Композиции, содержащие (s)-2-амино-1-(4-хлорфенил)-1-[4-(1н-пиразол-4-ил)фенил]этанол, в качестве модуляторов протеинкиназ

Иллюстрации

Показать все

Изобретение относится к cоединению формулы (I):

или его соли, сольвату, таутомеру или N-оксиду, где указанное соединение имеет энантиомерную чистоту по крайней мере 80%. Также описаны способы получения (S)-2-амино-1-(4-хлорфенил)-1-[4-(1Н-пиразол-4-ил)фенил]этанола, новые промежуточные соединения и способы получения новых промежуточных соединений. 7 н. и 11 з.п. ф-лы, 10 пр.

Реферат

Настоящее изобретение относится к пиразолсодержащему арилалкиламиносоединению, которое ингибирует или модулирует активность протеинкиназы В (РКВ), протеинкиназы А (РКА), киназы ROCK или киназы p70S6K, к применению этого соединения для лечения или профилактики заболеваний или состояний, опосредованных указанными киназами, и к фармацевтическим композициям, содержащим такое соединение. Более конкретно, настоящее изобретение относится к отдельному энантиомеру 2-амино-1-(4-хлорфенил)-1-[4-(1Н-пиразол-4-ил)фенил]этанола, содержащим его фармацевтическим композициям и к его терапевтическим применениям, а также к способам его получения и новым способам получения промежуточных соединений.

Уровень техники

Протеинкиназы составляют большое семейство структурно связанных ферментов, которые ответственны за контроль широкого ряда процессов передачи сигнала в клетке (книга Hardie, G. и Hanks, S., 1995, The Protein Kinase Facts Book. I и II, Academic Press, San Diego, CA). Киназы могут классифицироваться на семейства по субстратам, которые они фосфорилируют (например, протеин-тирозин, протеин-серин/треонин, липиды и т.д.). Идентифицированы участки последовательности, которые обычно соответствуют каждому из этих семейств киназ (например, статьи Hanks, S.K., Hunter, Т., FASEB J., 1995, 9, сс.576-596; Knighton и др., Science, 1991, 253, сс.407-414; Hiles и др., Cell, 1992, 70, сс.419-429; Kunz и др., Cell, 1993, 73, сс.585-596; Garcia-Bustos и др., EMBOJ., 1994, 13, сс.2352-2361).

Протеинкиназы могут характеризоваться по их механизмам регулирования. Эти механизмы включают, например, автофосфорилирование, трансфосфорилирование другими киназами, взаимодействия белок-белок, взаимодействия белок-липид и взаимодействия белок-полинуклеотид. Индивидуальная протеинкиназа может регулироваться несколькими механизмами.

Киназы регулируют многочисленные различные клеточные процессы, включая, но не ограничиваясь ими, пролиферацию, дифференциацию, апоптоз, подвижность, транскрипцию, трансляцию и другие процессы передачи сигнала, путем добавления фосфатных групп к целевым белкам. Это фосфорилирование действует как молекулярные включатели/выключатели, которые могут модулировать или регулировать биологическую функцию целевого белка. Фосфорилирование целевого белка происходит в ответ на различные внеклеточные сигналы (гормоны, нейротрансмиттеры, факторы роста и дифференциации и т.д.), фазы клеточного цикла, окружающие или питательные стрессы и т.д. Соответствующими функциями протеинкиназ в путях передачи сигнала являются активация или инактивация (прямо или косвенно), например, метаболического фермента, регулирующего белка, рецептора, цитоскелетного белка, ионного канала или насоса или фактора транскрипции. Неконтролируемая передача сигнала вследствие нарушенного контроля фосфорилирования белка встречается в ряде заболеваний, включая, например, воспаление, рак, аллергию/астму, заболевания и нарушения иммунной системы, заболевания и состояния центральной нервной системы и ангиогенез.

Апоптоз или программируемая гибель клетки является важным физиологическим процессом, который устраняет клетки, не требующиеся больше организму. Процесс является важным на раннем росте эмбриона и развитии, обеспечивая ненекротическое контролируемое разрушение, удаление и восстановление клеточных компонентов. Удаление клеток при апоптозе также важно для поддержания хромосомальной и геномной целостностью популяции растущих клеток. Существует несколько известных контрольных точек в цикле клеточного роста, в которых повреждение ДНК и геномная целостность внимательно исследуются. Ответом на выявление нарушений в этих контрольных точках является остановка роста таких клеток и начало процессов восстановления. Если повреждение или нарушения не могут быть восстановлены, тогда апоптоз инициируется поврежденными клетками для предотвращения развития дефектов и ошибок. Раковые клетки в целом содержат многочисленные мутации, ошибки или перегруппировки в их хромосомальной ДНК. Предполагается, что это возникает частично из-за того, что большинство опухолей имеют дефект в одном или нескольких процессах, ответственных за инициацию процесса апоптоза. Нормальные контрольные механизмы не могут уничтожить раковые клетки, и ошибки хромосомальных или кодирующих ДНК продолжают распространяться. Поэтому последовательность, восстанавливающая эти проапоптозные сигналы, или подавляющая нерегулируемые сигналы, является привлекательным способом лечения рака.

