Способ вывода и регулирования энергии/мощности выходного излучения лазера и устройство для его реализации
Иллюстрации
Показать всеИзобретение относится к лазерной технике. Способ вывода и регулирования энергии/мощности выходного излучения лазера заключается в установке в резонатор лазера под углом к его оси отражающего элемента на подвижном основании, положение которого определяет уровень выводимой энергии/мощности после запуска лазера и установки требуемого уровня энергии/мощности накачки. В резонатор импульсного или непрерывного лазера между выходным зеркалом лазера, замененным на непрозрачное отражающее зеркало, и торцом его активного элемента в качестве отражающего регулирующего элемента устанавливается непрозрачное отражающее зеркало на подвижном основании, позволяющем перемещать это зеркало параллельно его отражающей поверхности в пределах от полного его вывода за пределы светового поля, установившегося в резонаторе, до полного перекрытия этого поля после ввода этого перемещаемого зеркала, с возможностью осуществления не только вывода энергии/мощности лазера, но и его регулирования, а именно плавного изменения энергии/мощности от нулевого до максимального значения и обратно при заданном уровне накачки и возможности установки выводимой энергии на требуемом уровне. Технический результат заключается в обеспечении стабильности пространственного положения выходного лазерного пучка. 2 н.п. ф-лы, 16 ил.
Реферат
Заявленное техническое решение относится к способам регулируемого вывода излучения из резонатора лазера. Заявленный способ относится к способам и устройствам вывода энергии (импульсных) и мощности (непрерывных) лазеров с резонаторами, между выходным зеркалом и активным элементом которых имеется некоторое пространство.
Заявленный способ не может быть использован в случаях, когда покрытия зеркал резонаторов нанесены непосредственно на торцы активных элементов лазеров, или в лазерах, имеющих другие подобные решения, т.е. когда резонаторы составляют с активными элементами одно целое (миниатюрных лазерных устройств). Заявленное техническое решение также не относится к случаям, когда регулирование выходной мощности лазеров обеспечивается различными электронными способами - например, путем управления (изменения) энергии/мощности источника накачки.
Заявленное техническое решение может быть использовано при создании любых типов лазеров, которые имеют резонатор, зеркала которого конструктивно отделены от активного элемента. Причем это техническое решение может применяться в лазерах различного типа: лазерах, действующих на фиксированной частоте, в перестраиваемых лазерах, лазерах ультракоротких импульсов, лазерных фотометрах и спектрометрах. Заявленный способ может быть применен в лазерах, которые действуют в различных спектральных диапазонах, включая: средний инфракрасный, инфракрасный, видимый, ультрафиолетовый, вакуумно-ультрафиолетовый и мягкий рентген.
Попытки регулирования выходной энергии/мощности с целью достижения максимальной при выбранном уровне накачки оперативно и простыми действиями до настоящего времени являлись малоэффективными. Технические решения способов регулирования, заявленные ранее, порой трудоемкие и дорогие, не решали эту задачу в полной мере, а также эти решения часто имели узкоспециализированные области применения. Кроме того, устройства, реализующие эти решения, были сложны конструктивно и трудновыполнимы технологически.
Заявленное техническое решение заключается в замене выходного (полупрозрачного) зеркала резонатора лазера на зеркало с отражением, близким к 100%, и введением в резонатор дополнительного перемещаемого выводного непрозрачного зеркала, при помощи которого осуществляется вывод оптической энергии/мощности лазера. Это выводное зеркало установлено к оси резонатора, в общем случае, под углом, таким образом, чтобы отраженное от него излучение свободно выводилось из резонатора, не задевая элементы и узлы лазера. Само выводное зеркало устанавливается на специальном устройстве, которое позволяет прецизионно, возвратно-поступательно перемещать это зеркало в плоскости его отражающей поверхности.
При накачке активной среды лазера в его резонаторе устанавливается стоячая световая волна. При перемещении выводного зеркала с помощью специального устройства в направлении к оси резонатора с некоторого его положения выводное зеркало начинает частично перекрывать поле этой волны. Эта часть перекрытой световой волны отражается от поверхности зеркала и выводится из резонатора как полезное излучение. Оставшаяся внутри резонатора лазера часть энергии стоячей волны используется для самоподдержания. При дальнейшем перемещении зеркала в том же направлении выводимая энергия/мощность полезного излучения сначала будет возрастать до максимума, а при дальнейшем перемещении - убывать. Далее при достижении определенного положения выводного зеркала, когда энергии/мощности стоячей волны, остающейся в резонаторе лазера, будет недостаточно для самоподдержания, генерация излучения срывается.
