапазоне от 100°С до 250°С, от 120°С до 240°С или от 150°С до 230°С).

В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, при которых происходят реакции пиролиза в пласте. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть увеличена до температур пиролиза углеводородов в участках (например, до температур, находящихся в диапазоне от 230°С до 900°С, от 240°С до 400°С или от 250°С до 350°С).

Нагревание содержащего углеводороды пласта несколькими источниками тепла может установить перепады температур вокруг источников тепла, благодаря которым температура углеводородов в пласте поднимется до нужных температур с необходимой скоростью нагревания. Скорость увеличения температуры в диапазоне температур придания подвижности и/или температур пиролиза для получения нужных продуктов может влиять на качество и количество пластовых флюидов, добываемых из содержащего углеводороды пласта. Медленное увеличение температуры в диапазоне температур придания подвижности и/или температур пиролиза может позволить добывать из пласта углеводороды высокого качества, с большой плотностью в градусах АНИ. Медленное увеличение температуры в диапазоне температур придания подвижности и/или температур пиролиза может позволить добывать в качестве углеводородного продукта большое количество углеводородов, присутствующих в пласте.

В некоторых вариантах осуществления тепловой обработки in situ вместо того, чтобы медленно нагревать в необходимом диапазоне температур, до необходимой температуры нагревают часть пласта. В некоторых вариантах осуществления изобретения необходимая температура составляет 300°С, 325°С или 350°С. В качестве необходимой температуры могут быть выбраны другие значения температуры.

Наложение теплоты от источников тепла позволяет сравнительно быстро и эффективно установить в пласте необходимую температуру. Можно регулировать подведение энергии в пласт из источников тепла с целью поддержания, по существу, необходимого значения температуры в пласте.

Продукты, полученные в результате придания подвижности и/или пиролиза, могут быть добыты из пласта через добывающие скважины. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта поднята до температур придания подвижности и углеводороды добывают из добывающих скважин. Средняя температура одного или нескольких участков может быть поднята до температур пиролиза после того, как добыча, возможная благодаря приданию подвижности, уменьшится ниже выбранного значения. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть поднята до температур пиролиза, при этом до достижения указанных температур не происходит добычи значительных количеств углеводородов. Через добывающие скважины могут быть добыты пластовые флюиды, в том числе продукты пиролиза.

В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть поднята выше температур, достаточных для получения синтез-газа, что осуществляют после придания подвижности и/или пиролиза. В некоторых вариантах осуществления изобретения при повышении температуры углеводородов до значений, достаточных для получения синтез-газа, до достижения температур, достаточных для получения синтез-газа, не происходит добычи значительных количеств углеводородов. Например, синтез-газ может быть получен в диапазоне температур, составляющем примерно от 400°С до примерно 1200°С, примерно от 500°С до примерно 1100°С или примерно от 550°С до примерно 1000°С. Флюид для получения синтез-газа (например, пар и/или вода) может быть введен в участки с целью получения синтез-газа. Синтез-газ может быть добыт через добывающие скважины.

В ходе выполнения процесса тепловой обработки in situ может быть осуществлена добыча с помощью растворения, извлечение летучих углеводородов и воды, придание углеводородам подвижности, пиролиз углеводородов, получение синтез-газа и/или другие процессы. В некоторых вариантах осуществления изобретения некоторые процессы могут быть осуществлены после процесса тепловой обработки in situ. Такими процессами могут быть, помимо прочего, рекуперирование теплоты из обработанных участков, сохранение флюидов (например, воды и/или углеводородов) в ранее обработанных участках и/или блокирование углекислого газа в ранее обработанных участках.

На фиг.1 схематично показан вариант выполнения части системы тепловой обработки in situ, предназначенной для обработки содержащего углеводороды пласта. Система тепловой обработки in situ может содержать барьерные скважины 100. Барьерные скважины используют для образования барьера вокруг области обработки. Барьер препятствует течению флюида в область обработки и/или из нее. Барьерные скважины включают в себя, помимо прочего, водопонижающие скважины, скважины создания разрежения, коллекторные скважины, нагнетательные скважины, скважины для заливки раствора, замораживающие скважины или их комбинации. В некоторых вариантах осуществления изобретения барьерные скважины 100 представляют собой водопонижающие скважины. Водопонижающие скважины могут удалять жидкую воду и/или препятствовать проникновению жидкой воды в часть пласта, которую будут нагревать, или в нагреваемый пласт. На фиг.1 показаны барьерные скважины 100, расположенные только вдоль одной стороны источников 102 тепла, но барьерные скважины обычно окружают все источники 102 тепла, используемые или планируемые к использованию для нагревания области обработки пласта.