РКВ

Давно известно, что путь передачи сигнала, включающий ферменты фосфатидилинозитол 3-киназы (PI3K), PDK1 и PKB, среди прочих, медиирует повышенную резистентность к апоптозу или откликам выживаемости в многочисленных клетках. Существует значительное количество данных, показывающих, что этот путь передачи сигнала является важным путем для выживаемости, используемым многими факторами роста для подавления апоптоза. Ферменты семейства PI3K активируются рядом факторов роста и выживаемости, например, EGF, PDGF и выработкой полифосфатидилинозитола, инициируют активацию обратной передачи сигнала, включая активность киназы PDK1 и протенкиназы В (РКВ) также известны из предшествующего уровня техники. Это также справедливо для тканей пациента, например, для сосудистых эндотелиальных клеток, а также неоплазий. РКВ представляет собой протеинсерин/треонинкиназу, состоящую из домена киназы вместе с N-терминальным РН доменом и С-терминальным регулирующим доменом. Фермент PKBaipha (aktl), сам фосфорилируемый на Thr 308 с помощью PDK1 и на Ser 473 с помощью 'PDK2', как полагают, состоит из киназы мишени рапамицина (TOR) и его связанного белка rictor. Полная активация требует фосфорилирования на обоих сайтах, тогда как связь PIP3 и РН домена необходима для заякоривания фермента на цитоплазматической поверхности липидной мембраны, обеспечивая оптимальный доступ к субстратам.

Предполагается, что по крайней мере 10 киназ действуют как киназа Ser 473, включая митоген-активируемую протеин (MAP) киназу-активируемую протеинкиназу-2 (МК2), интегриноподобную киназу (ILK), киназу р38 MAP, протеинкиназу Calpha (PKCalpha), PKCbeta, NIMA-связанную киназу-6 (NEK6), мишень рапамицина млекопитающего (mTOR), двухвитковую ДНК-зависимую протеинкиназу (ДНК-РК) и мутированный при атаксии телеангиэктазии (ATM) генный продукт.Доступные данные предполагают, что множественные системы могут использоваться в клетках для регулирования активации РКВ. Полная активация РКВ требует фосфорилирования на обоих сайтах, тогда как связь PIP3 и РН домена необходима для заякоривания фермента на цитоплазматической поверхности липидной мембраны, обеспечивая оптимальный доступ к субстратам. Мутации РН домена недавно были описаны. Авторы приводят прямое доказательство участия АКТ1 в раке человека с помощью структурных биохимических и биологических исследований, и демонстрируют онкогенный потенциал Е17К мутации Aktl. Мутация появляется в 5 из 61 (8%) случая рака груди, в 3 из 51 (6%) случая рака толстой кишки и в 1 из 50 (2%) случаев рака яичников, (статья Nature, 448, сс.439-444 (26,07,2007) doi: 10,1038/nature 05933; полученной 8,03,2007; подписанной 11,05,2007; опубликованной online 4,07,2007. A transforming mutation in the pleckstrin homology domain of АКТ1 in cancer).

Недавно сообщалось, что соматические мутации в каталитической единице PI3K, PIK3CA, являются частыми (25-40%) при раке толстой кишки, желудка, груди, яичников и опухолях высокой степени злокачественности головного мозга. Мутации PIK3CA являются частыми случаями, которые могут возникать на ранних стадиях при карциногенезе мочевого пузыря. При инвазивных карциномах груди изменения PIK3CA главным образом присутствуют в лобулярных и проточных опухолях. Передача сигнала PI3K значительно активируется при эндометриальных карциномах, и комбинация изменений PIK3CA/PTEN может играть важную роль в развитии этих опухолей. Опухоли активируются мутациями киназы PI3, и потеря PTEN способствует активации РКВ, и в результате приводит к непропорциональной чувствительности к ингибированию ингибиторами РКА/РКВ.

Активированные РКВ в свою очередь фосфорилируют ряд субстратов, участвующих в общем отклике выживаемости. Поскольку мы не может учесть все факторы, ответственные за медиирование PKB-зависимого отклика выживаемости, некоторыми важными действиями, как полагают, являются фосфорилирование и инактивация проапоптозного фактора BAD и каспазы 9, фосфорилирование факторов транскрипции Форкхеда, например, FKHR, что приводит к их выходу из ядра, и активация передачи сигнала NfkappaB путем фосфорилирования последующих киназ в каскаде.

В дополнение к антиапоптозному действию и действию на провыживаемость РКВ, фермент также играет важную роль в промотировании клеточной пролиферации. Это действие, вероятно, опосредуется некоторыми действиями, некоторыми из которых, как полагают, являются фосфорилирование и инактивация ингибитора циклинзависимой киназы p21Cipl/WAF1, и фосфорилирование и инактивация mTOR, киназы, контролирующей некоторые аспекты клеточного размера, роста и трансляции белка.