Таким образом, заявленным способом обеспечивается возможность плавного регулируемого вывода энергии/мощности из резонатора лазера без выключения собственно самого лазера. Использование заявленного способа для выбранного уровня энергии/мощности накачки лазера при помощи устройства позволяет найти такое положение выводного зеркала, при котором уровень выводимой энергии/мощности лазера будет максимальный. Таким образом, назначением устройства является регулирование мощности/энергии лазера с целью:
1. нахождения и установки максимального уровня выводимой энергии/мощности излучения лазер, при выбранном уровне накачки оперативно без его выключения;
2. регулирование уровня энергии/мощности излучения лазера с целью установки необходимого потребителю уровня в пределах от минимальной до максимально достижимой по условиям п.1.
При регулировании выходной энергии/мощности лазера заявленным способом положение пятна луча лазера на мишени не испытывает каких-либо смещений.
Заявителем проведен анализ известного уровня техники на дату подачи заявки и выявлены аналоги технических решений, имеющие непосредственное отношение к заявленному техническому решению в отношении как известных способов, так и устройств. Ниже заявитель приводит информацию о выявленных способах регулирования энергии/мощности лазеров и устройствах, их реализующих.
Проблема простого регулирования выходной энергии/мощности лазеров является актуальной со времени создания собственно лазеров.
Проблема же создания способа и устройства, позволяющего плавно регулировать выводимую мощность лазера без его отключения, является наиболее актуальной и не разрешенной до настоящего времени вследствие наличия объективных не разрешенных в полной мере технических противоречий, описанных, например, в следующих описаниях изобретений и патентах.
Известно техническое решение (аналог 1) по патенту US 3448404 от 1969 года, (H01S 3/05, Filed Dec. 22, 1965, Ser. No. 515, 791 Int Cl. H01S 3/05 U.S. Cl. 331-94.5), заявленному Розом Макфарлейном (Ross A. McFarlane) с соавторами. Был предложен способ регулирования выходной мощности газового лазера при помощи прозрачной пластины 21 и зеркала 22 (Фиг.1). Этот способ основан на известной зависимости пропускания/отражения прозрачной пластинки от угла падения на нее излучения. В этом способе изначально пластинка 21 устанавливается под углом Брюстера (параллельно пластинкам 12 и 13, они являются окнами газовой кюветы активного элемента лазера, и которые установлены на нее так же под углом Брюстера). В этом положении пластинки 21 излучение, генерируемое лазером, проходит без потерь. При отклонении этой пластинки от угла Брюстера часть излучения начинает от нее отражаться (отбирается часть мощности от генерируемого излучения) и зеркалом 22 направляется на поглотитель. Таким образом, на выходе лазера (зеркало 16) выбирается необходимый уровень мощность излучения. Следует отметить, что регулирование выходной мощности лазера изменением мощности его накачки в то время не представлялось возможным вследствие уровня развития электроники того времени, а потребность в регулировании выходной мощности лазера была актуальной уже тогда (аналог 1).
Недостатками известного способа и устройства являются:
1. нет возможности нахождения максимально возможной выводимой мощности при выбранном уровне накачки вследствие того, что начальный уровень выводимой мощности определяется пропусканием выходного зеркала (16) резонатора лазера, а в этом способе идеологически и конструктивно заложено регулирование только в сторону уменьшения (ослабления) от этого начального уровня выводимой мощности. А коэффициент отражения этого выходного зеркала (16), оптимальный для одного уровня накачки лазера, будет неоптимальным для другого уровня его накачки;
2. применим только для лазеров, действующих в узкой спектральной области, вследствие наличия конструктивных элементов, которые ее ограничивают, т.к. эта область ограничена спектральной областью пропускания прозрачной пластинки применяемой в резонаторе лазера;
3. низкая точность удержания пятна луча лазера на мишени во время регулирования, что является следствием особенности конструкции устройства, т.к. пятно луча лазера на мишени будет испытывать смещение вызванное преломлением луча в регулирующей пластинке 21, которая имеет конечную толщину. Причем это смещение тем больше, чем больше угол между плоскостью регулирующей пластинки и осью резонатора, а также оно зависит от толщины этой пластинки;
4. большое число оптических элементов и узлов для реализации в устройстве, что резко усложняет конструкцию, т.к. для реализации известного устройства требуются три дополнительных элемента: прозрачная пластинка 21, зеркало 22 и элемент поглощающий излучение, каждый со своим механическим узлом для их удержания. Причем угол между пластинкой 21 и зеркалом 22 должен быть 90 градусов.
