Полипропиленовые бутылки
Иллюстрации
Показать всеИзобретение относится к композиции на основе полипропилена, подходящей для получения формованных изделий, а также к изделиям, таким как бутылки. Композиция имеет скорость течения расплава MFR2 (230°С), измеренную согласно ISO 1133, равную по меньшей мере 2,0 г/10 минут, и включает сополимер пропилена (С-РР), полипропилен с высокой прочностью расплава (HMS-PP) и α-нуклеатирующий агент. Сополимер пропилена (С-РР) имеет содержание сомономера, представляющего собой этилен и/или по меньшей мере один С4-12 α-олефин, равное или менее 7,0 мас.%, и удовлетворяет уравнению (I) R + 4,96 × C ≤ 95,66 (I) , где R представляет неупорядоченность [%], измеренную при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR), и С представляет содержание сомономера [в масс.%], измеренное при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR). Композиция по настоящему изобретению обладает улучшенными технологическими характеристиками, благодаря более высокой скорости течения расплава, что позволяет получить при использовании экструзионно-раздувного формования бутылки с высокой степенью блеска и ударопрочностью, а также жесткостью. 4 н. и 12 з.п. ф-лы, 3 табл., 2 ил.
Реферат
Настоящее изобретение относится к композиции нового полипропилена, подходящей для получения изделий, таких как бутылки, а также к изделиям, то есть бутылкам, полученным из композиции нового полипропилена.
В области полимеров хорошо известно, что конкретные применения требуют специально разработанных полимеров для достижения отдельных заданных свойств. Например, полимеры, используемые для литья йод давлением, должны иметь иные свойства, чем полимеры, используемые для выдувного формования.
Например, способ экструзионного выдувного формования представляет специальный способ, позволяющий удобно и дешево получать бутылки различного размера и формы. Основным недостатком этого способа является то, что стадия отверждения является очень специфичной по сравнению с обычным литьем под давлением.
В способе экструзионного выдувного формования расплав полимера сначала экструдируют через кольцо протяжки в раздуваемый воздухом полимерный рукав с последующим раздувом указанного полимерного рукава (как правило, называемого в этой области техники «паризон») до достижения внешней стороной рукава границ формы. Покрытие стенок формы полностью раздутым полимерным рукавом довольно сложно по сравнению с литьем под давлением, поскольку воздух между полимерным рукавом и формой должен быть удален полностью, что является обязательным требованием способа. Дополнительно внутренняя поверхность полимерного рукава не контактирует с формой, и, следовательно, существует только незначительная возможность влиять на структуру внутренней поверхности рукава. Как следствие, изделия, полученные при использовании экструзионно-выдувного способа, такие как бутылки, как правило, демонстрируют меньше блеска и прозрачности по сравнению с изделиями, полученными при использовании способа литья под давлением. Например, свойства внутренней и/или внешней поверхности бутылок, полученных экструзионно-выдувным способом, как правило, не одинаковые (следы течения, разрыв расплава), что приводит к снижению общего блеска и прозрачности по сравнению с бутылками, полученными литьем под давлением, или изделиями, полученными инжекционно-растяжно-раздувным формованием (ISBM). Определенное улучшение прозрачности может быть достигнуто при использовании висбрекинга полимерных материалов, но этот метод имеет некоторые ограничения и, как правило, применяется для относительно маленьких бутылок. Соответственно, более большие бутылки (объемом 1 л или более) предпочтительно не производятся при использовании прошедшего висбрекниг полипропилена в процессе экструзионно-выдувного формования.
Помимо блеска для функциональных характеристик бутылки также очень важна ударопрочность. Более высокая ударопрочность снижает риск повреждения во время транспортировки бутылки и также важна для транспортной обработки. Ударопрочность бутылок определяют при использовании так называемого теста с помощью падающего груза. Также требуется хорошая жесткость. Однако, как правило, материалы с превосходной жесткостью теряют в ударопрочности.
Следовательно, объект настоящего изобретения относится к композиции полипропилена, позволяющей среди прочего получение бутылок при использовании экструзионно-выдувного формования, при этом бутылки характеризуются высокой степенью блеска, высокой ударопрочностью и необязательно хорошей жесткостью. Также улучшаются технологические характеристики полипропилена по сравнению со стандартными полипропиленами.
Находкой настоящего изобретения является то, что рандом полипропилен должен быть скомбинирован с разветвленным полипропиленом, то есть, таким как полипропилен Y/H- формы, то есть полипропилен с высокой прочностью расплава (HMS-PP), и с α-нуклеирующим агентом.
