Радиолокационный способ выявления закона изменения угловой скорости поворота сопровождаемого воздушного объекта по последовательно принятым отражениям сигналов с перестройкой несущей частоты

Иллюстрации

Показать все

Изобретение может быть использовано в системах классификации и идентификации воздушных объектов (ВО), использующих принцип усреднения признака принадлежности при изменении ракурса объекта, а также в системах построения радиолокационных изображений объектов методом инверсного синтезирования апертуры. Достигаемый технический результат - повышение помехоустойчивости перспективного многочастотного режима радиолокационного сопровождения и формирования радиолокационных изображений объектов. Указанный результат достигается за счет того, что формируют и используют траекторную характеристику, которая представляет собой зависимость, показывающую изменение суммы разностей комплексных амплитуд смежных дальностных портретов от номера портрета, то есть от времени приема очередной фракции сигналов с перестройкой несущей частоты, при этом для построения более качественной траекторной характеристики воздушного объекта предлагается пятикратно сглаживать исходную характеристику методом скользящего среднего. 3 ил.

Реферат

Изобретение относится к радиолокационным методам и может быть использовано в системах классификации и идентификации воздушных объектов, использующих принцип усреднения признака принадлежности при изменении ракурса объекта, а также в системах построения радиолокационных изображений (РЛИ) объектов методом инверсного синтезирования апертуры.

В первых из указанных систем необходимо использовать интервал, в пределах которого сопровождаемый объект максимально изменяет свою ориентацию относительно линии визирования, а в системах построения РЛИ - интервал, на котором угловая скорость поворота объекта является следствием только (исключительно) перемещения центра масс по прямолинейной траектории и не связана с проявлением траекторных нестабильностей полета, т.е. рысканий, кренов и тангажных флюктуации планера.

Известен радиолокационный способ выявления закона изменения угловой скорости поворота F ( γ ˙ ) сопровождаемого воздушного объекта (летательного аппарата) по последовательно принятым отражениям одночастотных сигналов, входящий в структуру способа формирования двумерного радиолокационного изображения [1].

Сущность этого способа выявления закона F ( γ ˙ ) заключается в том, что в направлении воздушного объекта излучают последовательности сигналов с перестройкой несущей частоты из 2N импульсов (N=8,9) каждая, частоту этих импульсов изменяют от импульса к импульсу в диапазоне от f0 до (f0+Fпер), где f0 - основная (начальная) несущая частота квазиоптической области отражения сантиметрового диапазона, Fпер - диапазон, в котором осуществляется перестройка частоты от импульса к импульсу с интервалом Δf=Fпер/(2N-1). Затем принимают отраженные от летательного аппарата (ЛА) сигналы. По принятым отраженным сигналам сопровождают ЛА по угловым координатам и дальности, записывают в оперативное запоминающее устройство (ОЗУ) амплитуды и фазы, а также номер и время приема отраженных сигналов с перестройкой несущей частоты (СПНЧ), причем регистрацию или запись этих данных проводят на интервале времени Т3, на порядок превышающем величину 22NTи, где Tи - период повторения импульсов, а излучение каждой последовательности с перестройкой частоты из 2N импульсов проводят в течение интервала времени Тпосл, не превышающего 5 мс, т.е. в течение времени, практически на порядок меньшего продолжительности интервала корреляции траекторных нестабильностей полета ЛА. При этом в целях обеспечения помехозащищенности частоту импульсов каждой последовательности из 2N импульсов изменяют по уникальному случайному закону, выполняя, однако, условие, чтобы в пределах каждой 2N-импульсной последовательности частота каждого импульса повторялась только один раз.