Известен способ (аналог 2) регулируемого вывода излучения из резонатора, предложенный в работе: «Eduardo Granados, David W. Coutts, and David J. Spence / Mode-locked deep ultraviolet Ce:LiCAF laser // OPTICS LETTERS / Vol.34, No.11 P.1660-1662». В этой работе приводится описание лазера с лазерной накачкой, в котором полезная часть излучения выводится из резонатора при помощи прозрачной пластинки. Причем плавное изменение выводимой мощности этого лазера с целью регулирования осуществляется ее поворотом. Ниже в описании представлен фрагмент из этой статьи и рисунок со схемой этого лазера с подписью к нему, а также часть текста статьи, где описывается его схема. Тут же заявителем приводятся соответствующие переводы на русский язык.
На Фиг.2 жирным шрифтом выделена фраза, относящаяся к существу вопроса: «....The three cavity mirrors had low transmission (<0.03%), and so a 6-mm-thick UV-grade silica plate placed in the cavity at close to Brewster's angle was used as a variable output coupler. The cavity lengths of the pump and cerium laser were matched for synchronous mode locking. Each time the chopper opened a stable mode-locked pulse train was produced after approximately 4 mks build up time. A maximum output of 52 mW was obtained, with an output coupling of 3% inferred by measurement of the coupler angle. All reflections from the plate were included in the power measurement; this power could be easily produced in a single output beam with a suitable transmissive cavity mirror.…» Перевод текста: «…Три зеркала резонатора имели низкое пропускание (<0,03%), и также пластина 6-мм толщины из УФ-кварца, помещенная в резонатор под углом, близким к углу Брюстера, была использована в качестве выходного зеркала с переменным пропусканием. Длина резонатора для накачки цериевого лазера была подобрана для достижения синхронизации мод. Каждый раз, когда прерыватель открывался, устанавливался стабильный режим последовательности импульсов генерируемых приблизительно после 4 мкс от момента его открывания. Максимальная мощность 52 мВт была получена при выходной связи вывода из резонатора около 3% (эквивалентно выходному зеркалу с пропусканием 3%), определяемых изменением угла ответвителя. Все отражения от пластины были учтены при измерении выводимой мощности; эту мощность можно было легко определить по резонатору с одиночным выходным пучком с зеркалом с эквивалентным пропусканием…» (аналог 2).
В известном способе по аналогу 2 для регулирования выходного излучения в качестве физического принципа, так же как и в аналоге способа регулирования 1, используется зависимость коэффициента отражения прозрачной пластинки от угла падения на нее излучения. Только в аналоге 2 пластинка используется для вывода полезного излучения из резонатора лазера, который составлен их «глухих», с отражением, равным 100% зеркал. Этим способом возможно плавное регулирование выходной энергии/мощности и при регулировании можно найти такое положение пластинки, при котором выходная энергия/мощность лазера с таким резонатором будет максимальной. Однако в аналоге 2 в соответствии с законами оптики в противоположную сторону от направления выводимого излучения, указанного авторами, излучение будет отражаться также и противоположной стороной пластинки, что приведет к дополнительным потерям. На последнее, весьма негативное свойство аналога 2 авторами не было обращено внимание читателя.
Недостатками известного способа и устройства являются:
1. узкий спектральный диапазон его применения вследствие наличия конструктивных элементов, которые ее ограничивают, т.к. эта область ограничена спектральной областью пропускания применяемой прозрачной пластинки;
2. сложность регулирования выводимой мощности вследствие особенностей принципа действия устройства, т.к. при регулировании энергии/мощности направление выводимого излучения меняется весьма существенно, а именно: угол между крайними положениями пучка выходного излучения составляет десятки градусов. В этом случае имеется необходимость перемещать «потребителя» излучения такого лазера, например мишень, и снова наводить излучение на то же место, куда падало излучение до предыдущей подстройки выводимой энергии/мощности;
3. низкий КПД устройства вследствие особенности конструкции устройства - присутствия отражения в направлении, противоположном выводимому, указанному на Фиг.2 (на рисунке авторами не показано), это является каналом дополнительных потерь, что снижает КПД (эффективность) лазера в целом;
4. сложность реализации конструкции известного устройства вследствие того, что для устройства, реализующего этот известный способ, кроме узла для вращения пластинки, с помощью которой осуществляется регулирование выходной энергии/мощности лазера, потребуется специальное устройство для перемещения мишени, то есть приемника излучения, которое отслеживало бы изменение направления выводимого луча лазера.