Фосфатаза PTEN, которая дефосфорилирует и инактивирует полифосфатидилинозитолы, является ключевым белком, подавляющим опухоль, который обычно действует для регулирования PI3K/PKB пути передачи сигнала. Значимость пути передачи сигнала PI3K/PKB при опухолегенезе может быть подтверждена наблюдением того, что PTEN является одной из наиболее распространенных мишеней мутации в опухолях человека, с мутациями в этой фосфатазе, обнаруженными при -50% или более меланом (Guldberg и др.. Cancer Research, 1997, 57, сс.3660-3663) и обширного рака простаты (Cairns и др., Cancer Research, 1997, 57, с.4997). Эти исследования и другие предполагают, что широкий ряд типов опухолей зависит от повышенной активности РКВ в отношении роста и выживаемости, и поддавались бы терапевтическому лечению соответствующими ингибиторами РКВ.

Существуют 3 тесно связанных изоформы РКВ, обозначаемые альфа, бета и гамма (АКТ1, 2 и 3), генетическое исследование которых показало различные, но перекрывающиеся функции. Доказательство предполагает, что они все могут независимо участвовать в раке. Например, было обнаружено, что РКВ бета сверхэкспрессируется или активируется в 10 - 40% случаев рака яичников и поджелудочной железы (статьи Bellacosa и др., Int. J. Cancer, 1995, 64, сс.280-285; Cheng и др., PNAS, 1996, 93, сс.3636-3641; Yuan и др., Oncogene, 2000, 19, сс.2324-2330), РКВ альфа участвует раке желудка, простаты и груди человека (статьи Staal PNAS, 1987, 84, сс.5034-5037; Sun и др., Am. J. PathoL, 2001, 159, сс.431-437), и повышенная активность РКВ гамма наблюдается в клеточных линиях стероиднезависимого рака груди и простаты (статья Nakatani и др., J. Biol. Chem., 1999, 274, сс.21528-21532).

Передача сигнала РКВ также участвует в росте и выживании нормальных тканей, и может регулироваться в процессе нормальной физиологии для контроля клеточной и тканевой функции. Следовательно, нарушения, связанные с нежелательной пролиферацией, и выживаемость нормальных клеток и тканей может также регулироваться терапевтически при лечении ингибитором PKB. Примеры таких нарушений являются нарушения иммунных клеток, связанные с пролонгированным ростом и выживаемостью клеточной популяции, что приводит к пролонгированному или сверхрегулируемому иммунному отклику. Например, Т и В лимфоциты реагируют на родственные антигены или факторы роста, так, что интерферон гамма активирует путь PI3K/PKB, и он отвечает за поддержание выживаемости антигенспецифичных лимфоцитных клонов в процессе иммунного отклика. В условиях, в которых лимфоциты и другие иммунные клетки реагируют на несоответствующие собственные или чужеродные антигены, или в которых другие нарушения приводят к пролонгированной активации, путь РКВ составляет важный для выживаемости сигнал, предотвращающий нормальные механизмы, посредством которых иммунный отклик останавливается апоптозом активированной клеточной популяции. Существует значительное количество доказательств, демонстрирующих рост лимфоцитных популяций в ответ на собственные антигены в аутоиммунных условиях, такие как рассеянный склероз и артрит. Рост лимфоцитных популяций в ответ на несоответствующие чужеродные антигены является особенностью другого ряда состояний, таких как аллергические реакции и астма. В суммарном ингибировании РКВ может обеспечивать благоприятное лечение иммунных нарушений.

Другие примеры неподходящего распространения, роста, пролиферации, гиперплазии и выживаемости нормальных клеток, в которых может играть роль РКВ, включают, но не ограничиваются ими, атеросклероз, сердечную миопатию и гломерулонефрит.

В дополнение к роли в клеточном росте и выживаемости, передача сигнала РКВ участвует в контроле метаболизма глюкозы при инсулине. Имеющиеся доказательства от мышей с дефицитом альфа и бета изоформ РКВ предполагают, что это действие опосредуется изначально бета изоформой. Как следствие, модуляторы активности РКВ также могут быть полезны при заболеваниях, в которых присутствует дисфункция метаболизма глюкозы и хранения энергии как таковой при диабете, метаболическом заболевании и ожирении.

РКА

Цикло АМФ-зависимая протеинкиназа (РКА) представляет собой серин/треонинпротеинкиназу, которая фосфорилирует широкий ряд субстратов и участвует в регулировании многочисленных клеточных процессов, включая клеточный рост, клеточную дифференциацию, проводимость ионных каналов, транскрипцию генов и синаптическое высвобождение нейротрансмиттеров. В ее неактивной форме, полный фермент РКА представляет собой тетрамер, включающий две регулирующие субъединицы и две каталитических субъединицы.