Соответственно, в первом аспекте настоящее изобретение относится к композиции полипропилена со скоростью течения расплава MFR2 (230°С), измеренной согласно ISO 1133, равной по меньшей мере 2,0 г/10 минут, указанная композиция полипропилена включает сополимер пропилена (С-РР), полипропилен с высокой прочностью расплава (HMS-PP) и α-нуклеирующий агент (N), где сополимер пропилена (С-РР) имеет
(a) содержание сомономера, равное или менее 7,0 масс.%, сомономеры представляют этилен и/или по меньшей мере один С4-12 α-олефин;
(b) включает две фракции сополимера пропилена (A) и (В), где содержание сомономера первой фракции сополимера пропилена (А) составляет в пределах от 1,0 до 4,5 масс.%, а содержание сомономера первой фракции сополимера пропилена (А) ниже по сравнению с содержанием сомономера второй фракции сополимера пропилена (В).
Предпочтительно сополимер пропилена (С-РР) по первому аспекту настоящего изобретения удовлетворяет уравнению (I)
R + 4,96 × C ≤ 95,66 (I) ,
где
R представляет неупорядоченность [%], измеренную при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR),
и
С представляет содержание сомономера [в масс.%], измеренное при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR).
Во втором аспекте настоящее изобретение относится к композиции полипропилена со скоростью течения расплава MFR2 (230°С), измеренной согласно ISO 1133, равной по меньшей мере 2.0 г/10 минут, указанная композиция полипропилена включает сополимер пропилена (С-РР), полипропилен с высокой прочностью расплава (HMS-PP) и α-нуклеирующий агент (N), где сополимер пропилена (С-РР)
(a) имеет содержание сомономера, равное или менее 7,0 масс.%, сомономеры представляют этилен и/или по меньшей мере один C4-12 α-олефин, и
(b) удовлетворяет уравнению (I)
R + 4,96 × C ≤ 95,66 (I) ,
где
R представляет неупорядоченность, измеренную при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR), и
С представляет содержание сомономера [в масс.%], измеренное при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR).
Предпочтительно сополимер пропилена (С-РР) по второму аспекту настоящего изобретения включает две фракции сополимера пропилена (А) и (В), где содержание сомономера первой фракции сополимера пропилена (А) составляет в пределах от 1,0 до 4,5 масс.%, а содержание сомономера первой фракции сополимера пропилена (А) ниже по сравнению с содержанием сомономера второй фракции сополимера пропилена (В).
Композиция полипропилена по первому или второму аспекту настоящего изобретения предпочтительно включает в качестве полимерных компонентов только сополимер пропилена (С-РР) и полипропилен с высокой прочностью расплава (HMS-PP), как указанно выше, и дополнительно детально описано ниже.
Неожиданно было обнаружено, что такая композиция полипропилена обладает превосходными свойствами по сравнению с известными композициями полипропилена, в частности, таковыми, как правило, используемыми для процессов экструзионно-раздувного формования. Композиция полипропилена по настоящему изобретению, в частности, позволяет получить при использовании экструзионно-раздувного формования бутылки с высокой степенью блеска, исключительной ударопрочностью согласно тесту,проведенному с помощью падающего груза, и хорошей жесткостью. Также улучшаются технологические характеристики полипропилена благодаря более высокой скорости течения расплава согласно Сравнительным примерам (см. экспериментальную часть).
Далее настоящее изобретение будет описано более детально. Таким образом, описанные ниже предпочтительные варианты воплощения настоящего изобретения относятся к первому и второму аспекту, указанным выше.
Одним из обязательных требований к композиции полипропилена является повышенная скорость течения расплава. Скорость течения расплава, главным образом, зависит от среднемассовой молекулярной массы. Это происходит из-за того факта, что длинные молекулы придают материалу более низкую текучесть по сравнению с короткими молекулами. Увеличение молекулярной массы означает снижение показателя MFR. Скорость течения расплава (MFR) измеряют в г/10 минут выгруженного через определенное сито полимера при специфических температурных условиях и давлении, и измеряют вязкость полимера, которая, в свою очередь, для каждого типа полимера определяется его молекулярной массой, а также степенью разветвленности. Скорость течения расплава, измеренную при нагрузке 2,16 кг при температуре 230°С (ISO 1133), обозначают как MFR2 (230°С). Следовательно, предпочтительно композиция полипропилена по настоящему изобретению имеет MFR2 (230°С), измеренную согласно ISO 1133, равную по меньшей мере 2,0 г/10 минут, предпочтительно равную менее 2,2 г/10 минут. Соответственно, по существу понятно, что указанная композиция полипропилена по настоящему изобретению имеет MFR2 (230°С) в пределах от 2,0 до 6,0 г/10 минут, более предпочтительно в пределах от 2,1 до 4,5 г/10 минут, еще более предпочтительно в пределах от 2,2 до 3,8 г/10 минут.