Известен способ (аналог 3), в котором для регулирования выходной энергии/мощности излучения лазера используется интерференционное зеркало в виде клина-фильтра. Этот способ представлен в патенте US 4187475 от 5 февраля 1980 года, заявленном Ирвином Видером (Irwin Wieder). (Int. Cl. H01S 3/08 U.S. Cl. 331/94.5 S; 331/94.5 C; 350/288). Этот клин-фильтр представляет собой интерференционное зеркало, у которого толщины слоев диэлектрических покрытий изменяются от одного края зеркала до другого. В результате пропускание такого зеркала для конкретной выбранной длины волны является функцией его положения относительно падающего на него луча. Этот клин-фильтр используется в качестве выходного зеркала резонатора лазера. Регулирование энергии осуществляется возвратно-поступательным перемещением данного зеркала перпендикулярно оси резонатора. Перемещением этого выходного зеркала находят такое его положение, при котором вывод выходной энергии лазера максимальный.
На Фиг.3 изображен клин-фильтр. На подложку 2 из стекла или кварца нанесены диэлектрические слои 4, 6, 8, 10 и 12 последовательно с большой и малой диэлектрической постоянной таким образом, что толщина каждого слоя линейно возрастает от одного конца подложки до другого. Таким образом, пропускание такого фильтра для выбранной длины волны будет функцией положения пучка излучения относительно краев такого зеркала (аналог 3).
Недостатками известного способа и устройства являются:
1. узкий спектральный диапазон применения такого способа, так как он ограничен диапазоном прозрачности основы клина-фильтра, а также напыляемых на нее материалов;
2. сложная технология и дороговизна нанесения диэлектрических покрытий переменной толщины.
3. сложная конструкция устройства как в реализации, так и в использовании, так как оно выполняет сразу две функции: выходного зеркала резонатора лазера и регулирующего устройства. То есть кроме обычных винтов юстировки, требующихся для настройки этого клина-фильтра как выходного зеркала резонатора лазера, этот узел должен иметь устройство продольного перемещения, причем весьма прецизионное, такое чтобы эта юстировка сохранялась. Поэтому в известном способе 3 при его использовании для клина-фильтра применяется автоматическая подстройка с электронным управлением.
Известен способ (аналог 4), позволяющий производить регулировку выходного излучения лазера посредством дополнительного внутрирезонаторного устройства, защищенного патентом US 3243724 от 1963 года, заявленный Артуром Вилстеком (Arthur A. Vuylsteke). (U.S. Patents 3243724 1/1963 S.n. 250, 250 3 Claims (Cl.331-94.5)). Схема установки реализующей этот способ приведена на Фиг.4. В этом способе используется деление внутрирезонаторного циркулярно поляризованного света лазера на обыкновенную и необыкновенную волны двулучепреломляющим кристаллом 20, введенным в резонатор, а также введенного туда же регулирующего элемента 18, способного вращать поляризацию проходящего сквозь него излучения, в качестве которого, например, может служить ячейка Керра. Путем вращения последнего относительно оси резонатора осуществляется регулирование излучения и, соответственно, изменяется доля выводимой мощности лазерного излучения.
Принцип регулирования приведен на Фиг.4. В качестве активного элемента лазера использовался рубин 10 в виде цилиндрического стержня с плоскопараллельными торцами 12 и 14, которые были перпендикулярными к оси стержня. На торце 12 нанесено покрытие с коэффициентом отражения, близким к единице. Это покрытие вместе с зеркалом 22 образуют «глухой» (т.е. оба зеркала имеют 100% отражения на длине волны генерации) резонатор лазера. Торец 14 покрытия не имеет, поэтому вся генерируемая энергия свободно проходит через него. Стержень 10 окружает импульсная лампа накачки выполненная в виде спирали 16, которая подключена к источнику питания 17. Выходной пучок излучения поляризован перпендикулярно оси стержня. На пути луча лазерной генерации, т.е. соосно стержню, расположен вращатель поляризации 18, а за ним - двулучепреломляющий селектор поляризации 20, который разделяет пучок излучения на два - обыкновенный и необыкновенный пучки. Необыкновенный пучок выходит из лазерного резонатора как полезное излучение, а обыкновенный остается в нем, отражаясь от зеркала 22 для поддержания стоячей волны генерации лазера.