РКА действует как связь между G-белком, медиирующим передачу сигнала, и клеточными процессами, которые они регулируют. Связывание лиганда гормона, такого как глюкагон, с трансмембранным рецептором активирует связанный с рецептором G-белок (GTP-связывание и гидролиз белка). При активации альфа субъединица G-белка диссоциирует и связывается и активирует аденилатциклазу, которая в свою очередь превращает АТФ в циклоАМФ (цАМФ). Полученная таким образом цАМФ затем связывается с регулирующими субъединицами РКА, что приводит к диссоциации связанных каталитических субъединиц. Каталитические субъединицы РКА, которые являются неактивными при взаимодействии с регулирующими субъединицами, становятся активными при диссоциации и участвуют в фосфорилировании других регулирующих белков.

Например, каталитическая субъединица РКА фосфорилирует киназу фосфорилазу, которая участвует в фосфорилировании фосфорилазы, фермента, ответственного за разрушение гликогена с высвобождением глюкозы. PKA также участвует в регулировании уровней глюкозы путем фосфорилирования и дезактивации гликогенсинтазы. Так, модуляторы активности PKA (эти модуляторы могут повышать или понижать активность PKA) могут быть полезны для лечения или контроля заболеваний, при которых присутствует дисфункция метаболизма глюкозы и хранения энергии, например, при диабете, метаболическом заболевании и ожирении.

Также установлено, что РКА является действующим ингибитором Т-клеточной активации. Anndahl и др. исследовали возможную роль РКА типа I в вызванной ВИЧ Т-клеточной дисфункции на той основе, что Т-клетки от ВИЧ-инфицированных пациентов имеют повышенные уровни цАМФ, и являются более чувствительными к ингибированию аналогов цАМФ по сравнению с нормальными Т-клетками. Из этих исследований они заключили, что повышенная активация РКА типа I может участвовать в прогрессивной Т-клеточной дисфункции при инфекции ВИЧ, и что РКА типа I, следовательно, может являться потенциальной мишенью для иммуномодулирующей терапии, статья Aandahl, E.M., Aukrust, P., Skalhegg, В.S., Muller, F., Froland, S.S., Hansson, V., Tasken, K. Protein kinase A type I antagonist restores immune responses of Т cells from HIV-infected patients, FASEB J., 1998, 12, сс.855-862.

Также установлено, что мутации в регулирующей субъединице РКА могут приводить к гиперактивации в эндокринной ткани.

Из-за разнообразия и важности РКА как мессенджера в клеточном регулировании, нарушенные отклики цАМФ могут приводить к различным вытекающим заболеваниям человека, таким как нарушенный клеточный рост и пролиферация (статья Stratakis, C.A.; Cho-Chung, Y.S.; Protein kinase A and human diseases. Trends Endrocri. Metab., 2002, 13, сс.50-52). Сверхэкспрессия РКА наблюдается в различных раковых клетках человека, включая клетки пациентов с раком яичников, груди и толстой кишки. Ингибирование РКА, следовательно, может быть подходом для лечения рака (статья Li, Q.; Zhu, G-D.; Current Topics in Medicinal Chemistry, 2002, 2, сс.939-971).

Для обзора роли РКА при заболевании человека см., например, статью Protein kinase A and Human Diseases, под ред. Constantine A. Stratakis, Annals of the New York Academy of Sciences, T. 968, 2002, ISBN 1-57331-412-9. ROCK киназы Семейство ROCK киназы включает два известных члена: ROCK1 и ROCK2:

ROCK1. Синонимы: Rho-связанная протеинкиназа 1; р160 ROCK; PI 60 ROK; р160 ROCK-1, Rho-связанная, кольцевая-кольцосодержащая протеинкиназа 1; Rho киназа 1; ROK бета.

ROCK2. Синонимы: Rho-связанная протеин киназа 2; р164 ROCK; р1б4 ROK; р164 ROCK-2; Rho-связанная, кольцевая-кольцосодержащая протеинкиназа 2, Rho киназа 2; ROK альфа.

Процесс метастаза включает реструктуризацию цитоскелета, а также адгезии клетка-клетка и клетка-матрикс, позволяющие клеткам высвобождаться из опухолевой массы, вторгаться в локальные ткани и затем распространяться по организму. Эти действия на клеточную морфологию и адгезию регулируются членами семейства Rho GТРазы.

Активированный RhoA способен взаимодействовать с некоторыми эффекторами белков, включая киназы ROCK ROCK1 и ROCK2. ROCK1 и ROCK2 могут быть активированы комплексом RhoA-GTP посредством физического взаимодействия. Активированные ROCK фосфорилируют ряд субстратов и играют важные роли в опорных клеточных функциях. Субстраты ROCK включают миозинсвязывающую субъединицу легкой цепи фосфатазы миозина (MBS, также называемая MYPT1), аддуцина, моезина, легкой цепи миозина (MLC), киназы LIM и фактора транскрипции FHL. Фосфорилирование этих субстратов модулируют биологическую активность белков, и обеспечивают средства для изменения клеточного отклика для внешнего стимулирования.