Первым импульсом в каждой последовательности с перестройкой частоты является импульс на частоте f0. После приема, перевода из аналоговой в цифровую форму и записи в ОЗУ параметров отраженных сигналов осуществляют формирование прямоугольного двумерного массива данных, именуемого матрицей многочастотно-синтезированного рассеяния (ММСР), для чего предварительно в пределах каждой последовательности СПНЧ осуществляют в ОЗУ перестановку зарегистрированных данных, обеспечивая их последовательное расположение в столбцах ММСР в порядке монотонного возрастания частоты от f0 до (f0+Fпер). В результате получают двумерный массив данных, столбцы которого расположены в соответствии с номерами излучаемых (и соответственно принимаемых) последовательностей СПНЧ, а данные в столбцах расположены не в порядке излучения по случайному закону, а в порядке монотонного изменения частоты излучения от f0 до (f0+Fпер). Таким образом, в каждой строке массива располагают амплитуды и фазы сигналов одинаковой частоты.

Данные об отраженных сигналах записывают в элементы ММСР в комплексном виде, а именно после приема каждой m-й пачки СПНЧ из амплитуды Δk и фазы φk k-го отраженного импульса формируют комплексное значение этого отраженного импульса в виде A ˙ k = A k e j ϕ k . Далее в отдельный массив M12 записывают параметры отражений на первой частоте f0, формируя таким образом цифровую отражательную характеристику ЛА из M элементов M=Tз/Tи. Выборку эквидистантных значений отраженных сигналов на частоте f0 на интервале запоминания Tз называют генеральной, а любую выборку из взятых подряд по времени приема 2N значений в пределах генеральной выборки называют частной выборкой, при этом i-й частной выборкой (ЧВ) называют выборку, первый элемент которой соответствует i-му элементу массива M12, т.е. i-му элементу генеральной выборки (ГВ). Вычисляют коэффициенты корреляции между смежными по номерам ЧВ, т.е. между 1-й и 2-й, между 2-й и 3-й, между 3-й и 4-й и т.д. Каждому i-му коэффициенту корреляции ρi ставят в соответствие момент времени, соответствующий середине интервала, на котором получены отражения для i-й ЧВ.

В результате получают (M-2N-1) коэффициентов корреляции (КК) ρ и соответствующих им моментов времени, которые запоминают в соответствующих элементах массива D1 ОЗУ. Анализируют информацию, записанную в массив D1, и находят в них момент времени, соответствующий минимальному КК или максимальному КК. В соответствии с физическим смыслом КК считают, что в момент времени, когда КК минимален, угловая скорость поворота ЛА γ ˙ максимальна, и наоборот. Зависимость КК от времени t считают косвенной (т.е. не имеющей строгой аналитической связи с γ ˙ ) зависимостью угловой скорости γ ˙ от времени t, которую и воспринимают в качестве закона F [ γ ˙ ( t ) ] изменения γ ˙ с течением времени.

Предложенный в [1] способ выявления закона F [ γ ˙ ( t ) ] изменения угловой скорости γ ˙ не может быть признан эффективным и надежным, т.к. время между одночастотными излучаемыми сигналами имеет согласно способу жесткую зависимость от длительности Тпосл последовательности (пачки) СПНЧ. В работе [2] для получения правдоподобных значений оценочного КК (по которым в ходе обработки данных натурных экспериментов были получены пригодные для использования корреляционные характеристики P ( γ ˙ ) разных ЛА) рекомендовано использовать период повторения одночастотных сигналов, не превосходящий 1 мс. Это сильно усложняет способ формирования РЛИ, в интересах которого производится извлечение закона F [ γ ˙ ( t ) ] . Причина в том, что последовательности СПНЧ, как правило, по длительности превосходят 1 мс. Например, для пачек из 128 сигналов при Tи=30 мкс периодичность повторения сигналов первой частоты f0 составляет 7,7 мс. А если применять перестройку частоты от пачки к пачке (вместо перестройки от импульса к импульсу) и использовать накопление в коротких одночастотных пачках, то длительность последовательности пачек с перестройкой частоты еще более возрастает. Значит, для реализации корреляционного алгоритма выявления закона F [ γ ˙ ( t ) ] [1] придется дополнительно излучать сигналы основной частоты f0 внутри (в пределах) последовательности сигналов N частот. Это, во-первых, нарушит эквидистантность СПНЧ, а во-вторых, снизит помехоустойчивость режима сопровождения, т.к. сигналы с частотой f0 будут использоваться чаще и возникнет угроза постановки прицельной помехи на первой частоте f0.