Недостатками известного способа и устройства являются:
1. большие потери излучения на поверхностях и в теле дополнительных элементов 18 и 20, введенных в резонатор, которые вносят в последнем дополнительные потери, что отрицательно сказывается на выходных характеристиках лазера;
2. узкий спектральный диапазон применения, который ограничивается спектральными и оптическими характеристиками двулучепреломляющих оптических элементов и элементов для вращения плоскости поляризации, кроме того, поляризационно-активные материалы известны только для узкой спектральной области - видимый и ближний ИК диапазоны;
3. сложная конструкция устройства, которое занимает большое внутрирезонаторное пространство, т.к. для реализации устройства требуются два оптических элемента, которые устанавливаются в резонатор одно за другим, каждый со своим узлом юстировки, при этом с прецизионным вращением одного из них.
Известен способ (аналог 5) регулирования выходной мощности который описывается в патенте (RU 2150773, МПК H01S 3/08, заявка 98118589/28, 08.10.1998). Для этого в мощном лазере используется устойчиво-неустойчивый резонатор (см. Фиг.8), внутри которого располагается «плоская» протяженная активная среда. Устойчиво-неустойчивый резонатор, имеющий устойчивость в вертикальной плоскости (вид резонатора в этой плоскости изображен на нижней части Фиг.5), а перпендикулярно к ней располагается плоскость неустойчивости, в которой осуществляется регулирование выходной мощности. Вид резонатора в этой плоскости с устройством регулирования изображен на верхней части Фиг.5. Вывод излучения в лазере осуществляется путем возвратно-поступательного перемещения блока зеркал 4 вдоль направления вывода. В плоскости неустойчивости резонатор имеет небольшой коэффициент увеличения М, 1<М<2. Технический результат изобретения состоит в возможности регулирования уровня выводимой мощности с возможностью нахождения максимального ее уровня при заданном уровне накачки, что ведет к увеличению КПД лазера.
Недостатками известного способа и устройства являются:
1. низкая пространственная когерентность генерируемого лазерного пучка - он состоит как бы из двух пучков, поэтому в блоке зеркал угол между зеркалами должен выдерживаться равным 90 градусам максимально точно, иначе на большом расстоянии эти половины пучка разойдутся;
2. устройство резонатора сложно конструктивно, т.к. требует прецизионных узлов с юстировкой как для каждого из зеркал блока, так и для перемещения всего блока регулировки.
Известен способ (аналог 6) вывода мощности/энергии из резонатора лазера. Суть этого способа изложена в книге: Е.Ф. Ищенко, «ОТКРЫТЫЕ ОПТИЧЕСКИЕ РЕЗОНАТОРЫ НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ И РАСЧЕТА», МОСКВА: СОВЕТСКОЕ РАДИО. - 1980 г. На странице 8 приводится Фиг.1.2 (см. Фиг.6 этой заявки) со следующим текстом: «…Иногда используют элемент с отверстием связи (Фиг.1.2б); таких отверстий может быть несколько. Возможен также вывод излучения через края одного из отражателей (Фиг.1.2в) или с помощью полупрозрачной пластинки, помещаемой внутрь полости резонатора (Фиг.1.2г)».
Пропускание такого зеркала, в свою очередь, определяется прозрачностью выходного зеркала на фиг.6 - рис.1.2а или отношением площади отверстия в выходном зеркале к площади пятна стоячей волны (на рисунках 1.2 область стоячей волны заштрихована), образуемой в лазере во время генерации - рис.1.2б, или площади пятна стоячей волны к площади зеркала для случая 1.2в. Следует обратить внимание, что в случаях, приведенных на фиг.6 (рис.1.2б и 1.2в), излучение выводится за края выходных зеркал. Размер пятна стоячей волны, в свою очередь, определяется конфигурацией резонатора (с плоскими зеркалами, расположенными конфокально, концентрически и т.п.). В случае схемы резонатора, отображенного на Фиг.6 (рис.1.2г), уровень выводимой мощности/энергии из резонатора определяется прозрачностью (зеркальностью) пластинки, помещаемой внутрь его полости. Здесь отметим особо, что для случаев, приведенных на фиг.6 (рис.1.2а-в), каждый раз при замене зеркала требуется юстировка резонатора, а в случае, приведенном на фиг.6 (рис.1.2г.), юстировки не требуется.