Повышенная экспрессия RhoA и RhoC, а также Rho эффекторы белков ROCK1 и ROCK2, обычно наблюдается при раках человека, включена в прогрессию опухолей яичка эмбриона, малых карцином груди с метастатической способностью, инвазии и метастазы рака мочевого пузыря, прогрессию опухоли при карциноме яичников.

Прогрессия опухолей в инвазивные и метастатические формы требует того, что опухолевые клетки подвергаются сильным морфологическим изменениям, процессам, регулируемым Rho GТРазами. Сократимость актомиозина представляет собой механизм, посредством которого клетки оказывают двигательную силу против их окружения. Обратная передача сигнала малой GТРазой Rho повышает сократимость в ROCK-опосредованном регулировании фосфорилирования легкой цепи миозина-II (MLC2).

Полагают, что ROCK киназы участвуют в индуцировании фокальных адгезий и стрессовых волокон и медиируют кальциевую чувствительность к сократимости гладкой мышцы, повышая фосфорилирование регулирующей легкой цепи миозина.

Исследования in vivo также показали, что ингибирование ROCK снижает инвазивность некоторых опухолевых клеточных линий. Ингибиторы ROCK, такие как Y-27632 или WF-536, используют в некоторых испытаниях для демонстрации этих свойств.

Ингибиторы ROCK были предложены для применения для лечения различных заболеваний. Они включают сердечнососудистые заболевания, такие как гипертензия, хроническая и застойная сердечная недостаточность, сердечная гипертрофия, рестеноз, хроническая почечная недостаточность и атеросклероз. Также, благодаря их свойствам в качестве мышечных релаксантов, ингибиторы могут быть полезны при астме, эректильной дисфункции у мужчин, сексуальной дисфункции у женщин и сверхактивном синдроме I мочевого пузыря.

Было показано, что ингибиторы ROCK обладают противовоспалительными свойствами. Таким образом, они могут использоваться для лечения нейровоспалительных заболеваний, таких как инсульт, рассеянный склероз, болезнь Альцгеймера, болезнь Паркинсона, амиотрофический латеральный склероз и воспалительная боль, а также других воспалительных заболеваний, таких как ревматоидный артрит, синдром раздраженного кишечника и воспалительное кишечное заболевание. На основании их индуцирующих действий на рост нейрита, ингибиторы ROCK могли бы быть полезными лекарственными препаратами для нейронной регенерации, вызывая рост новых аксонов и повторное проведение аксонов через повреждения ЦНС. Следовательно, ингибиторы ROCK вероятно полезны для регенеративного лечения нарушений ЦНС, таких как травмы позвоночника, острое нейронное повреждение (инсульт, травматическое повреждение головного мозга), болезнь Паркинсона, болезнь Альцгеймера и другие нейродегенеративные нарушения. Поскольку ингибиторы ROCK снижают клеточную пролиферацию и клеточную миграцию, они могли бы быть полезны для лечения рака и опухолевых метастаз. Наконец, существует доказательство того, что ингибиторы ROCK подавляют цитоскелетную перегруппировку при вирусной инвазии, поэтому они также имеют потенциальную терапевтическую ценность для противовирусных и антибактериальных применений. Ингибиторы ROCK также полезны для лечения инсулиновой резистентности и диабета.

Ингибитор ROCK Y-27632

Адгезия опухолевых клеток в клеточные слои хозяина и последующая межклеточная миграция являются решающими стадиями в инвазии рака и метастазах. Малая GТРаза Rho контролирует клеточную адгезию и подвижность в реорганизации цитоскелетного актина и регулировании сократимости актомиозина. Клетки гепатомы у культивируемых крыс ММ1 мигрируют сывороткозависимым, Rho-опосредованным способом, через мезотелиальный клеточный монослой in vitro. Среди некоторых белков, выделенных как предполагаемые молекулы мишени Rho, киназы ROCK, как ожидают, участвуют в индуцировании фокальных адгезий и стрессовых волокон в культивированных клетках, и опосредуют кальциевую чувствительность к сокращению гладких мышц путем повышения фосфорилирования регулирующей легкой цепи миозина. Трансфекция клеток ММ1 с помощью кДНК, кодирующей основной активный мутант ROCK, выдает инвазивную активность независимо от сыворотки и Rho. Наоборот, экспрессия основного отрицательного, киназа-дефективного мутанта ROCK по существу смягчает инвазивный фенотип.

Специфический ингибитор ROCK (Y-27632) блокирует Rho-опосредованную активацию актомиозина и инвазивную активность этих клеток. Кроме того, последующая доставка этого ингибитора, используя осмотические насосы, существенно снижает распространения клеток ММ1, имплантированных в брюшную полость изогенных крыс. Эти результаты показывают, что ROCK играет существенную роль в инвазии опухолевых клеток, и демонстрируют его потенциал как терапевтическая мишень для профилактики раковой инвазии и метастазирования.