Другим существенным недостатком способа-прототипа [1] является невозможность повышения отношения сигнал/шум за счет когерентного сложения сигналов перед формированием одночастотной отражательной характеристики ЛА в виде массива M12. Использование же часто повторяющихся пачек сигналов на частоте f0 еще больше снизит помехоустойчивость и увеличит длительность последовательности СПНЧ Тпосл, чем существенно усложнит обработку сигналов. В помехах и шумах отражательная характеристика ЛА на частоте f0 не сможет с выразительностью показывать моменты максимизации и минимизации γ ˙ . Собственно говоря, известный способ выявления угловой скорости γ ˙ [1] и был предложен в виду отсутствия возможности получения закона F ( γ ˙ ) по отраженным СПНЧ. И наконец, эквидистантность сигналов на частоте f0 в [1], снижающая помехоустойчивость, также обусловлена необходимостью получения одночастотной отражательной характеристики. Отсутствие такой необходимости позволяет осуществлять перестройку частоты в пределах последовательности по случайному закону для всех без исключения сигналов, а не для (2N-1) сигналов, кроме сигналов на частоте f0, которые предложено всегда в каждой пачке СПНЧ использовать первыми.

Задачей изобретения является разработка способа выявления закона изменения угловой скорости поворота ЛА относительно линии визирования при последовательном излучении фракций СПНЧ без организации более частого излучения одночастотных сигналов, так как такое излучение снижает помехоустойчивость перспективного многочастотного режима радиолокационного сопровождения и формирования РЛИ ЛА.

Для решения поставленной задачи предлагается использовать тот факт, что амплитудно-фазовые флюктуации сигналов, отраженных ЛА, становятся интенсивнее при увеличении угловой скорости поворота сопровождаемого ЛА. При этом другие факторы, влияющие на степень флюктуации радиолокационных отражений, должны быть нейтрализованы. К этим факторам относятся радиальное приближение (удаление) ЛА к радиолокационной станции (РЛС), турбовинтовая модуляция отраженных сигналов и наличие шумов (помех) произвольного происхождения. Следовательно, необходимо построить систему обработки отраженных сигналов так, чтобы максимально снизить влияние негативных факторов и эффективно выделить полезные флюктуации, связанные исключительно с поворотами ЛА относительно линии визирования РЛС.

В первую очередь, рассмотрим порядок устранения негативных факторов, а затем проверим возможность выделения интенсивности поворотов ЛА по соответствующей интенсивности амплитудно-фазовых флюктуации отраженных сигналов.

Известно [3, 4], что приближение или удаление объектов отражения радиоволн не влияет на амплитуду отраженных сигналов, но вносит фазовые добавки, кратные дробной части волнового числа 2π/λ, где λ - длина волны (для совмещенной РЛС за счет двойного хода электромагнитной волны речь должна идти о дробной части числа 4π/λ). Следовательно, на первом шаге необходимо вычислить радиальную скорость ЛА и устранить изменения фаз в принимаемых сигналах, связанные с изменением расстояния до ЛА.