Недостатками известного способа и устройства являются:
1. отсутствие возможности оперативного регулирования выходной мощности/энергии без выключения лазера, т.к. для изменения отношения площади пятна выводимого излучения к площади оставшейся части пятна стоячей волны на зеркале резонатора требуется набор из 3-5 зеркал с различными диаметрами отверстий, или набора полупрозрачных пластин с различным пропусканием (отражательной способностью), для случая, приведенного на фиг.6 (рис.1.2г);
2. потребность в новой юстировке резонатора при каждой замене зеркала на зеркало с другим отношением площадей. Но в случае, приведенном на Фиг.6 (рис.1.2г), с полупрозрачными пластинами, юстировки резонатора не требуется, однако в целях безопасности требуется выключение лазера для установки новой пластинки и настройки ее положения с целью восстановления направления излучения лазера на мишень.
3. большое число дорогостоящих зеркал для реализации устройства по любой из схем прототипа, т.к. требует набора из 3-5 зеркал с различным пропусканием (или набор из полупрозрачных пластин) для каждого из заявленных спектральных диапазонов: среднего инфракрасного, инфракрасного, видимого, ультрафиолетового, вакуумно-ультрафиолетового и мягкого рентгена, а также необходимость в юстировке лазера при замене одного зеркала на другое во всех упомянутых диапазонах. Кроме того, к этим неудобствам в случае лазера, работающего, например, в вакуумно-ультрафиолетовой области спектра, при замене одного зеркала другим добавится потребность в разгерметизации бокса, в который этот лазер помещен, с откачкой бокса заново после замены зеркала, что в конечном счете приводит к неоправданно высоким затратам материальных ресурсов и времени.
4. низкий КПД вследствие отражения (потери) части мощности/энергии противоположной стороной пластинки (автором не указано) в направлении противоположном выводимому излучению.
Известно устройство по изобретению «Лазер», защищенному а.с. № SU 884526, в котором осуществляется способ регулирования энергии/мощности выходного излучения лазера (прототип). Известное устройство отличает то, «что резонатор в предлагаемом лазере образован крышеобразным и плоским металлическими зеркалами, между активной средой и плоским металлическим зеркалом расположен плоский зеркальный дифракционный экран, выполненный подвижным в направлении, перпендикулярном оптической оси, и перекрывающий не менее половины апертуры пучка излучения, причем зеркальная поверхность экрана обращена к активной среде и параллельна ребру крышеобразного зеркала.
При этом вдоль ребра крышеобразного зеркала выполнена щель регулируемой ширины» (Фиг.9, 10).
Общими признаками между сопоставляемыми решениями (прототипом и заявленным решением) в отношении способа - являются:
- выходное излучение резонатора лазера выводится с помощью регулирующего элемента;
- регулирующий элемент выполнен с возможностью перемещения;
в отношении устройства:
- выходное зеркало со 100% отражением;
- регулирующий элемент выходного излучения, помещенный между активным элементом и выходным зеркалом;
- механизм перемещения регулирующего элемента.
Перед описанием недостатков известного устройства и способа, осуществляемого с помощью этого устройства, реализуемого в изобретении по а.с., следует отметить, что описываемый в а.с. лазер и способ регулирования относятся к лазерам только импульсного действия. Упоминание термина «мощность» относится только к пиковой мощности импульсов, увеличивающейся за счет укорочения длительности этих импульсов.
К недостаткам технического решения, описанного в а.с., относятся:
- работоспособность способа вывода и регулирования в лазерах только импульсного действия;
- в качестве отражательного элемента для вывода выходного излучения, реализующего способ вывода и регулирования энергии и мощности, используется дифракционный экран - сложный, дорогой и не стойкий к высокой плотности излучения элемент, который не рассматривается как самостоятельный регулирующий элемент (т.к. работает в связке с крышеобразным зеркалом) и не может быть применен в лазерах другого типа;
- сложность установки дифракционного экрана, поверхность которого должна быть строго параллельна ребру крышеобразного зеркала;
- малый диапазон регулирования, так как регулирующий элемент уже введен в поле резонатора, причем не менее чем на половину, и задача этого элемента - компенсация потерь энергии путем нахождения ее максимального возможного значения (энергии) после установки другого размера ширины щели в крышеобразном резонаторе;
- потери на краю экрана и потери на щели крышеобразного зеркала, которые приводят к повышению порога генерации и уменьшению КПД;
- перемещение пятна излучения на мишени за счет перемещения элемента регулирования и наличие дифракционного излома, изменяемого при перемещении элемента регулирования;
- для удержания пятна излучения на мишени необходимость использования дополнительных элементов вне конструкции лазера;
- регулирование энергии осуществляется путем последовательного приближения, но не менее двух этапов: регулирование щели крышеобразного зеркала, подстройка выходной мощности с помощью дифракционного экрана и осуществление контроля длительности.