VEGF вызывает активацию RhoA и забор RhoA в клеточную мембрану ECs человека. Это повышение активности RhoA необходимо для VEGF-индуцированной реорганизации цитоскелетного F-актина, что показано на аденовирусной трансфекции основного-отрицательного RhoA. Киназа Rho опосредует это действие RhoA, что было показано с использованием Y-27632, специфического ингибитора киназы Rho. Ингибирование киназы Rho предотвращает VEGF-повышаемую ЕС миграцию в ответ на механическое повреждение, но не оказывает действие на базальную миграцию ЕС. Кроме того, в модели in vitro ангиогенеза, ингибирование киназы RhoA или Rho ослабляет VEGF-опосредованный роста ЕС в 3-мерном фибриновом матриксе. Вывод: VEGF-индицированные цитоскелетные изменения ЕС требуют киназу RhoA и Rho, и активация передачи сигнала киназы RhoA/Rho участвует в VEGF-индуцированной миграции ЕС in vitro и ангиогенезе.

Y-27632 может расслаблять гладкую мышцу и повышать поток крови в сосудах. Y-27632 является молекулой с низким молекулярным весом, которая может проникать в клетки и не является токсичной для крыс после перорального введения 30 мг/кг в течение 10 суток. Эффективные дозы для применения этого соединения составляют около 30 мкМ. Оно снижает кровяное давление у крыс с гипертонией, но не влияет на кровяное давление у нормальных крыс. Это может привести к идентификации антагонистов сигнала Rho для лечения гипертензии (статьи Somlyo, Nature, 1997, 389, с.908; Uehata и др., Nature, 1997, 389, с.990).

Применение специфического ингибитора ROCK, Y-27632 (статьи Uehata и др., Nature, 1997, 389, сс.990-994, Davies и др., Biochemical Journal., 2000, 351, сс.95-105, и Ishizaki и др., Molecular Pharmacology., 2000, 57, сс.976-983) показало роль этого фермента в Ca2+ независимом регулировании сокращения ряда тканей, включая васкулярные (статья Uehata и др., Nature., 1997, 389, сс.990-994), дыхательные (статья Ilikuka и др., European Journal of Pharmacology., 2000. 406, сс.273-279) и генитальные (статья Chitaley и др., Nature Medicine., 2001. 7(1), сс.119-122) гладкие мышцы. Кроме того, Jezior и др. в статье British Journal of Pharmacology, 2001. 134, сс.78-87, показали, что Y-27632 ослабляет вызванные бетанехолом сокращения у выделенных гладких мышц мочевого пузыря кролика.

Ингибитор киназы Rho Y-27632 тестировали для следующих показаний:

- гипертензия (статьи Uehata и др., IBID, 1997; Chitaley и др., IBID, 2001; Chrissobolis и Sobey, С.Circ. Res, 2001, 88, с.774);

- астма (статьи lizuka и др., Eur. J. Pharmacol, 2000, 406, с.273; Nakahara и др., Eur. J. Pharmacol, 2000, 389, с.103);

- легочная вазоконстрикция (статья Takamura и др., Hepatology, 2001, 33, с 577);

- васкулярное заболевание (статья Miyata и др., Thromb Vase Biol, 2000, 20, с.2351; Robertson и др., Вг.J. Pharmacol, 2000, 131, с.5);

- эректильная дисфункция полового члена (статьи Chitaley и др.. Nature Medicine, 2001, 7, с.119; Mills и др., J. Appl. PhysioL, 2001, 91, с.1269; Rees и др., Br. J.Pharmacol, 2001, 133, с.455);

- глаукома (статьи Honjo и др.. Methods Enzymol, 2001, 42, с.137; Rao и др., Invest. Opthalmol. Urs. Sci., 2001, 42, с.1029);

- клеточная тансформация (статья Sahai и др., Curr. Biol., 1999, 9, сс.136-5);

- метастазирование рака простаты (статья Somlyo и др., BBRC, 2000, 269, с.652);

- гепатоклеточная карцинома и метастазирование (статьи Imamura и др., 2000; Takamura и др., 2001);

- фиброз печени (статьи Tada и др., J. Hepatol, 2001, 34, с.529; Wang и др., Am. J. Respir. Cell Mol Biol., 2001, 25, с.628);

- фиброз почек (статья Ohici и др., J. Heart Lung Transplant, 2001, 20, с.956);

- кардиозащита и приживаемость имплантата (Ohici и др., IBID, 2001);

- церебральный вазоспазм (Sato и др., Circ. Res, 2000, 87, с.195).

Киназа ROCK и сердечнососудистое заболевание

Существует растущее доказательство того, что ROCK, непосредственные прямые мишени малого гунозинтрифосфат-связывающего белка Rho, могут участвовать в сердечнососудистом заболевании. ROCK играют ключевую роль в обратных клеточных функциях, таких как сокращение гладких мышц, образование стрессовых волокон и клеточная миграция и пролиферация. Сверхактивность ROCK наблюдается при церебральной ишемии, коронарном вазоспазме, гипертензии, васкулярном воспалении, артериосклерозе и атеросклерозе. ROCK, следовательно, может быть важной и все еще относительно неисследованной терапевтической мишенью для сердечнососудистого заболевания. Последние экспериментальные и клинические исследования, использующие ингибиторы ROCK, такие как Y-27632 и фасудил, показывают критическую роль ROCK в эмбриональном развитии, воспалении и онкогенезе. Это исследование сфокусировано на потенциальной роли ROCK в клеточных функциях и раскрывает перспективы ингибиторов ROCK в качестве новой терапии сердечнососудистых заболеваний.