Источники 102 тепла расположены, по меньшей мере, в части пласта. Источники 102 тепла могут содержать электропроводящий материал. В некоторых вариантах осуществления изобретения источники тепла содержат нагреватели, такие как изолированные проводники, нагревательные устройства с проводником в трубе, горелки, расположенные на поверхности, беспламенные распределенные камеры сгорания и/или природные распределенные камеры сгорания. Источники 102 тепла могут также представлять собой нагреватели других типов. Источники 102 тепла подводят теплоту, по меньшей мере, в часть пласта с целью нагревания углеводородов в пласте. Энергия может подаваться к источнику 102 тепла по линиям 104 питания. Линии 104 питания могут конструктивно различаться в зависимости от типа источника тепла или источников тепла, используемых для нагревания пласта. Линии 104 питания для источников тепла могут передавать электричество для электропроводящего материала или электрических нагревателей, могут транспортировать топливо для камер сгорания или могут перемещать теплоноситель, циркулирующий в пласте. В некоторых вариантах осуществления изобретения электричество для процесса тепловой обработки in situ может поставляться атомной электростанцией или атомными электростанциями. Использование атомной энергии может позволить уменьшить или полностью исключить выбросы диоксида углерода в ходе процесса тепловой обработки in situ.

Нагревание пласта может привести к увеличению проницаемости и/или пористости пласта. Увеличение проницаемости и/или пористости может привести к уменьшению массы в пласте из-за испарения и извлечения воды, извлечения углеводородов и/или создания разломов. Благодаря увеличенной проницаемости и/или пористости пласта в нагретой части пласта флюид может течь легче. Благодаря увеличенной проницаемости и/или пористости флюид в нагретой части пласта может перемещаться в пласте на значительные расстояния. Значительное расстояние может превышать 1000 м в зависимости от различных факторов, таких как проницаемость пласта, свойства флюида, температура пласта и перепад давлений, которые дают возможность флюиду перемещаться. Способность флюида к перемещению в пласте на значительные расстояния позволяет размещать добывающие скважины 106 на сравнительно больших расстояниях друг от друга.

Добывающие скважины 106 используются для извлечения пластового флюида из пласта. В некоторых вариантах осуществления изобретения добывающая скважина 106 может содержать источник тепла. Источник тепла, расположенный в добывающей скважине, может нагревать одну или несколько частей пласта в добывающей скважине или рядом с ней. В некоторых вариантах осуществления процесса тепловой обработки in situ количество теплоты, подводимое в пласт от добывающей скважины, на метр добывающей скважины меньше количества теплоты, подводимого в пласт от источника тепла, который нагревает пласт, на метр источника тепла. Теплота, подаваемая к пласту из добывающей скважины, может увеличивать проницаемость пласта рядом с добывающей скважиной благодаря испарению и извлечению флюида, находящегося в жидкой фазе, рядом с добывающей скважиной и/или благодаря увеличению проницаемости пласта рядом с добывающей скважиной, происходящему вследствие образования макро- и/или микроразломов.

В некоторых вариантах осуществления изобретения источник тепла в добывающей скважине 106 позволяет извлекать из пласта паровую фазу пластовых флюидов. Подвод теплоты к добывающей скважине или через добывающую скважину может: (1) препятствовать конденсации и/или обратному потоку добываемого флюида, когда такой добываемый флюид перемещается по направлению к добывающей скважине вблизи покрывающего слоя, (2) увеличить подвод теплоты в пласт, (3) увеличить темп добычи для добывающей скважины по сравнению с добывающей скважиной без источника тепла, (4) препятствовать конденсации соединений с большим количеством атомов углерода (С6 и больше) в добывающей скважине и/или (5) увеличить проницаемость пласта в добывающей скважине или рядом с ней.

Подземное давление в пласте может соответствовать давлению флюида в пласте. Когда температура в нагретой части пласта увеличивается, давление в нагретой части может увеличиваться в результате теплового расширения in situ флюидов, увеличенной выработки флюидов и испарения воды. Регулирование скорости извлечения флюидов из пласта может позволить регулировать давление в пласте. Давление в пласте может быть определено в нескольких различных местах, например рядом с добывающими скважинами или в них, рядом с источниками тепла или в них или в контрольных скважинах.

В некоторых содержащих углеводороды пластах добыча углеводородов из пласта сдерживается до тех пор, пока, по меньшей мере, некоторое количество углеводородов пласта не стало подвижным и/или не подверглось пиролизу. Пластовый флюид можно добывать из пласта тогда, когда качество пластового флюида соответствует выбранному уровню. В некоторых вариантах осуществления изобретения выбранный уровень качества представляет собой плотность в градусах АНИ, которая составляет, по меньшей мере, примерно 20°, 30° или 40°. Запрет на добычу до тех пор, пока, по меньшей мере, часть углеводородов не стала подвижной и/или не подверглась пиролизу, может увеличить переработку тяжелых углеводородов в легкие углеводороды. Запрет на добычу в начале может минимизировать добычу тяжелых углеводородов из пласта. Добыча значительных объемов тяжелых углеводородов может потребовать дорогого оборудования и/или уменьшения срока эксплуатации производс