Дополнительно, как указано выше, новая композиция полипропилена должна включать полипропилен с высокой прочностью расплава (HMS-PP). Полимеры такого типа улучшают прочность расплава композиции полипропилена. Следовательно, предпочтительно композиция полипропилена по настоящему изобретению дополнительно характеризуется механическим упрочнением при вытяжном усилии Fmax, как определено в Rheotens при температуре 200°С, по меньшей мере 7,0 vmax и скоростью вытяжения vmax по меньшей мере 180 мм/с, более предпочтительно характеризуется механическим упрочнением при вытяжном усилии Fmax по меньшей мере 7,5 сН и скоростью вытяжения vmax по меньшей мере 185 мм/с.
Кроме того, композиция полипропилена может быть дополнительно определена содержанием геля. Содержание геля является хорошим индикатором для химической модификации композиции полипропилена или ее компонентов. Соответственно, настоящее изобретение характеризуется относительно умеренным содержанием геля, то есть не более чем 1,00 масс.%, еще более предпочтительно не более чем 0,80 масс.%, еще более предпочтительно не более чем 0,50 масс.%, определенным как относительное количество полимера, нерастворимого в кипящем ксилоле (фракция, нерастворимая в горячем ксилоле, XHI). С другой стороны, композиция полипропилена должна включать определенное количество полипропилена с высокой прочностью расплава (HMS-PP). Следовательно, содержание геля в композиции полипропилена предпочтительно составляет более чем 0,15 масс.%, более предпочтительно по меньшей мере 0,27 масс.%. Таким образом, предпочтительные пределы содержания геля в композиции полипропилена составляют от 0,05 до 0,90 масс.%, такое как от 0,15 до 0,90 масс.%, более предпочтительно от 0,26 до 0,8 масс.%.
Дополнительно, понятно, что композиция полипропилена по настоящему изобретению предпочтительно имеет содержание фракции, растворимой в холодном ксилоле (XCS), не более чем 15,0 масс.%, более предпочтительно не более чем 14,0 масс.%, еще более предпочтительно не более чем 12,0 масс.%, такое как не более чем 1,5 масс.%.
Дополнительно, композиция полипропилена может быть охарактеризована количеством сомономерных единиц, иных, чем пропилен, в композиции полипропилена. Следовательно, понятно, что единицы, полученные из C2-С12 α-олефинов, иных, чем пропилен, составляют не более чем 7,0 масс.%, предпочтительно не более чем 6.0 масс.%, такое как не более чем 5,5 масс.%, в композиции полипропилена.
Далее композиции полипропилена по настоящему изобретению дополнительно характеризуются полимерными компонентами композиции. Сополимер пропилена (С-РР) включает единицы, полученные из пропилена, и по меньшей мере иные, чем С2-С12 α-олефины, предпочтительно по меньшей мере иные, чем С2-С10 α-олефины. Следовательно, сополимер пропилена (С-РР) включает единицы, полученные из пропилена, и по меньшей мере иные, чем α-олефин, выбранный из группы, состоящей из этилена, С4 α-олефина, C5 α-олефина, C6 α-олефина, С7 α-олефина, С8 α-олефина, С9 α-олефина и С10 α-олефина. Более предпочтительно сополимер пропилена (С-РР) включает единицы, полученные из пропилена, и по меньшей мере иные, чем α-олефин, выбранный из группы, состоящей из этилена, 1-бутена, 1-пентена, 1-гексена, 1-гептена, 1-октена, 1-нонена и 1-доцена, где предпочтительными являются этилен, 1-бутен и 1-гексен. По существу предпочтительно сополимер пропилена (С-РР) состоит из единиц, полученных из пропилена и этилена. Количество единиц, полученных из С2-С12 α-олефинов, иных, чем пропилен, в сополимере пропилена (С-РР) равно или менее 7,0 масс.%, предпочтительно в пределах от 1,0 до 7,0 масс.%, более предпочтительно в пределах от 1,5 до 6,0 масс.%, еще более предпочтительно в пределах от 2,0 до 5,5 масс.%. Предпочтительно сополимер пропилена (С-РР) представляет рандом сополимер пропилена. Используемый в описании настоящей патентной заявки термин «рандом» понимается согласно IUPAC (Glossary of basic terms in polymer science; IUPAC recommendations 1996). Следовательно, предпочтительно сополимер пропилена (С-РР) имеет неупорядоченность по меньшей мере 40%, более предпочтительно по меньшей мере 50%, еще более предпочтительно по меньшей мере 55%, еще более предпочтительно по меньшей мере 60% и еще более предпочтительно по меньшей мере 65%.