Нарушенная сократимость гладких мышц может быть основной причиной заболеваний, таких как гипертензия, и релаксанты гладких мышц, которые модулируют этот процесс, могут использоваться терапевтически. Сократимость гладких мышц регулируется цитозольной концентрацией Ca2+ и чувствительностью к Ca2+ миофиламентов: первая активирует киназу легкой цепи миозина, а последняя частично достигается ингибированием фосфатазы миозина.

Пути передачи сигнала Rho в гладких мышцах васкулярных клеток высоко активируются при гипертензии, состоянии, связанном с различными васкулярными заболеваниями, включая рестеноз и атеросклероз.

Гипертензия представляет собой сердечнососудистое заболевание, характеризующееся повышенной периферийной васкулярной резистентностью и/или васкулярным структурным ремоделированием. Недавно быстро растущие доказательства на моделях животных с гипертензией показали, что малая GTPаза Rho и ее последующий эффектор, Rho-киназа, играют важную роль в патогенезе гипертензии. Активация передачи сигнала Rho/Rho-киназы является существенной для сократимости гладких мышц при гипертензии. Большая экспрессия RhoA и повышенная активность RhoA наблюдается в аортах крыс с гипертонией, таких как крысы с генетической спонтанной гипертонией и вызванной N(омега)-нитро-L-аргининметиловым эфиром гипертонией.

Киназа ROCK и неврологические заболевания

Нарушенная активация передачи сигнала Rho/ROCK наблюдается при различных нарушениях центральной нервной системы. Повреждения головного мозга и спинного мозга взрослого млекопитающего активируют ROCK, тем самым ингибируя рост и распространение нейрита. Ингибирование ROCK приводит к ускорению регенерации и повышению функционального восстановления после повреждения спинного мозга у млекопитающих, и также доказано, что ингибирование передачи сигнала Rho/ROCK является эффективным на моделях животных с инсультом, воспалением и демиелинизирующими заболеваниями, болезнью Альцгеймера и нейропатической болью. Следовательно, ингибиторы ROCK могут быть полезны для профилактики нейродегенерации и стимулирования нейрорегенерации при различных неврологических нарушениях.

Развитие нейрона требует ряда стадий, которые начинаются с миграции из места появления и инициации процесса внешнего роста, и в конце концов приводят к дифференциации и образованию связи, которая позволяет соединить их с подходящими мишенями. В течение последних нескольких лет стало ясно, что семейство Rho GTPаз и связанные молекулы играют важную роль в различных аспектах нейронного развития, включая внешний рост и дифференциацию нейрита, удлинение аксона и образование и поддержание основы дендрита.

Одной общей мерой для ингибирования внешнего роста нейрита и отталкивания нейрита является перегруппировки актина при росте. Центральным в регулировании цитоскелета актина в нейронных и ненейронных клетках является семейство Rho малых GTPаз. Члены семейства Rho проходят цикл от неактивной GDP-связанной формы до активной GTP-связанной формы. Некоторые линии доказательств предполагают, что манипуляция активности состояния Rho GTPаз может модулировать рост конусного разрушения и ингибирования внешнего роста нейрита.

Недавно, на моделях с поведением показано, что инактивация передачи сигнала Rho может вызывать быстрое восстановление перемещения и прогрессивного восстановления координации передняя конечность-задняя конечность. Эти исследования обеспечивают доказательство того, что путь передачи сигнала Rho является потенциальной мишенью для терапевтических вмешательств после повреждения спинного мозга.

Киназа p70S6K

Рибосомальная протеинкиназа p70S6K весом 70 кДа (также известная как SK6, киназа р70/р85 S6, р70/р85 рибосомальная киназа S6 и pp70s6k) является членом подсемейства AGC протеинкиназ. p70S6K представляет собой серин-треонинкиназу, которая является компонентом передачи сигнала фосфатидилинозитол 3 киназы (Р13К)/АКТ. p70S6K находится ниже PI3K, и активация происходит путем фосфорилирования на ряде сайтов в ответ на многочисленные митогены, гормоны и факторы роста. Этот ответ может находиться под контролем mTOR, поскольку рапамицин действует на ингибирование активности p70S6K и блокирует синтез белка, особенно в результате прямого регулирования трансляции этих мРНК-кодирующих рибосомальных белков. p70S6K также регулируется PI3K и ее последующей мишенью АКТ. Вортманнин и рапамицин вызывают снижение фосфорилирования p70S6K на сайтах, зависимых от передачи сигнала PI3K. Мутантный p70S6K ингибируется вортманнином, но не рапамицином, предполагая, что передача сигнала PI3K может оказывать действия на p70S6K независимо от регулирования активности mTOR.