Негативное влияние шумов и распределенных заградительных помех традиционно устраняется в современных РЛС на основе когерентного сложения принимаемых сигналов [3, 4]. В данном случае когерентное сложение (накопление) полезных сигналов и сопутствующее автоматическое повышение разрешающей способности по дальности предлагается осуществить методом проведения обратного быстрого преобразования Фурье (БПФ) с фракцией принятых отраженных от ЛА реализаций в пределах каждой последовательности СПНЧ. Перестановка сигналов в порядке монотонного увеличения несущей частоты (в пределах пачки СПНЧ со случайным законом изменения несущей частоты) позволяет сформировать в ОЗУ частотную характеристику ЛА, т.е. зависимость величины амплитуды и фазы отраженных сигналов от изменения частоты. Если объект на интервале облучения его последовательностью СПНЧ сохраняет относительное постоянство пространственного положения, то методом обратного БПФ из вектора частотной характеристики можно получить импульсную характеристику ЛА, как зависимость его отражательных свойств от изменения времени контакта радиолокационного сигнала сверхкороткой длительности (порядка наносекунд) постоянной амплитуды с элементами поверхности ЛА [5]. Импульсная характеристика ЛА с учетом скорости распределения волн (скорости света с) может быть пересчитана в дальностный портрет объекта, т.е. в зависимость отражательных свойств объекта от координаты радиальной дальности (вдоль линии визирования). При неизменности положения ЛА в течение Тпосл в дальностном портрете (ДлП) обеспечивается когерентное сложение отражений на разных частотах и повышается результирующее отношение сигнал-шум. То есть для обеспечения помехоустойчивости целесообразно выделять информацию об угловой скорости поворота γ ˙ после получения ДлП ЛА.

Для устранения фазовых сдвигов, связанных с радиальным движением ЛА, может использоваться рекуррентный алгоритм вычитания из фазы принятого сигнала фазового компонента, обусловленного исключительно изменением расстояния до ЛА. Рекуррентность нужна в случае использования вобуляции частоты повторения импульсов. Если же период повторения постоянен, то компенсацию можно проводить по универсальной формуле, приведенной в [6-8]. Однако оба эти подхода предполагают знание радиальной скорости движения ЛА, вычисляемой на предварительном этапе стандартным методом в режиме одночастотного зондирования [7].

В данном же случае применение излучения одночастотных сигналов предложено исключить из соображений повышения помехоустойчивости режима сопровождения. Поэтому для устранения фазовых набегов радиального характера в данном случае уместно использование способа, описанного в [8, 9]. Этот способ построения информативного дальностного портрета и оценки радиальной скорости ЛА сам основан на компенсации рассматриваемых фазовых сдвигов, обусловленных его радиальным движением. Поскольку данный способ достаточно подробно описан в [9], то нет необходимости подробно излагать его сущность. Предлагается в рамках данного изобретения считать применение способа [9] целесообразным, эффективным, доказанным и называть его способом компенсации «дальностных» фазовых набегов (т.е. связанных с изменением дальности до ЛА) методом минимума энтропии.

Третий негативный фактор, связанный с проявлением турбовинтового эффекта (ТВЭ), устраняется за счет использования предлагаемого способа изменения частоты зондирования в пределах каждой последовательности СПНЧ по случайному закону. Случайное изменение частоты зондирующих сигналов в пачках нарушает закономерный характер проявления в параметрах отражений турбовинтовой модуляции и как следствие ведет к «размазыванию» потенциально возможных ложных турбовинтовых составляющих в структуре формируемых дальностных портретов.

Таким образом, устранение негативных для выявления закона F [ γ ˙ ( t ) ] факторов предлагается осуществлять на основе:

1) применения в пачках СПНЧ случайного закона перестройки;

2) когерентного сложения отражений от элементов конструкции ЛА методом обратного БПФ с его частотной характеристикой;

3) устранения дальностных фазовых набегов в процессе формирования ДлП объекта методом минимума энтропии в соответствии со способом [9].

Для выявления (выделения) закона изменения угловой скорости γ ˙ предлагается формировать и использовать траекторную характеристику ЛА. Траекторная характеристика (ТХ) - это зависимость, показывающая изменение суммы разностей комплексных амплитуд смежных дальностных портретов от номера портрета, т.е. от времени приема очередной пачки СПНЧ.

Предшествующее построению траекторной характеристики формирование ДлП ЛА предлагается осуществить после излучения и приема отраженных от ЛА пачек СПНЧ. В излучаемых пачках используемые частоты зондирующих сигналов должны подчиняться случайному закону, не повторяющемуся от пачки к пачке. Причем в данном случае сигналы на частоте f0 не являются исключением.