Еще более предпочтительно сополимер пропилена (С-РР) удовлетворяет уравнению (I), еще более предпочтительно удовлетворяет уравнению (Ia), еще более предпочтительно удовлетворяет уравнению (Ib)
R + 4,96 × C ≤ 95,66 (I)
R + 4,30 × C ≤ 94,66 (Ia)
R + 4,30 × C ≤ 93,66 (Ib) ,
где
R представляет неупорядоченность [%], измеренную при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR),
и
С представляет содержание сомономера [в масс.%], измеренное при использовании инфракрасной спектроскопии с Фурье-преобразованием (FTIR), предпочтительно сополимер пропилена (С-РР) является изотактическим.
Следовательно, понятно, что сополимер пропилена (С-РР) имеет достаточно высокую концентрацию изотактических триад, то есть выше чем 90%, более предпочтительно выше чем 92%, еще более предпочтительно выше чем 93% и еще более предпочтительно выше чем 95%, такое как выше чем 97%.
Дополнительно, понятно, что содержание сополимера, растворимого в холодном ксилоле (С-РР), достаточно низкое. Следовательно, сополимер пропилена (С-РР) предпочтительно имеет содержание фракции, растворимой в холодном ксилоле (XCS), измеренное согласно ISO 6427 (23°С), не более чем 15,0 масс.%, более предпочтительно не более чем 13,0 масс.%, еще более предпочтительно не более чем 12,0 масс.%, такое как не более чем 1,5 масс.%. Таким образом, предпочтительные пределы составляют от 1,0 до 15,0 масс.%, более предпочтительно от 1,0 до 13,0 масс.%), еще более предпочтительно от 1,2 до 11,0 масс.%.
Предпочтительно сополимер пропилена (С-РР) является мультимодальным, таким как бимодальный, исходя из распределения молекулярной массы и/или распределения содержания сомономера, последнее по существу предпочтительно.
Используемый в описании настоящей патентной заявки термин «мультимодальный» или «бимодальный» относится к модальности полимера, то есть
- форме кривой распределения молекулярной массы, которая является графиком молекулярной массы фракции, как функции ее молекулярной массы, или более предпочтительно форме кривой распределения содержания сомономера, которая является графиком содержания сомономера как функция молекулярной массы полимерных фракций.
Как будет описано ниже, полимерные фракции сополимера пропилена (С-РР) могут быть получены при использовании процесса с последовательными стадиями с использованием серии последовательно соединенных реакторов, работающих при различных условиях реакции. Соответственно, каждая фракция, полученная в определенном реакторе, будет иметь свое собственное распределение молекулярной массы и/или распределение содержания сомономера.
Когда кривые распределения (молекулярной массы или содержания сомономеров) этих фракций накладывают друг на друга с получением кривой распределения молекулярной массы или кривой распределения содержания сомономеров конечного полимера, эти кривые могут показать два или более максимума, или по меньшей мере будут заметно расширены по сравнению с кривыми для отдельных фракций. Такой полимер, полученный за две или более последовательные стадии, называют бимодальным или мультимодальным, в зависимости от числа стадий.
Следовательно, сополимер пропилена (С-РР) может быть мультимодальным, таким как бимодальный, исходя из содержания сомономеров и/или молекулярной массы. По существу понятно, что сополимер пропилена (С-РР) является мультимодальным, таким как бимодальный, по содержанию сомономера.
Дополнительно, в случае, когда сополимер пропилена (С-РР) представляет мультимодальный, такой как бимодальный, в частности мультимодальный, такой как бимодальный, по содержанию сомономеров, понятно, что отдельные фракции присутствуют в количествах, оказывающих воздействие на свойства материала. Следовательно, понятно, что каждая из этих фракций присутствует в количестве по меньшей мере 10 масс.%) от общего сополимера пропилена (С-РР). Соответственно, в случае бимодальной системы, в частности, по содержанию сомономеров сплит (примечание: количество полимера, полученного в соответствующем реакторе, отнесенное к общей массе) двух фракций предпочтительно составляет в пределах от 40:60 до 60:40.