Заявленное техническое решение поясняется следующими графическими материалами:
На Фиг.1 представлен аналог по патенту США в виде объемного изображения известного устройства.
На Фиг.2 представлен аналог в виде схемы экспериментальной установки со схематическим изображением известного устройства
На Фиг.3 представлен аналог по патенту США в виде схематического изображения известного устройства.
На Фиг.4 представлен аналог по патенту США в виде объемно-схематичного изображения известного устройства.
На Фиг.5 представлен аналог по заявке на изобретение в виде схематичного изображения известного устройства.
На Фиг.6 представлен аналог из книги в виде схематичного изображения известного устройства.
На Фиг.7 представлен аналог по а.с., выбранный в качестве прототипа, в виде схематического изображения известного устройства.
На Фиг.8 представлена схема лазера на красителе, использовавшегося в экспериментах.
На Фиг.9 представлен общий вид в виде схематичного изображения заявленного способа и устройства.
На Фиг.10 представлен детализированный фрагмент заявленного технического решения, увеличенный фрагмент схемы выходной части лазера, приводившейся на Фиг.9.
Сущность заявленного технического решения заключается в способе регулирования энергии/мощности выходного излучения лазера, в котором:
- выходное зеркало заменяется на «глухое»;
- применено дополнительное зеркало, уставленное в резонатор под углом к его оси, на устройстве, обеспечивающем плавное возвратно-поступательное перемещение этого зеркала вдоль его отражающей плоскости с целью плавного регулирования энергии/мощности выходного излучения лазера.
Осуществив существенное упрощение конструкции, с одной стороны, авторам удалось решить 11 задач, для решения которых методами обычного конструирования требовалось бы разрешить практически непреодолимые противоречия.
Например, для повышения КПД для каждого уровня накачки надо подбирать индивидуальное зеркало. При этом следует отметить, что количество шагов по подбору зеркал для каждого уровня накачки может быть несколько (от 3-4 до десятков).
Заявленное техническое решение обеспечивает повышение показателей эффективности импульсных и непрерывных лазеров, оснащенных резонаторами в виде отдельных зеркал, посредством элементарной замены выходного зеркала, используемого обычно, на «глухое», при одновременном применении заявленного устройства с зеркалом, установленным в резонатор, удалось решить 11 целей (задач), и это является доказательством неочевидности для специалистов в данной области техники.
Указанная неочевидность доказывается тем, что в данном случае имеется техническое противоречие между необходимостью поддержания КПД лазера на максимально возможном уровне при любых уровнях накачки. Однако выходное зеркало резонатора (например, импульсного или непрерывного лазера) с одним коэффициентом отражения, которое оптимально для одного уровня энергии/мощности накачки, является неоптимальным при другом ее уровне. Причем при увеличении уровня накачки необходимо, чтобы у лазера выходное зеркало было с меньшим коэффициентом отражения, а при уменьшении уровня - с большим коэффициентом отражения.
До представления заявленного технического решения в большинстве из известных из уровня техники способов для выбранного уровня накачки регулирование осуществлялось путем подбора, то есть посредством замены одного полупрозрачного зеркала на другое с другим коэффициентом пропускания с последующей его переюстировкой. Это действие являлось достаточно сложной в техническом отношении процедурой и достаточно дорогостоящим процессом в смысле необходимости в материальных затратах на приобретение, подбор и подстройку зеркал в лазерах, при этом была строгая необходимость в выключении лазера. Таким образом, основной задачей заявленного технического решения является реализация возможности выведения, регулирования и поддержания выводимой энергии/мощности на необходимом пользователю уровне в пределах обеспечиваемым выбранным уровнем накачки лазера без его выключения.