При линейном изменении несущей частоты в пачке СПНЧ частота первого импульса (первая частота) равна f1=f0, частота второго импульса (вторая частота) равна f2=f0+Δf, частота третьего импульса (третья частота) равна f3=f0+2Δf и так далее, так что частота K-го импульса (K-я частота) равна fK=f0+(K-1)Δf, где Δf - щаг перестройки (интервал изменения) частоты между смежными по номеру импульсами. Если все К частот являются априори известными, то можно расположить импульсы разных частот в пачке хаотично, по случайному закону, причем закон должен обязательно изменяться от пачки к пачке [1].

Длительность пачек Тпосл не должна превышать 5 мс. В этом случае перемещением ЛА на интервале излучения всех импульсов пачки можно пренебречь. Величину 5 мс принято называть интервалом истинной когерентности, т.е. интервалом, на котором полученные от объекта отраженные сигналы являются когерентными вследствие неподвижности объекта.

После приема каждой m-й пачки СПНЧ из амплитуды Ak и фазы φk k-го отраженного импульса формируют комплексное значение этого отраженного сигнала A ˙ k = A k e j ϕ k аналогично [1], а затем формируют в ОЗУ РЛС вектор-столбец зарегистрированных данных, обеспечивая их последовательное расположение в этом m-м векторе-столбце в порядке монотонного возрастания частоты от f0 до (f0+Fпер). Из M столбцов (M>>22N) формируют избыточную ММСР (ИММСР), располагая столбцы в порядке приема отражений по времени. В результате получают ИММСР, изображенную на фиг.1.

В целях снижения степени влияния вредных шумов и устранения фазовых искажений, связанных с радиальным движением ЛА, с каждым вектором-столбцом ИММСР проводят операцию обратного БПФ в сочетании с компенсацией «дальностных» фазовых набегов методом минимума энтропии [9]. За счет когерентного сложения отражений на разных частотах повышается результирующее отношение сигнал-шум и формируется ДлП ЛА, соответствующий варианту гипотетической остановки ЛА в пространстве, иначе говоря, - варианту отсутствия радиального перемещения ЛА. Сформированный в m-м столбце ДлП H ˙ m объекта можно представить массивом (матрицей) комплексных данных H ˙ m = ‖ H ˙ 1 m   H ˙ 2 m   H ˙ 3 m   …   H ˙ K m ‖ .

Из векторов дальностных портретов ЛА в ОЗУ РЛС формируют двумерную избыточную дальностно-временную матрицу рассеяния (ИДВМР), заменяя в ИММСР каждый m-й столбец отражений на разных частотах на соответствующий m-й вектор дальностного портрета. Аналитически ИДВМР H ˙ и можно представить в виде объединения комплексных данных отражений от ЛА по K строкам и M столбцам

H ˙ и = ∪ m = 1 M ∪ k = 1 K H ˙ k m = ∪ m = 1 M ∪ k = 1 K H k m exp ( j ξ k m ) ,                                      ( 1 )

где Hm - амплитуда импульсного отклика в m-м дальностном портрете в k-м элементе разрешения по дальности [5-7], ξkm - фаза импульсного отклика в m-м дальностном портрете в k-м элементе разрешения по дальности, полученная после проведения обратного БПФ с вектором отражений от воздушного объекта m-й пачки СПНЧ.

В k-й строке ИДВМР H ˙ и амплитуды реальных отражений будут присутствовать лишь в том случае, если в k-м элементе дальности просматриваемого по радиальной координате окна будет расположен рассеивающий центр (РЦ) поверхности ЛА. Таких РЦ на планере ЛА конечное число. Поэтому многие элементы ИДВМР будут содержать только шумовые составляющие, не несущие полезной информации. Для исключения этих строк из дальнейших операций определяется пороговый уровень Нп, рассчитываемый по формуле

H п = 1 K M ∑ m = 1 M ∑ k = 1 K | H ˙ k m | .                                                        ( 2 )