Следовательно, в одном предпочтительном варианте воплощения настоящего изобретения (С-РР) включает по меньшей мере предпочтительно состоит из двух фракций сополимера пропилена (А) и (В), которые отличаются по содержанию сомономера, такому как содержание этилена (предпочтительно в качестве единственного сомономера в сополимере пропилена (С-РР)), где фракция первого сополимера пропилена (А) присутствует в пределах от 40 до 60 масс.%, а фракция второго сополимера пропилена (В) присутствует в пределах от 60 до 40 масс.% (в пределах от 40:60 до 60:40). Соответственно, обе фракции сополимера пропилена (А) и (В) включают, предпочтительно состоят из единиц, полученных из пропилена, и по меньшей мере иных чем C2-C12 α-олефинов. предпочтительно по меньшей мере иных чем С2-С10 α-олефинов. Следовательно, две фракции сополимера пропилена (А) и (В) включают, предпочтительно состоят из единиц, полученных из пропилена и по меньшей мере иного α-олефина, чем выбранный из группы, состоящей из этилена, С4 α-олефина, C5 α-олефина, С6 α-олефина, С7 α-олефина, C8 α-олефина, С9 α-олефина и С10 α-олефина. Более предпочтительно две фракции сополимера пропилена (А) и (В) включают, предпочтительно состоят из единиц, полученных из пропилена и по меньшей мере иного α-олефина, чем выбранный из группы, состоящей из этилена, 1-бутена, 1-пентена, 1-гексена, 1-гептена, 1-октена, 1-нонена и 1-доцена, где предпочтительными являются этилен, 1-бутен и 1-гексен. По существу предпочтительно две фракции сополимера пропилена (А) и (В) состоят из единиц, полученных из пропилена и этилена. По существу предпочтительно, чтобы сомономеры в двух фракциях сополимера пропилена (А) и (В) были одинаковыми. Соответственно, в одном конкретном варианте воплощения настоящего изобретения сополимер пропилена (С-РР) включает, предпочтительно состоит из двух фракций сополимера пропилена (А) и (В), где две фракции сополимера пропилена (А) и (В) имеют те же самые сомономеры, такие как этилен, то есть, фракции сополимера пропилена (А) и (В) состоят из единиц, полученных только из пропилена и этилена.
Как указанно выше, обе фракции (А) и (В) представляют сополимеры пропилена. Предпочтительно содержание сомономеров первой фракции сополимера пропилена (А) составляет в пределах от 1,0 до 4,5 масс.%, более предпочтительно в пределах от 1,5 до 3,5 масс.%, такое как в пределах от 1,8 до 3,2 масс.%.
Дополнительно или в качестве альтернативы к требованиям, указанным предшествующих абзацах, понятно, что содержание сомономера первой фракции сополимера пропилена (А) ниже по сравнению с содержанием сомономера второй фракции сополимера пропилена (В). Следовательно, по существу понятно, что содержание сомономера, такое как содержание этилена второй фракции сополимера пропилена (В), составляющее по меньшей мере 1,0 масс.%, более предпочтительно по меньшей мере 1,5 масс.%, еще более предпочтительно по меньшей мере 2,0 масс.%, более высокое, чем содержание сомономеров, такое как содержание этилена первой фракции сополимера пропилена (А). С другой стороны, различие в содержании сомономеров между двумя фракциями должно быть не слишком высоким, то есть не более чем 6,0 масс.%, предпочтительно не выше чем 5,0 масс.%, более предпочтительно не выше чем 4,7 масс.% во избежание тенденции к разделению. Следовательно, понятно, что содержание сомономеров, такое как содержание этилена второй фракции сополимера пропилена (В), предпочтительно составляющее в пределах от 1,0 до 7,0 масс.%, более предпочтительно в пределах от 1,2 до 7,0 масс.%, выше, чем содержание сомономеров, такое как содержание этилена первой фракции сополимера пропилена (A). Следовательно, предпочтительно, чтобы вторая фракция сополимера пропилена (В) имела содержание сомономера, такое как содержание этилена, по меньшей мере 3,0 масс.%, более предпочтительно по меньшей мере 4,0 масс.%, такое как по меньшей мере 5,0 масс.%, еще более предпочтительно в пределах от 3,0 до 10,0 масс.%, такое как в пределах от 3,0 до 9,0 масс.%, еще более предпочтительно в пределах от 4,0 до 8,5 масс.%
Дополнительно, предпочтительно сополимер пропилена (С-РР) имеет довольно высокую температуру кристаллизации Тс, измеренную при использовании дифференциальной сканирующей калориметрии (DSC), составляющую по меньшей мере 110°С, более предпочтительно по меньшей мере 115°С. Предпочтительно эта температура кристаллизации Тс измерена перед разрушением композиции полипропилена и, следовательно, перед разрушением композиции сополимера пропилена (С-РР). Предпочтительно сополимер пропилена (С-РР) прошел обработку α-нуклеирующим агентом d, то есть включает α-нуклеирующий агент (N), как описано детально ниже.