При выводе и регулировании выходной энергии/мощности лазера в заявленном техническом решении обеспечивается стабильность пространственного положения выходного лазерного пучка, что является весьма значительным (существенным) фактором, определяющим качественные контролируемые показатели по производительности и по иным существенным показателям дорабатываемого лазера (т.е. лазера, в котором реализуется заявленный способ).
В основе заявленного технического решения была задача разработки способа и устройства вывода и регулирования уровня выводимой из резонатора оптической энергии/мощности из лазера (с возможностью обеспечения ее (энергии/мощности максимального уровня) импульсного и/или непрерывного действия непосредственно во время его работы - без его остановки и новой юстировки резонатора лазера. При использовании заявленного способа благодаря возможности оперативной подстройки энергии/мощности выводимого излучения с помощью устройства, реализующего его, коэффициент полезного действия лазера может быть максимально возможным при любом текущем уровне накачки (поскольку пропускание выходного зеркала лазера должно быть тем больше, чем выше уровень накачки, то есть для этого необходима его постоянная подстройка). В заявленном варианте конструкция и габариты лазера, оборудуемого этим устройством, не изменяются, и оно может быть встроено практически в любой лазер действующий (используемый) в хозяйственном обороте, который имеет между выходным зеркалом и активным элементом свободное место, достаточное для установки заявляемого устройства регулирования, посредством которого и реализуется заявленный способ.
Заявленное техническое решение обеспечивает возможность решения всех перечисленных недостатков выявленных из уровня техники у аналогов и наиболее близкого аналога-прототипа посредством применения достаточно простого с точки зрения конструкции решения и позволяет придать вновь разрабатываемым лазерам новое качество (новые потребительские свойства, которыми в настоящее время не обладают известные из уровня техники устройства), а именно:
1. обеспечение возможности повышения КПД лазера при выбранном уровне накачки;
2. обеспечение возможности оперативного регулирования выходного излучения при текущем уровне накачки непосредственно во время работы лазера;
3. обеспечение возможности регулирования энергии/мощности лазера в максимально широком диапазоне спектра от среднего ПК, до мягкого рентгена (диапазон 20 мкм - 0,05 мкм);
4. обеспечение возможности расширения диапазона перестройки перестраиваемых по длине волны лазеров (особенно) на краях диапазона перестройки за счет обеспечения возможности оперативного регулирования энергии/мощности выводимого излучения при выбранной длине волны генерации и текущем уровне накачки без его остановки (выключения);
5. обеспечение возможности упрощенной эксплуатации лазера за счет исключения трудоемкого процесса юстировки (переюстировки) зеркал резонатора после каждой их замены с возможностью плавного регулирования (повышения и понижения соответственно) выводимой мощности в зависимости от потребности пользователя;
6. обеспечение стабильности пространственного положения выходного лазерного пучка;
7. сохранение работоспособности заявленного технического решения в лазерах различного типа - непрерывных, импульсных и генерирующих импульсы ультракороткой длительности;
8. возможность выведения максимальной энергии/мощности лазера для текущего уровня накачки для любого типа лазера без его остановки (выключения);
9. обеспечение работоспособности при использовании в лазерах с резонаторами любой сложности: простых, двухзеркальных, с селектирующими элементами, кольцевых и т.п.;
10. обеспечение экономической эффективности при проведении НИР и НИОКР;
11. обеспечение экономической эффективности при эксплуатации серийных лазеров.
Сущность заявленного технического решения заключается в способе вывода и регулирования энергии/мощности выходного излучения лазера, заключающемся в установке в резонатор лазера под углом к оси резонатора отражающего элемента на подвижном основании, положение которого определяет уровень выводимой энергии/мощности после запуска лазера, и установки требуемого уровня энергии/мощности накачки, отличающемся тем, что в заявленном способе в резонатор импульсного или непрерывного лазера между выходным зеркалом лазера, замененным на непрозрачное отражающее зеркало, и торцом его активного элемента в качестве отражающего регулирующего элемента устанавливается непрозрачное отражающее зеркало на подвижном основании, позволяющем перемещать это зеркало параллельно его отражающей поверхности в пределах от полного его вывода за пределы светового поля, установившегося в резонаторе, до полного перекрытия этого поля после ввода этого перемещаемого зеркала, с возможностью осуществления не только вывода энергии/мощности лазера, но и его регулирования, а именно плавного изменения энергии/мощности от нул