В первом по счету дальностном портрете ЛА путем сравнения модулей его элементов | H ˙ 11 | , | H ˙ 21 | , | H ˙ 31 | , …, | H ˙ K 1 | с порогом Hп определяются номера строк ИДВМР, которые (строки) впоследствии будут использованы в способе выявления закона F [ γ ˙ ( t ) ] . Критерием использования k-й строки в дальнейших операциях является выполнение условия

| H ˙ k 1 | > H п .                                                                    ( 3 )

В ИДВМР H ˙ и все k-е строки, не соответствующие критерию (3), обнуляются, что аналогично исключению их из дальнейшего рассмотрения.

Следующим (основным) этапом выявления закона F [ γ ˙ ( t ) ] является построение ТХ объекта. Для получения величины m-го значения ТХ предлагается использовать выражение

u m = 1 K ∑ k = 1 K { [ | H ˙ k m | cos ξ k m − | H ˙ k ( m + 1 ) | cos ξ k ( m + 1 ) ] +          + [ | H ˙ k m | sin ξ k m − | H ˙ k ( m + 1 ) | sin ξ k ( m + 1 ) ] } ,                                           ( 4 )

где | H ˙ k m | cos ξ k m и | H ˙ k m | sin ξ k m - соответственно косинусная ( R k m cos ) и синусная ( I k m sin ) квадратурные составляющие k-го элемента разрешения по дальности в m-м ДлП; m = 1, ( M − 1 ) ¯ - порядковый номер ДлП или вектора-столбца в ИДВМР.

Тем самым вычисляется усредненное по всем значащим информативным элементам дальности значение разности между косинусными составляющими смежных дальностных портретов и синусными составляющими смежных ДлП, в данном случае смежными считаются m-й и (m+1)-й ДлП.

Из m-х значений, вычисленных но формуле (4), формируется полная ТХ ЛА, включающая (M-1) элементов.

Графическая интерпретация траекторной характеристики ЛА, полученной методом математического моделирования, представлена на фиг.2. Пунктиром на фиг.2 обозначен истинный закон изменения угловой скорости (ЗИУС) ЛА, находящегося на дальности 30 км, высоте 1 км, движущегося со скоростью 100 м/с под курсовым углом 30° с рысканиями планера амплитудой 2° и средней угловой скоростью рыскания γ ˙ = 1,5 ° / c .

Как видно из фиг.2, изрезанность сформированной изначально ТХ слишком сильна, что не позволяет проводить ее автоматизированный анализ. Для сглаживания ТХ предлагается использовать метод скользящего среднего на основе расчетов каждого m-го сглаженного значения ТХ по формуле

u с г л   m = 1 M ч в ∑ s = 1 M ч в u m + s − M ч в / 2 ,                                                    ( 5 )

где число отсчетов Mчв частной выборки, выделенной из генеральной выборки, определяется по формуле

M ч в = T T H   min 5 T п о с л ,                                                                      ( 6 )

исходя из того, что время набора отсчетов в частную выборку не должно превышать четверти минимального периода TTH min рысканий при траекторных нестабильностях полета ЛА в турбулентной атмосфере, а также из того, что отсчеты в ТХ следуют через период времени, равный длительности пачки СПНС Tпосл. В данном случае предлагается использовать пятую часть минимального периода рысканий планера TTH min, составляющего величину порядка 1 с.

Для формирования более качественной, ровной, пригодной для автоматизированного анализа сглаженной ТХ предлагается повторять процесс сглаживания исходной ТХ воздушного объекта 5 раз.

Графический вид сглаженной траекторной характеристики, соответствующей исходной ТХ (фиг.2), показан на фиг.3. Как видно, эта ТХ вполне пригодна для определения интервалов с максимальной, минимальной и средней угловой скоростью поворота ЛА относительно линии визирования. Аналитически сглаженную ТХ можно выразить объединением ее элементов Z ( m ) = ∪ m = 1 M p u с г л     m , Mp=M-Mчв/2-1 - рабочая длина сглаженной ТХ в пикселях (элементах, точках).