Как указано выше, композиция полипропилена по настоящему изобретению должна включать по меньшей мере в качестве полимерных компонентов сополимер пропилена (С-РР) и полипропилен с высокой прочностью расплава (HMS-PP). Два компонента должны быть выбраны, таким образом, чтобы отвечать, в частности,требуемой MFR2 (230°С) по меньшей мере 2,0 г/10 минут для конечной композиции полипропилена. В принципе возможны три варианта для достижения заданной относительно высокой скорости течения расплава конечной композиции. В первом варианте используют сополимер пропилена (С-РР) с MFR2 (230°С), аналогичной конечному продукту, и смешивают его с полипропиленом с высокой прочностью расплава (HMS-PP). Альтернативным вариантом является использование сополимера пропилена (С-РР) со значительно более низкой MFR2 (230°С) по сравнению с конечным продуктом, разрушение указанного сополимера пропилена (С-РР), то есть висбрекинг указанного сополимера пропилена (С-РР), и последующее смешивание его с полипропиленом с высокой прочностью расплава (HMS-PP). В другом варианте используют смесь сополимера пропилена (С-РР) и полипропилена с высокой прочностью расплава (FIMS-PP) (необязательно с α-нуклеирующим агентом (N)), где указанный сополимер пропилена (С-РР) имеет значительно более низкую MFR2 (230°С) по сравнению с конечным продуктом. Указанную смесь подвергается висбрекингу при использовании перекиси до заданной MFR2 (230°С) по меньшей мере 2,0 г/10 минут для конечной композиции полипропилена. Последний вариант является наиболее предпочтительным.
Соответственно, принимая во внимание различные варианты создания композиции полипропилена с MFR2 (230°С) по меньшей мере 2,0 г/10 минут, сополимер пропилена (С-РР) в композиции полипропилена предпочтительно имеет MFR2 (230°С) не более чем 4,5 г/10 минут. Более предпочтительно сополимер пропилена (С-РР) в композиции полипропилена предпочтительно имеет MFR2 (230°С) не более чем 3,0 г/10 минут. Следовательно, по существу понятно, что сополимер пропилена (С-РР) в композиции полипропилена предпочтительно имеет MFR2 (230°С) в пределах от 2,0 до 4,5 г/10 минут, более предпочтительно в пределах от 2,1 до 3,8 г/10 минут, еще более предпочтительно в пределах от 2,2 до 3,5 г/10 минут.
В случае композиции полипропилена по настоящему изобретению, полученной при использовании висбрекинга сополимера пропилена (С-РР) или висбрекинга композиции полипропилена, используемый сополимер пропилена (С-РР) имеет MFR2 (230°С) по меньшей мере 0,3 г/10 минут, более предпочтительно в пределах от 0,5 до 3,0 г/10 минут, еще более предпочтительно в пределах от 1,0 до 2,5 г/10 минут, такую как в пределах от 1,3 до 2,0 г/10 минут. Предпочтительно первоначально используемый сополимер пропилена (С-РР) выбирают, таким образом, что соотношение висбрекинга (конечная MFR2 (230°С)) / начальная MFR2 (230°С)) составляет в пределах от 1,3 до 3,0, более предпочтительно в пределах от 1,4 до 2,5, где «начальная MFR2 (230°C)» представляет MFR2 (230°С) сополимера пропилена (С-РР) перед висбрекингом
и
«конечная MFR2 (230°С)» представляет MFR2 (230°С) сополимера пропилена (С-РР) после висбрекинга и/или MFR2 (230°С) композиции полипропилена после висбрекинга.
Далее более детально описано получение сополимера пропилена (С-РР) наряду с висбрекингом.
В качестве дополнительного важного требования в настоящем изобретении должен быть использован полипропилен с высокой прочностью расплава (FIMS-PP). Полимеры такого типа характеризуются определенной степенью разветвленности. Возможно полипропилены с высокой прочностью расплава (HMS-PP) представляют так называемые Y/H-полипропилены. например, описанные в FP 0787750, то есть разновидности одноразветвленных полипропиленов (Y полипропилены имеют основание с единичной длинной боковой цепью и структуру, похожую на «Y») и разновидности полипропиленов, полимерные цепочки которых соединены мостиковой группой (структура напоминает «Н»). Такие полипропилены характеризуются довольно высокой прочностью расплава. Параметром степени разветвленности является индекс разветвленности g'. Индекс разветвленности g' коррелирует с разветвлениями полимера. Индекс разветвленности g' определяют как g'=[IV]br[IV]lin, где g' представляет индекс разветвленности, [IV]br представляет истинную вязкость разветвленного полипропилена и [IV]lin представляет истинную вязкость линейного полипропилена с той же среднемассовой молекулярной массой (в пределах 110%) как у разветвленного полипропилена. Таким образом, низкий показатель g' является индикатором высокоразветвленного полимера. Другими словами, если показатель g' снижается, разветвленность полимера повышается. Это описано в В.Н. Zimm and W.H.Stockmeyеr. J.Chem. Phys. 17.1301 (1949). Этот документ введен здесь ссылкой. Следовательно, предпочтительно индекс разветвленности g' полипропилена с высокой прочностью расплава (HMS-PP) должен составлять менее чем 1,0; более предпочтительно равный или менее чем 0,9; такое как менее чем 0,8. В другом предпочтительном варианте воплощения настоящего изобретения индекс разветвленности g' полипропилена с высокой прочностью расплава (HMS-PP) предпочтительно должен составлять менее чем 0,7.