Фермент p70S6K модулирует синтез белка путем фосфорилирования рибосомального белка S6. Фосфорилирование S6 сочетается с повышенной трансляцией мРНК, кодирующих компоненты трансляционного аппарата, включая рибосомальные белки и трансляционные факторы удлинения, чья повышенная экспрессия является существенной для клеточного роста и пролиферации. Эти мРНК содержат олигопиримидиновый участок на их 5' транскрипциональном старте (называемом 5' ТОР), который, как было показано, является существенным для их регулирования на трансляционном уровне.

В дополнение к их участию в трансляции, активация p70S6K также участвует в контроле клеточного цикла, дифференциации нейронных клеток, регулировании клеточной подвижности и клеточного отклика, который является важным при опухолевых метастазах, иммунном отклике и восстановлении тканей. Антитела к p70S6K устраняют митогенный ответ в фибробластах крыс в S фазе, показывая, что функция p70S6K является существенной для развития от G1 до S фазы в клеточном цикле. Другое ингибирование пролиферации клеточного цикла от G1 до S фазы клеточного цикла рапамицином было определено как следствие ингибирования продукции гиперфосфорилированной, активированной формы p70S6K.

Вещество LKB1, подавляющее опухоль, активирует АМРК, который фосфорилирует комплекс TSC1/2 в передаче сигнала mTOR/p70S6K, тем самым способствуя p70S6K в РКВ независимой передаче сигнала. Мутации в LKB1 вызывают полипоз кишечника типа II (PJS), при котором у пациентов с PJS в 15 раз чаще возникает рак по сравнению с обычной популяцией. Кроме того, 1/3 легочных аденокарцином включают неактивированные мутации LKB 1.

Роль p70S6K в пролиферации опухолевых клеток и защите клеток от апоптоза подтверждена на основе его участия в передаче сигнала рецептора фактора роста, сверхэкспрессии и активации в опухолевых тканях. Например, нозерн- и вестерн-анализы показывают, что участие гена PS6K сопровождается соответствующими повышениями мРНК и экспрессии белка, соответственно (статья Cancer Res., 1999, 59, cc. 1408-11 - Localization of PS6K to Chromosomal Region 17q23 and Determination of Its Amplification in Breast Cancer).

Хромосома 17q23 присутствует в 20% ранних опухолей груди, в 87% опухолей груди, содержащих BRCA2 мутации, и в 50% опухолей, содержащих мутации BRCA1, а также в других типах рака, таких как рак поджелудочной железы, мочевого пузыря и нейробластома (см. статью М Barlund, О Monni, J Kononen, R Cornelison, J Torhorst, G Sauter, 0-P Kallioniemi и Kallioniemi A, Cancer Res., 2000, 60, сс.5340-5346). Было показано, что распространение 17q23 при раке груди включает гены РАТ1, RAD51C, PS6K и SIGMA1B (статья Cancer Res., 2000, 60, сс.5371-5375).

Ген p70S6K идентифицирован как мишень распространения и сверхэкспрессии в этой области, и статистически наблюдается существенная связь между распространением и плохим прогнозом.

Клиническое ингибирование активации p70S6K наблюдается у пациентов с почечной карциномой, подвергающихся лечению CCI-779 (сложный эфир рапамицина), ингибитором предшествующей киназы mTOR. Сообщалось о существенной линейной связи между развитием заболевания и ингибированием активности p70S6K.

p70S6K участвует в метаболических заболеваниях и нарушениях. Сообщалось, что отсутствие p70S6 защищает от возрастного и пищевого ожирения, тем самым повышая чувствительность к инсулину. Роль p70S6K в метаболических заболеваниях и нарушениях, таких как ожирение, диабет, метаболический синдром, резистентность к инсулину, гипергликемия, гипераминоацидемия и гиперлипидемия подтверждена на основе этих исследований.

Пиразольные соединения, обладающие ингибирующей активностью РКВ и PKA

Обнаружены некоторые классы соединений, обладающих ингибирующей активностью в отношении РКА и РКВ. Например, в международной заявке на патент WO 2005/061463 (Astex) описаны пиразольные соединения, обладающие ингибирующей активностью в отношении РКВ и РКА, и одно конкретное соединение представляет собой 2-амино-1-(4-хлорфенил)-1-[4-(1Н-пиразол-4-ил)фенил]этанол. Это соединение, структура которого показана ниже, имеет хиральный центр при атоме углерода, обозначенном звездочкой.

Это соединение, описанное в примере 84 международной заявки на патент WO 2005/061463, представляет собой рацемическую смесь двух возможных энантиомеров. В соответствии с примерами 106 и 107, соединение примера 84 имеет значение IC50 в анализе in vitro с РКА и РКВ соответственно менее 1 мкМ в каждом случае.

В международной заявке на патент WO 2005/061463 также описан и раскрыт ряд индивидуальных энантиомеров:

Изомеры А и В составляют одну пару энантиомеров, и изомеры С и D составляют другую пару энантиомеров.

Тесты, проведенные за