Для выявления закона F [ γ ˙ ( t ) ] изменения угловой скорости поворота ЛА во времени предлагается использовать правило: более высокому значению ТХ соответствует более высокая угловая скорость поворота ЛА при ТН, и наоборот. Таким образом, поведение сформированной ТХ предлагается (что целесообразно) считать косвенным законом изменения угловой скорости γ ˙ поворота ЛА с течением времени F [ γ ˙ ( t ) ] , выявление которого и является задачей изобретения. Иными словами сформированную сглаженную ТХ воздушного объекта Z(m) предлагается использовать в качестве закона F [ γ ˙ ( t ) ] его поворота относительно линии визирования (относительно РЛС). При этом следует учитывать тот факт, что время излучения Tизл m m-й последовательности сигналов с перестройкой несущей частоты связано с соответствующим номером uсгл m сглаженной траекторной характеристики воздушного объекта следующим выражением Tизл m≈Tпосл(m+Мчв/2).

Предложенный способ является более эффективным по сравнению с прототипом [1], так как он не требует более частого излучения сигналов на основной частоте f0, а также анализирует информацию о сопровождаемом ВО лишь после когерентного суммирования сигналов в ДлП, т.е. менее чувствителен к помехам и шумам приемника. Способ рекомендуется к использованию в радиолокационных системах классификации ВО, требующих усреднения признаков классификации по ракурсу, а также в системах формирования РЛИ ВО для определения наиболее информативных интервалов инверсного синтезирования.

Источники информации

1. Патент РФ №2234110. Способ построения двумерного радиолокационного изображения воздушной цели. Митрофанов Д.Г., Бортовик В.В. и др. Заявка №2003100255. БИПМ №22 от 10.08.2004. С.546-548 (прототип).

2. Митрофанов Д.Г., Прохоркин А.Г., Нефедов С.И. Измерение поперечных размеров летательных аппаратов по частотной протяженности доплеровского портрета // Радиотехника. 2008 №1. С.84-90.

3. Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. радио, 1970. - 560 с.

4. Финкельштейн М.И. Основы радиолокации. Учебник для вузов. - М.: Сов. радио, 1973. - 496 с.

5. Митрофанов Д.Г. Формирование двумерного радиолокационного изображения цели с траекторными нестабильностями полета // Радиотехника и электроника. РАН, 2002. №7. С.852-859.

6. Митрофанов Д.Г. Комплексный адаптивный метод построения радиолокационных изображений в системах управления двойного назначения // Теория и системы управления. Известия РАН. 2006. №1-2. С.101-118.

7. Митрофанов Д.Г. Метод построения радиолокационных изображений аэродинамических летательных аппаратов // Полет. 2006. №11. С 52-60.

8. Майоров Д.А., Савостьянов В.Ю., Митрофанов Д.Г. Измерение радиальной скорости воздушных объектов в режиме перестройки частоты // Измерительная техника. 2008. №2. С 43-47.

9. Патент №2326402 от 10.06.2008. Способ измерения радиальной скорости воздушной цели в режиме перестройки частоты от импульса к импульсу. Савостьянов В.Ю., Майоров Д.А., Прохоркин А.Г., Митрофанов Д.Г. Опубл. 10.06.2008. БИПМ №16. Часть III. С.752.

Радиолокационный способ выявления закона изменения угловой скорости поворота сопровождаемого воздушного объекта по последовательно принятым отражениям сигналов с перестройкой несущей частоты, заключающийся в том, что в направлении воздушного объекта излучают последовательности сигналов с перестройкой несущей частоты из 2N импульсов (N=8,9) каждая, частоту этих импульсов изменяют от импульса к импульсу в диапазоне от f0 до (f0+Fпер), где f0 - начальная несущая частота квазиоптической области отражения сантиметрового диапазона, Fпер - диапазон, в котором осуществляется перестройка частоты от импульса к и