Сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением

Изобретение относится к области металлургии, в частности к высокопрочным прецизионным сплавам на основе никеля для получения покрытий микроплазменным или холодным сверхзвуковым напылением. Сплав содержит, мас.%: хром 18,0-40,0, молибден 30,0-40,0, алюминий 0,45-0,63, цирконий 4,5-6,4, карбид кремния 1,4-2,6, церий 0,2-0,6, иттрий 0,1-0,5, лантан 0,5-0,8, никель - остальное. Алюминий и цирконий присутствуют в сплаве в виде интерметаллида AlZr3, содержание которого составляет 5-7 мас.%. Сплав характеризуется повышенной коррозионной стойкостью и улучшенными прочностными характеристиками. 2 пр.

Реферат

Изобретение относится к созданию высокопрочных прецизионных сплавов на основе никеля для получения функциональных покрытий, имеющих существенно более высокую коррозионную стойкость по сравнению с известными аналогами и достаточные прочностные характеристики.

Известны высокопрочные сплавы на основе никеля системы Ni-Cr-Mo на основе наиболее прочной структурной компоненты, такой как p-фазы.

В частности, в патенте №2359054 заявлен сплав, защитный слой конструкционного элемента, который содержит, вес.%: кобальт 11-13, хром 20-22, алюминий 10,5-11,5, иттрий и/или, по меньшей мере, один металл из группы, включающей скандий и редкоземельные элементы, 0,3-0,5, рений 1,5-2,5, никель - остальное.

В патенте № RU 2418091 C1 заявлен аморфный, износостойкий наноструктурированный сплав на основе никеля системы Ni-Cr-Mo-WC, включающий хром, молибден, при этом он дополнительно содержит наноразмерные частицы карбида вольфрама, цирконий и церий при следующем соотношении компонентов, мас.%: хром 18,0-40,0, молибден 30,0-40,0, церий 0,6-1,2, цирконий 3,0-5,0, карбид вольфрама 6,0-8,0, никель - остальное, при этом отношение суммы хрома и молибдена к никелю больше или равно 1.

В качестве прототипа выбран сплав, заявленный в патенте №2359054. Общим недостатком известных сплавов, в том числе и сплава-прототипа, является относительно невысокая коррозионная стойкость, что соответствует 7 баллам по десятибалльной шкале классификации стойкости металлов и группе стойкости «Пониженно стойкий» со скоростью коррозии 0,5-1,0 мм/год, особенно при воздействии солевых композиций, органических и неорганических удобрений и других продуктов сельскохозяйственной деятельности. Также не существует данных о достаточных прочностных характеристиках покрытий, получаемых на основе этих сплавов (например, адгезии).

Техническим результатом изобретения является повышение коррозионной стойкости износостойкого сплава на основе никеля с улучшенными прочностными характеристиками (адгезия не ниже 70 МПа).

Технический результат достигается за счет того, что сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением, содержащий хром, алюминий и иттрий, в соответствии с изобретением дополнительно содержит цирконий, молибден, карбид кремния, церий и лантан при следующем соотношении компонентов, мас.%:

Хром 18,0-40,0
Молибден 30,0-40,0
Алюминий 0,45-0,63
Цирконий 4,5-6,4
Карбид кремния 1,4-2,6
Церий 0,2-0,6
Иттрий 0,1-0,5
Лантан 0,5-0,8
Никель остальное,

при этом алюминий и цирконий присутствуют в сплаве в виде интерметаллида AlZr3; содержание которого составляет 5-7 мас.%.

Основой предлагаемого сплава для достижения высокой прочности является p-фаза тройной системы Ni-Cr-Mo при следующем соотношении компонентов (% мас.):

Хром 18,0-40,0
Молибден 30,0-40,0
Никель остальное

Покрытия из этого тройного сплава, полученные, например, методами микроплазменного и сверхзвукового газодинамического напыления или лазерной наплавки, имеют высокую адгезионную и когезионную прочность (до 100 МПа). Однако получить покрытия с высокой твердостью и соответственно высокой износостойкостью из тройного сплава Ni-Cr-Mo не удастся вследствие высокой пористости получаемых покрытий (до 5 м2/г). Поры в покрытии являются очагами коррозии, вследствие чего защитные покрытия должны иметь пористость не выше 0,5 м2/г. Эффективное снижение пористости (до требуемых не более 0,5 м2/г) достигается за счет дополнительного введения в тройную систему наноразмерных частиц SiC, когерентно связанных с металлической матрицей.

Существенное снижение пористости наблюдается при содержании SiC, начиная с 1,4%. При содержании SiC более 2,6% происходит значительное охрупчивание сплава за счет образования хрупких областей с включениями чистого SiC и, соответственно, снижение когезионной прочности.