Высокая степень разветвленности полипропилена с высокой прочностью расплава (HMS-PP) также вносит свой вклад в прочность расплава. Следовательно, предпочтительно полипропилен с высокой прочностью расплава (HMS-PP) дополнительно характеризуется механическим упрочнением при вытяжном усилии Fmax по меньшей мере 10,0 сН и скоростью вытяжения vmax по меньшей мере 200 мм/с, более предпочтительно характеризуется механическим упрочнением при вытяжном усилии Fmax по меньшей мере 20,0 сН и скоростью вытяжения vmax по меньшей мере 250 мм/с, еще более предпочтительно механическим упрочнением при вытяжном усилии Т max по меньшей мере 25,0 сН и скоростью вытяжения vmax по меньшей мере 250 мм/с.
Такой полипропилен с высокой прочностью расплава (HMS-PP) предпочтительно получают модифицированием, то есть химическим модифицированием полипропилена. Такое модифицирование необходимо для достижения разветвленной структуры и/или феномена механического упрочнения полипропилена с высокой прочностью расплава (HMS-PP). Такая модификация также оказывает воздействие на содержание геля в полипропилене с высокой прочностью расплава (HMS-PP). Соответственно, допустимо определить полипропилен с высокой прочностью расплава (FIMS-PP) дополнительно и/или в качестве альтернативы содержанием в нем геля. Следовательно, понятно, что полипропилен с высокой прочностью расплава (HMS-PP) характеризуется относительно умеренным содержанием геля, то есть не более чем 1,00 масс.%, еще более предпочтительно не более чем 0,80 масс.%, еще более предпочтительно не более чем 0,50 масс.%, определенным, как относительное количество полимера, нерастворимого в кипящем ксилоле (фракция, нерастворимая в горячем ксилоле, XHI). С другой стороны, полипропилен с высокой прочностью расплава (HMS-PP) может иметь определенную степень разветвления и, следовательно, определенное содержание геля, то есть по меньшей мере, 0,15 масс.%), более предпочтительно по меньшей мере. 0,27 масс.%. Таким образом, предпочтительные пределы содержания геля в полипропилене с высокой прочностью расплава (HMS-PP) составляют от 0,05 до 0,90 масс.%, более предпочтительно от 0,26 до 0,8 масс.%.
Дополнительно, предпочтительно, чтобы полипропилен с высокой прочностью расплава (HMS-PP) имел MFR2 (230°С) в пределах от 1,0 до 10,0 г/10 минут, более предпочтительно в пределах от 4,0 до 8,5 г/10 минут, еще более предпочтительно в пределах от 6,0 до 8,0 г/10 минут.
Предпочтительно полипропилен с высокой прочностью расплава (HMS-PP) имеет плотность по меньшей мере 850 кг/м3, более предпочтительно по меньшей мере 875 кг/м3 и наиболее предпочтительно по меньшей мере 900 кг/м3.
Дополнительно, предпочтительно полипропилен с высокой прочностью расплава (HMS-PP) имеет плотность не более чем 950 кг/м3 более предпочтительно не более чем 925 кг/м3 и наиболее предпочтительно не более чем 910 кг/м3. Предпочтительно полипропилен с высокой прочностью расплава (HMS-PP) имеет точку плавления по меньшей мере 140°С, более предпочтительно по меньшей мере 150°С и наиболее предпочтительно по меньшей мере 160°С.
Как указанно выше, полипропилен с высокой прочностью расплава (HMS-PP) предпочтительно представляет модифицированный полипропилен. Следовательно, полипропилен с высокой прочностью расплава (HMS-PP) может быть дополнительно определен способом получения. Таким образом, полипропилен с высокой прочностью расплава (HMS-PP) предпочтительно является результатом обработки немодифицированного полипропилена (А) термически разрушающимся инициатором образования радикалов и/или ионизирующим излучением. Однако при этом существует высокий риск разрушения полипропилена (А), что оказывает негативное воздействие. Следовательно, предпочтительно проводить модификацию при использовании бифункционального ненасыщенного мономера(ов) и/или мультифункционального ненасыщенного с низкой молекулярной массой полимера(ов) в качестве химически соединяющей единиц(ы) мостиковых связей. Подходящий способ получения полипропилена с высокой прочностью расплава (HMS-PP) описан, например, в HP 0787750, ЕР 0879830 А1 и ЕР 0890612 А2. Все документы введены здесь ссылкой. Следовательно, предпочтительно количество перекиси составляет в пределах от 0,05 до 3,00 масс.% от немодифицированного полипропилена (А). Соответственно, в одном предпочтительном варианте воплощения настоящего изобретения полипропилен с высокой прочностью расплава (HMS-PP) включает единицы, полученные из
(i) пропилена и
(ii) бифункционального ненасыщенного мономера(ов) и/или мультифункционального ненасыщенного с низкой средней молекулярной массой полимера(ов).