Однако твердость четырехкомпонентного сплава недостаточна для обеспечения эксплуатационной надежности покрытия. Практика показывает, что наиболее эффективным механизмом повышения твердости сплава (до значений порядка 400 HV) и соответственно износостойкости покрытия является введение в сплав термостойкой интерметаллической упрочняющей фазы, предпочтительно для сплавов на основе никеля типа алюминидов. Экспериментально установлено, что лучшие результаты получены при введении 5-7% (масс.) алюминида циркония, обладающего высокой твердостью (порядка 70-80 HRC), типа AlZr3 то есть при соотношении между цирконием и алюминием, соответствующем 9% Al (мас.) и 91% Zr (мас.), что в пересчете на весь сплав дает 0,45-0,63% Al (мас.) и 4,5-6,4% Zr (мас.). При введении AlZr3 менее 5% не наблюдается значительного повышения твердости, а при введении в сплав AlZr3 более 7% наблюдается ухудшение свойств покрытия, получаемого на основе заявляемого сплава, в частности оно становится склонным к растрескиванию и уменьшается его адгезионная прочность до 40 МПа.

При введении 5-7% (мас.) алюминида циркония микротвердость повышается до значений 52-65 HRC.

Для оптимизации состава сплава с точки зрения технологичности процесса получения покрытий (устойчивости процесса, разброса толщины покрытия по длине воспроизводимости эксплуатационных характеристик), учитывая прецизионность микрометаллургического передела сплава, необходимо его рафинировать, т.е. удалить негативно влияющие газовые включения - кислород, азот, водород. Для этого производится модифицирование сплава малыми добавками редкоземельных элементов (РЗЭ), имеющих наибольшее сродство к указанным газам, т.е. церий, иттрий, лантан соответственно. Экспериментально установлено, что оптимальное количество этих компонентов составляет:

- церий 0,2-0,6%

- иттрий 0,1-0,5%

- лантан 0,5-0,8%

Реальный эффект достигается только при комплексном введении всех трех модификаторов.

При меньших количествах указанных модификаторов требуемого эффекта не наблюдается.

При больших, чем указанные, значениях концентрации РЗЭ происходит существенное охрупчивание сплава, приводящее к разрушению покрытий.

Предлагаемый сплав имеет следующие характеристики:

- Адгезионная прочность 70-80 МПа

- Твердость 68 HRC

- Износостойкость 1,2*10-8

- Коррозионная стойкость (при взаимодействии минеральных и органических удобрений) 0,001-0,005 мм/год

Пример 1.

Выплавка сплава производится в алундовых тиглях методом прямого сплавления компонентов в поле высокочастотного генератора мощностью 10 кВт. Последовательность введения легирующих компонентов следующая:

Ni-(Cr+Mo)-(AlZr3)-SiC-(Ce+Y+La)

Лигатура стехиометрического состава AlZr3 производится отдельно методом прямого сплавления Al и Zr в соотношении 9% (масс.) и 91% (масс.) соответственно.

Количественное соотношение компонентов, соответствующее нижнему пределу заявляемого состава (мас.%):

Cr 18,0
Мо 30,0
Al 0,45
Zr 4,55
SiC 1,4
Се 0,2
Y 0,1
La 0,5
Ni остальное

Указанное содержание алюминия и циркония соответствует нижнему заявляемому содержанию интерметаллида AlZr3 - 5 мас.%.

Полученный сплав измельчается с помощью высокоскоростного дезинтегратора типа ДЕЗИ-15 до фракции 40-60 мкм, напыляется методом микроплазменного напыления с помощью роботизированной установки УГНП - 2/2270. Покрытие толщиной 200±10 мкм имеет следующие характеристики:

адгезия 75 МПа

пористость менее 4%

твердость 68 HRC

коррозионная стойкость 0,001-0,005 мм/год

износостойкость 1,2*10-8

Пример 2.

Аналогичная технология использовалась при получении никелевого сплава верхнего граничного состава (мас.%):

Cr 40,0
Мо 40,0
Al 0,63
Zr 6,37
SiC 2,6
Се 0,6
Y 0,5
La 0,8
Ni остальное

Указанное содержание алюминия и циркония соответствует верхнему заявляемому пределу интерметаллида AlZr3 - 7 мас.%

Порошок фракционного состава 20-40 мкм получен методом дезинтеграторного двухступенчатого размола на установке 1А5. Покрытие толщиной 120-150 мкм получали методом сверхзвукового холодного газодинамического напыления на установке ДИМЕТ 403. Полученные таким образом покрытия имеют следующие характеристики:

адгезия 75 МПа

пористость менее 4%

твердость 68 HRC

коррозионная стойкость 0,001-0,005 мм/год

износостойкость 1,2*10-8

Сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением, содержащий хром, алюминий и иттрий, отличающийся тем, что он дополнительно содержит цирконий, молибден, карбид кремния, церий и лантан, при следующем соотношении компонентов, мас.%:

Хром 18,0-40,0
Молибден 30,0-40,0
Алюминий 0,45-0,63
Цирконий 4,5-6,4
Карбид кремния 1,4-2,6
Церий 0,2-0,6
Иттрий 0,1-0,5
Лантан 0,5-0,8
Никель остальное,
при этом алюминий и цирконий присутствуют в сплаве в виде интерметаллида AlZr3, содержание которого составляет 5-7 мас.%.