Используемый в описании настоящей патентной заявки термин «бифункциональный ненасыщенный или мультифункциональный ненасыщенный» относится предпочтительно к присутствию двух или более не ароматических двойных связей, как, например, в дивинилбензоле или циклопентадиене или полибутадиене. Используют только такие би- или мультифункциональные ненасыщенные соединения, которые могут быть полимеризованы предпочтительно при помощи свободных радикалов. Ненасыщенные сайты в би- или мультифункциональных ненасыщенных соединениях в их химически связанном состоянии фактически не являются «не насыщенными», поскольку каждая из двойных связей использована для ковалентной связи с полимерными цепями полипропилена (А).
Реакция бифункционально ненасыщенного мономера(ов) и/или мультифункционально ненасыщенного с низкой молекулярной массой полимера(ов), предпочтительно имеющего среднечисловую молекулярную массу (Mn)≤10000 г/моль, синтезированного из одного и/или более ненасыщенного мономера, с композицией полимера пропилена может быть проведена в присутствии инициатора термического образования свободных радикалов, например, разрушающегося инициатора образования свободных радикалов, такого как термически разлагаемая перекись и/или ионизирующее излучение или микроволновое излучение.
Бифункциональные ненасыщенные мономеры могут представлять
- дивинильные соединения, такие как дивиниланилин, m-дивинилбензол, р-дивинилбензол, дивинилпентат и дивинилпропан;
- аллильные соединения, такие как аллил акрилат, аллил метакрилат, аллил метил малеат и винилаллиловый эфир;
- диены, такие как 1,3-бутадиен, хлоропрен, циклогексадиен, циклопентадиен, 2,3-диметилбутадиен, гептадиен, гексадиен, изопрен и 1,4-пентадиен;
- ароматический и/или алифатический бис (малеимид) бис(цитраконимид) и смеси этих ненасыщенных мономеров.
По существу предпочтительными бифункциональными ненасыщенными мономерами являются 1,3-бутадиен, изопрен, диметил бутадиен и дивинилбензол.
Мультифункциональный ненасыщенный с низкой молекулярной массой полимер, предпочтительно имеющий среднечисловую молекулярную массу (Mn)≤10000 г/моль, может быть синтезирован из одного или более ненасыщенного мономера.
Примеры таких полимеров с низкой молекулярной массой представляют
- полибутадиены по существу с отличающейся микроструктурой полимерной цепи, то есть 1,4-цис,1,4-транс и 1,2-(винил), главным образом 1,2-(винил),
- сополимеры бутадиена и стирола, имеющие 1,2-(винил) в полимерной цепи. Предпочтительным полимером с низкой молекулярной массой является полибутадиен, в частности полибутадиен, имеющий более чем 50,0 масс.% бутадиена в форме 1,2-(винила).
Полипропилен с высокой прочностью расплава (HMS-PP) может содержать более чем один бифункциональный ненасыщенный мономер и/или мультифункциональный ненасыщенный полимер с низкой молекулярной массой. Еще более предпочтительно количество бифункционального ненасыщенного мономера(ов) и мультифункционального ненасыщенного полимера(ов) с низкой молекулярной массой вместе с полипропиленом с высокой прочностью расплава (HMS-PP) составляет в пределах от 0,01 до 10,0 масс.% от указанного полипропилена с высокой прочностью расплава (HMS-PP).
Как указанно выше, предпочтительно бифункциональный ненасыщенный мономер(ы) и/или мультифункциональный ненасыщенный полимер(ы) с низкой молекулярной массой используют в присутствии термически разрушающегося инициатора образования свободных радикалов.
Перекиси являются предпочтительными термически разрушающимися инициаторами образования свободных радикалов.
Более предпочтительно термически разрушающиеся инициаторы образования свободных радикалов выбирают из группы, состоящей из ацильной перекиси, алкильной перекиси, гидроперекиси, перэфира и пероксикарбоната.
Следующие приведенные перекиси являются по существу предпочтит